

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ammonium ytterbium(III) diphosphate(V)

Karla Fejfarová,^a Rachid Essehli,^b Brahim El Bali^b and Michal Dušek^a*

^aInstitute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic, and ^bDepartment of Chemistry, Faculty of Sciences, University Mohammed 1st, PO Box 717, 60 000 Oujda, Morocco Correspondence e-mail: fejfarov@fzu.cz

Received 21 November 2008; accepted 25 November 2008

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (Yb–O) = 0.003 Å; R factor = 0.016; wR factor = 0.061; data-to-parameter ratio = 12.7.

The title compound, $NH_4YbP_2O_7$, crystallizes in the KAlP₂O₇ structure type and consists of distorted YbO₆ octahedra and bent $P_2O_7^{4-}$ diphosphate units forming together a threedimensional network. There are channels in the structure running along the *c* axis, where the NH_4^+ cations are located. They are connected *via* $N-H\cdots$ O hydrogen bonds to the terminal O atoms of the diphosphate anions.

Related literature

Isotypic compounds were reported by Man-Rong *et al.* (2005), [NH₄LuP₂O₇]; Horchani-Naifer & Férid (2007), [YbP₂O₇]; Jansen *et al.* (1991), [CsYbP₂O₇], that all crystallize with the KAlP₂O₇ structure type (Ng & Calvo, 1973). For the crystal structures of other isoformular rare earth diphosphates, see: Hamady & Jouini (1996), [NaYP₂O₇]; Férid *et al.* (2004), [NaEuP₂O₇]; Ferid *et al.* (2004), [NaYbP₂O₇]; Férid & Horchani-Naifer (2004), [NaLaP₂O₇]; Horchani-Naifer & Férid (2005), [NaCeP₂O₇]; Hamady *et al.* (1994) and Yuan *et al.* (2007), [KYP₂O₇]. Possible applications of rare earth phosphates were discussed by Yamada *et al.* (1974); Hong (1975); Bimberg *et al.* (1975). For background on crystallographic software, see: Becker & Coppens (1974).

Experimental

Crystal data

NH4YbP2O7	$V = 692.04(3) \text{ Å}^3$
$M_r = 365$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 7.6468 (2) Å	$\mu = 13.97 \text{ mm}^{-1}$
b = 10.9119 (2) Å	T = 120 K
c = 8.6129 (3) Å	$0.26 \times 0.08 \times 0.07 \text{ mm}$
$\beta = 105.645 \ (3)^{\circ}$	

 $T_{\min} = 0.169, \ T_{\max} = 0.545$

8574 measured reflections

1437 independent reflections

1362 reflections with $I > 3\sigma(I)$

(1995)]

 $R_{\rm int} = 0.023$

Data collection

Oxford Diffraction XCalibur 2 diffractometer with Sapphire 2 area detector Absorption correction: analytical [implemented in *CrysAlis RED* (Oxford Diffraction, 2008), according to Clark & Reid

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.016 & \mbox{4 restraints} \\ wR(F^2) = 0.061 & \mbox{Only H-atom coordinates refined} \\ S = 1.32 & \mbox{$\Delta \rho_{max} = 0.58 \ e \ \AA^{-3}$} \\ 1437 \ reflections & \mbox{$\Delta \rho_{min} = -0.50 \ e \ \AA^{-3}$} \\ 113 \ parameters & \end{array}$

Table 1

Selected geometric parameters (Å, °).

Yb1-O1	2.240 (3)	P1-O2	1.498 (5)
Yb1-O2 ⁱ	2.158 (4)	P1-O3	1.611 (4)
Yb1-O4 ⁱⁱ	2.230 (3)	P1-O4	1.525 (3)
Yb1-O5	2.224 (3)	P2-O3	1.622 (4)
Yb1-O6 ⁱⁱⁱ	2.191 (4)	P2-O5	1.532 (3)
Yb1-O7 ^{iv}	2.195 (3)	P2-O6	1.507 (4)
P1-O1	1.529 (3)	P2-O7	1.514 (3)
P1-O3-P2	127.40 (19)		

Symmetry codes: (i)
$$x, -y + \frac{1}{2}, z - \frac{1}{2}$$
, (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$, (iv) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O7 ^v	0.87 (4)	2.52 (5)	3.381 (5)	168 (4)
$N1-H2\cdots O4^{vi}$	0.88 (4)	2.03 (5)	2.888 (5)	166 (4)
N1-H3···O5 ^{vii}	0.87 (4)	2.00 (4)	2.873 (6)	177 (7)
$N1 - H4 \cdots O1$	0.86 (5)	2.26 (4)	2.916 (5)	132 (4)

Symmetry codes: (v) x - 1, y, z; (vi) -x + 1, -y + 1, -z + 1; (vii) x - 1, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2005); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2008); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *JANA2006* (Petříček *et al.*, 2007); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *JANA2006*.

We acknowledge the Grant Agency of the Czech Republic for grant No. 202/06/0757.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2208).

References

- Bimberg, D., Robbins, D. J., Wight, D. R. & Jeser, J. P. (1975). *Appl. Phys. Lett.* **27**, 67–68.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.

- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Férid, M., Horchani, K. & Amami, J. (2004). Mater. Res. Bull. 39, 1949-1955.
- Férid, M. & Horchani-Naifer, K. (2004). Mater. Res. Bull. 39, 2209-2217.
- Ferid, M., Horchani-Naifer, K. & Trabelsi-Ayedi, M. (2004). Z. Kristallogr. New Cryst. Struct. 219, 353–354.
- Hamady, A., Faouzi Zid, M. & Jouini, T. (1994). J. Solid State Chem. 113, 120– 124.
- Hamady, A. & Jouini, T. (1996). Acta Cryst. C52, 2949-2951.
- Hong, H. Y. P. (1975). Mater. Res. Bull. 10, 1105-1110.
- Horchani-Naifer, K. & Férid, M. (2005). Solid State Ionics, 176, 1949-1953.
- Horchani-Naifer, K. & Férid, M. (2007). Acta Cryst. E63, i33-i34.

- Jansen, M., Wu, G. Q. & Koenigstein, K. (1991). Z. Kristallogr. **197**, 245–246. Man-Rong, L., Wei, L., Hao-Hong, C., Xin-Xin, Y., Zan-Bin, W., Dun-Hua, C.,
- Mu, G. & Jing-Tai, Z. (2005). Eur. J. Inorg. Chem. pp. 4693–4696.
- Ng, H. N. & Calvo, C. (1973). Can. J. Chem. 51, 2613-2620.
- Oxford Diffraction (2005). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.
- Oxford Diffraction (2008). *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, England.
- Petříček, V., Dušek, M. & Palatinus, L. (2007). JANA2006. Institute of Physics, Praha, Czech Republic.
- Yamada, T., Otsuka, K. & Nakano, J. (1974). J. Appl. Phys. 45, 5096–5097.
- Yuan, J., Zhang, H., Chen, H., Yang, X., Zhao, J. & Gu, M. (2007). J. Solid State Chem. 180, 3381–3387.

supporting information

Acta Cryst. (2008). E64, i85-i86 [doi:10.1107/S1600536808039664]

Ammonium ytterbium(III) diphosphate(V)

Karla Fejfarová, Rachid Essehli, Brahim El Bali and Michal Dušek

S1. Comment

Rare earth phosphates have many potential applications in the field of optical materials including laser phosphors (Yamada *et al.*, 1974; Hong, 1975; Bimberg *et al.*, 1975). Their crystal structures depend on the ionic radii of the alkali metal and the rare earth ions. The two $AYbP_2O_7$ (A = Cs (Jansen *et al.*, 1991), K (Horchani-Naifer & Férid, 2007)) structures known so far belong to the KAlP₂O₇ structure type (Ng & Calvo, 1973) and crystallize in space group $P2_1/c$. For the correspondent isoformular sodium rare earth diphosphates, several other structures have been described, for instance NaYP₂O₇ in space group $P2_1$ (Hamady & Jouini, 1996), NaLnP₂O₇ (Ln = Eu (Férid, Horchani & Amami, 2004), Yb (Ferid *et al.*, 2004)) in space group $P2_1/n$, and NaLnP₂O₇ (Ln = La (Férid & Horchani-Naifer, 2004), Ce (Horchani-Naifer & Férid, 2005) in space group Pnma. KYP₂O₇ is dimorphic and can adopt the KAlP₂O₇ structure type (Yuan *et al.*, 2007), or a structure in space group Cmcm (Hamady *et al.*, 1994).

In the present paper we report the crystal structure of NH₄YbP₂O₇. This compound is isotypic with NH₄LuP₂O₇ (Man-Rong *et al.* 2005), KYbP₂O₇ (Horchani-Naifer & Férid, 2007) and CsYbP₂O₇ (Jansen *et al.*, 1991). The Yb atom is coordinated by six oxygen atoms forming a distorted octahedron that belong to five symmetry-related P₂O₇⁴ anions (Fig. 1). The average Yb—O bond lenght is 2.206 Å (Table 1). The diphosphate anion is bent with a bridging angle of 127.40 (19) °. The three-dimensional network of YbO₆ and P₂O₇⁴ units forms channels running along the *c* direction in which the NH₄⁺ cations are located (Fig. 2). Each NH₄⁺ cation is connected *via* N—H···O hydrogen bonds to four different P₂O₇⁴ anions (Table 2).

S2. Experimental

Three solutions have been mixed in a beaker to prepare the title compound: NH_4OH (20 ml, 0.1 mmol), $YbCl_3 6H_2O$ (20 ml, 0.1 mmol) and $Na_4P_2O_7$ (20 ml, 0.1 mmol). The pH of the mixture was controlled with diluted hydrochloric acid to be slightly acidic, and the solution was stirred for two hours at room temperature. Crystals suitable for X-ray analysis were formed after a few days.

S3. Refinement

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. The N—H distances were restrained to 0.87 Å with σ of 0.02. The isotropic atomic displacement parameters of all hydrogen atoms were refined with $1.2 \times U_{eq}$ of the N atom.

Figure 1

Part of the structure of NH₄YbP₂O₇. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, -1/2 + y, 1.5 - z; (ii) x, 0.5 - y, -1/2 + z; (iii) x, 0.5 - y, 1/2 + z; (iv) 2 - x, -1/2 + y, 1.5 - z; (v) 1 - x, 1 - y, 1 - z; (vi) -1 + x, 0.5 - y, -1/2 + z; (vii) -1 + x, y, z.]

Figure 2

The packing of NH₄YbP₂O₇ viewed along c. Colors: Pink (P₂O₇), grey (YbO₆), blue balls (N), black balls (H).

Ammonium ytterbium(III) diphosphate(V)

Crystal data NH₄YbP₂O₇ $M_r = 365$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.6468 (2) Å b = 10.9119 (2) Å c = 8.6129 (3) Å $\beta = 105.645$ (3)° V = 692.04 (3) Å³ Z = 4

F(000) = 668 $D_x = 3.502 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8929 reflections $\theta = 2.8-26.5^{\circ}$ $\mu = 13.97 \text{ mm}^{-1}$ T = 120 KPrism, colorless $0.26 \times 0.08 \times 0.07 \text{ mm}$ Data collection

Oxford Diffraction XCalibur 2 with Sapphire 2 area detector diffractometer Radiation source: X-ray tube Graphite monochromator Detector resolution: 8.3438 pixels mm ⁻¹ Rotation method data acquisition using ω scans	Absorption correction: analytical [implemented in <i>CrysAlis RED</i> (Oxford Diffraction, 2008), according to Clark & Reid (1995)] $T_{min} = 0.169, T_{max} = 0.545$ 8574 measured reflections 1437 independent reflections 1362 reflections with $I > 3\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 26.5^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -9 \rightarrow 9$ $k = -13 \rightarrow 13$ $l = -10 \rightarrow 10$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.016$ $wR(F^2) = 0.061$ S = 1.32 1437 reflections 113 parameters 4 restraints 4 constraints Only H-atom coordinates refined	Weighting scheme based on measured s.u.'s $w = 1/[\sigma^2(I) + 0.0016I^2]$ $(\Delta/\sigma)_{max} = 0.039$ $\Delta\rho_{max} = 0.58 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.50 \text{ e } \text{Å}^{-3}$ Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974) Extinction coefficient: 170 (60)

Special details

Refinement. The refinement was carried out against all reflections. The conventional *R*-factor is always based on *F*. The goodness of fit as well as the weighted *R*-factor are based on *F* and F^2 for refinement carried out on *F* and F^2 , respectively. The threshold expression is used only for calculating *R*-factors *etc.* and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the *SHELX* program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Yb1	0.73470 (3)	0.100256 (15)	0.753623 (18)	0.00555 (9)	
P1	0.63175 (18)	0.40147 (9)	0.81812 (14)	0.0080 (4)	
P2	0.93914 (15)	0.36312 (10)	0.68708 (13)	0.0070 (3)	
01	0.5777 (4)	0.2746 (3)	0.7457 (4)	0.0124 (10)	
O2	0.6416 (6)	0.4080 (3)	0.9940 (5)	0.0254 (14)	
O3	0.8335 (4)	0.4300 (3)	0.8037 (4)	0.0126 (9)	
O4	0.5107 (4)	0.5010 (3)	0.7202 (3)	0.0097 (9)	
05	0.9555 (4)	0.2277 (3)	0.7359 (4)	0.0121 (10)	
O6	0.8260 (6)	0.3855 (3)	0.5169 (5)	0.0183 (12)	
O7	1.1241 (4)	0.4235 (3)	0.7273 (4)	0.0142 (10)	
N1	0.3131 (6)	0.3233 (4)	0.4381 (5)	0.0183 (13)	
H1	0.281 (7)	0.348 (5)	0.523 (4)	0.0219*	
H2	0.365 (7)	0.385 (3)	0.403 (6)	0.0219*	
H3	0.206 (4)	0.306 (5)	0.375 (5)	0.0219*	

supporting information

H4	0.373 (7)	0.267	' (4)	0.501 (5)	0.0219*	
Atomie	c displacement para	ameters $(Å^2)$				
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
Yb1	0.00611 (15)	0.00443 (15)	0.00616 (16)	-0.00018 (5)	0.00173 (9)	0.00025 (5)
P1	0.0101 (6)	0.0088 (6)	0.0056 (5)	0.0056 (4)	0.0027 (5)	-0.0006 (4)
P2	0.0066 (5)	0.0058 (5)	0.0084 (5)	-0.0016 (4)	0.0017 (4)	0.0016 (4)
01	0.0142 (16)	0.0076 (15)	0.0178 (16)	0.0019 (12)	0.0085 (13)	0.0023 (12)
02	0.034 (3)	0.039 (2)	0.0043 (17)	0.0210 (17)	0.0062 (17)	0.0013 (14)
03	0.0073 (15)	0.0117 (14)	0.0158 (16)	0.0000 (12)	-0.0019 (13)	-0.0036 (13)
D4	0.0093 (14)	0.0097 (13)	0.0102 (14)	0.0026 (12)	0.0028 (11)	0.0041 (12)
D5	0.0088 (15)	0.0113 (15)	0.0166 (16)	-0.0007 (12)	0.0041 (12)	0.0045 (12)
06	0.017 (2)	0.0277 (19)	0.0086 (18)	-0.0005 (14)	0.0015 (15)	0.0090 (14)
07	0.0093 (16)	0.0101 (13)	0.0228 (17)	-0.0036 (13)	0.0035 (14)	0.0014 (12)
NT1	0.017(2)	0.021(2)	0.012(2)	-0.0060(17)	-0.0014(17)	0.0046 (16)

101 01	2.210(3)	11 01	1.525 (5)	
Yb1—O2 ⁱ	2.158 (4)	P2—O3	1.622 (4)	
Yb1—O4 ⁱⁱ	2.230 (3)	P2—O5	1.532 (3)	
Yb1—O5	2.224 (3)	P2—O6	1.507 (4)	
Yb1—O6 ⁱⁱⁱ	2.191 (4)	P2—O7	1.514 (3)	
Yb1—O7 ^{iv}	2.195 (3)	N1—H1	0.87 (5)	
P1—O1	1.529 (3)	N1—H2	0.87 (5)	
P1—O2	1.498 (5)	N1—H3	0.87 (3)	
P1—O3	1.611 (4)	N1—H4	0.86 (4)	
O1—Yb1—O2 ⁱ	88.83 (13)	O2—P1—O3	106.3 (2)	
O1—Yb1—O4 ⁱⁱ	87.53 (11)	O2—P1—O4	112.5 (2)	
O1—Yb1—O5	82.94 (12)	O3—P1—O4	105.70 (17)	
O1—Yb1—O6 ⁱⁱⁱ	89.43 (12)	O3—P2—O5	106.33 (19)	
O1—Yb1—O7 ^{iv}	175.63 (13)	O3—P2—O6	106.2 (2)	
O2 ⁱ —Yb1—O4 ⁱⁱ	91.87 (14)	O3—P2—O7	104.64 (18)	
O2 ⁱ —Yb1—O5	89.99 (15)	O5—P2—O6	113.98 (18)	
O2 ⁱ —Yb1—O6 ⁱⁱⁱ	178.23 (14)	O5—P2—O7	110.79 (17)	
$O2^{i}$ —Yb1— $O7^{iv}$	93.37 (13)	O6—P2—O7	114.1 (2)	
O4 ⁱⁱ —Yb1—O5	170.25 (11)	P1—O3—P2	127.40 (19)	
O4 ⁱⁱ —Yb1—O6 ⁱⁱⁱ	88.39 (13)	P1	115.2 (13)	
$O4^{ii}$ —Yb1— $O7^{iv}$	88.63 (12)	P2	109.5 (14)	
O5—Yb1—O6 ⁱⁱⁱ	89.47 (13)	H1—N1—H2	108 (5)	
O5—Yb1—O7 ^{iv}	100.82 (12)	H1—N1—H3	99 (4)	
$O6^{iii}$ —Yb1— $O7^{iv}$	88.39 (12)	H1—N1—H4	85 (5)	
O1—P1—O2	113.0 (2)	H2—N1—H3	113 (4)	

O1—P1—O3	107.61 (19)	H2—N1—H4	123 (5)
O1—P1—O4	111.26 (16)	H3—N1—H4	119 (4)

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) -*x*+1, *y*-1/2, -*z*+3/2; (iii) *x*, -*y*+1/2, *z*+1/2; (iv) -*x*+2, *y*-1/2, -*z*+3/2; (v) -*x*+1, -*y*+1, -*z*+1; (vi) *x*+1, -*y*+1/2, *z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A	
N1—H1····O7 ^{vii}	0.87 (4)	2.52 (5)	3.381 (5)	168 (4)	
N1—H2···O4 ^v	0.88 (4)	2.03 (5)	2.888 (5)	166 (4)	
N1—H3···O5 ^{viii}	0.87 (4)	2.00 (4)	2.873 (6)	177 (7)	
N1—H4…O1	0.86 (5)	2.26 (4)	2.916 (5)	132 (4)	

Symmetry codes: (v) -*x*+1, -*y*+1, -*z*+1; (vii) *x*-1, *y*, *z*; (viii) *x*-1, -*y*+1/2, *z*-1/2.