Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2'-(Butane-1,4-diyl)diisoquinolinium tetrachloridozincate(II)

Zhi-Fang Fan,^a Xin Xiao,^a Yun-Qian Zhang,^a Sai-Feng Xue^a* and Zhu Tao^b

^aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and ^bInstitute of Applied Chemistry, Guizhou University, Guiyang 550025, People's Republic of China

Correspondence e-mail: gyhxxiaoxin@163.com

Received 29 October 2008; accepted 20 November 2008

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.009 Å; R factor = 0.058; wR factor = 0.206; data-to-parameter ratio = 16.5.

The crystal of the title compound, $(C_{22}H_{22}N_2)[ZnCl_4]$, consists of 2,2'-(butane-1,4-diyl)diisoquinolinium organic cations and $[ZnCl_4]^{2-}$ complex anions. The cation is located across a twofold axis and the Zn^{II} atom of the anion is located on the other twofold axis. The centroid–centroid distance between parallel pyridine rings of neighboring molecules is 3.699 (3) Å, but the face-to-face separation of 3.601 (3) Å suggests there is no significant π - π stacking in the crystal structure.

Related literature

For general background, see: Day & Arnold (2000); Day *et al.* (2002); Freeman *et al.* (1981); Kim *et al.* (2000). For a related structure, see: Pan & Xu (2004).

Experimental

Crystal data

 $(C_{22}H_{22}N_2)[ZnCl_4]$ $M_r = 521.61$ Monoclinic, C2/c a = 10.729 (3) Å b = 11.040 (3) Å c = 18.955 (4) Å $\beta = 99.179$ (9)°

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min} = 0.680, T_{\rm max} = 0.760$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.206$ S = 1.132172 reflections Z = 4 Mo K α radiation μ = 1.60 mm⁻¹ T = 273 (2) K 0.23 × 0.19 × 0.17 mm

 $V = 2216.4 (10) \text{ Å}^3$

12088 measured reflections 2172 independent reflections 1855 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$

132 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 1.28 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -1.15 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2462).

References

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Day, A. I. & Arnold, A. P. (2000). Cucurbiturils and Method for Synthesis,.
- Patent No. WO/2000/068 232. Day, A. I., Blanch, R. J., Arnold, A. P., Lorenzo, S., Lewis, G. R. & Dance, I. (2002). Angew. Chem. Int. Ed. **41**, 275–277.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Freeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367–7368.
- Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540–541.
- Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, m1620 [doi:10.1107/S1600536808038932]

2,2'-(Butane-1,4-diyl)diisoquinolinium tetrachloridozincate(II)

Zhi-Fang Fan, Xin Xiao, Yun-Qian Zhang, Sai-Feng Xue and Zhu Tao

S1. Comment

As part of our ongoing investigation on quinoline compounds, we present here the crystal structure of the compound with multiple functional groups, which can develop strong intermolecular interactions with cucurbit[n]urils (CB[n]) (Freeman *et al.*, 1981; Day & Arnold, 2000; Day *et al.*, 2002; Kim *et al.*, 2000).

The crystal structure of the title compound (Fig. 1) consists of organic cations and anionic $(ZnCl_4)^{2-}$ complexes. The $(ZnCl_4)^{2-}$ anion assumes a distorted tetrahedron coordination geometry with Zn–Cl bond distances of 2.3043 (14) Å and 2.3158 (12) Å. The centroids distance between parallel pyridine rings of neighboring molecules is 3.699 (3) Å, but the face-to-face separation of 3.601 (3) Å suggests no significant π - π stacking in the crystal structure (Pan & Xu, 2004).

S2. Experimental

A solution of 1,4-dibromine-butane (2.16 g, 0.01 mol) was added to a stirred solution of isoquinoline (2.58 g, 0.02 mol) in 1,4-dioxane (50 ml) at 373 K in a period of 5 h. After cooling to room temperature, the mixture was filtered. The residue was added to an aqueous solution (50 ml) of $ZnCl_2$ (0.01 mol, 1.37 g). After stirring for 2 h, the solution was filtered. Colorless single crystals of the title compound were obtained from the filtrate after 5 weeks.

S3. Refinement

H atoms were placed in calculated positions with C—H = 0.93 (aromatic) or 0.97 Å (methylene), and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$. The highest peak and deepest hole in the final d-map are 0.35 Å from Cl2 atom and 0.42 Å from Zn1 atom, respectively.

Figure 1

The molecular structure showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (a) -x, y, 3/2-z; (b) -x, y, 1/2-z].

2,2'-(Butane-1,4-diyl)diisoquinolinium tetrachloridozincate(II)

Crystal data

 $(C_{22}H_{22}N_2)[ZnCl_4]$ $M_r = 521.61$ Monoclinic, C2/cHall symbol: -C 2yc a = 10.729 (3) Å b = 11.040 (3) Å c = 18.955 (4) Å $\beta = 99.179$ (9)° V = 2216.4 (10) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.680, T_{\max} = 0.760$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.206$ S = 1.132172 reflections F(000) = 1064 $D_x = 1.563 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2184 reflections $\theta = 2.2-26.0^{\circ}$ $\mu = 1.60 \text{ mm}^{-1}$ T = 273 KPrism, colorless $0.23 \times 0.19 \times 0.17 \text{ mm}$

12088 measured reflections 2172 independent reflections 1855 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -13 \rightarrow 13$ $k = -13 \rightarrow 13$ $l = -23 \rightarrow 21$

132 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

	$1/(2)/(2) + (0.11/(0))^2 + 10.05010^2$
Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_0^2) + (0.1169P)^2 + 12.0521P]$
neighbouring sites	where $P = (F_0^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 1.28 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -1.15 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.0000	0.15361 (8)	0.2500	0.0412 (3)
Cl2	0.12762 (10)	0.03371 (11)	0.19106 (6)	0.0349 (4)
Cl1	0.12438 (13)	0.27560 (13)	0.33123 (8)	0.0483 (4)
N1	0.4868 (4)	0.1136 (4)	0.3832 (2)	0.0416 (10)
C11	0.4355 (5)	0.1981 (5)	0.2617 (3)	0.0449 (13)
H11A	0.4248	0.2744	0.2854	0.054*
H11B	0.3715	0.1945	0.2193	0.054*
C3	0.6202 (6)	0.1461 (5)	0.5206 (3)	0.0439 (13)
С9	0.5975 (6)	0.0584 (5)	0.4013 (3)	0.0442 (13)
H9	0.6286	0.0098	0.3680	0.053*
C10	0.4120 (6)	0.0967 (6)	0.3108 (3)	0.0463 (13)
H10A	0.3228	0.0938	0.3143	0.056*
H10B	0.4347	0.0203	0.2910	0.056*
C1	0.4382 (6)	0.1876 (6)	0.4311 (3)	0.0528 (15)
H1	0.3614	0.2265	0.4171	0.063*
C8	0.6687 (5)	0.0723 (5)	0.4702 (3)	0.0415 (12)
C6	0.8489 (7)	0.0222 (6)	0.5569 (4)	0.0583 (16)
H6	0.9255	-0.0177	0.5700	0.070*
C7	0.7856 (6)	0.0107 (6)	0.4893 (3)	0.0533 (15)
H7	0.8182	-0.0368	0.4560	0.064*
C5	0.7995 (7)	0.0947 (6)	0.6080 (3)	0.0581 (17)
H5	0.8434	0.1003	0.6543	0.070*
C4	0.6894 (7)	0.1560 (6)	0.5902 (3)	0.0524 (15)
H4	0.6594	0.2046	0.6239	0.063*
C2	0.5011 (7)	0.2039 (6)	0.4980 (3)	0.0542 (15)
H2	0.4668	0.2532	0.5297	0.065*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0383 (5)	0.0406 (6)	0.0448 (6)	0.000	0.0074 (4)	0.000

supporting information

Cl2	0.0276 (6)	0.0410 (7)	0.0363 (6)	0.0026 (4)	0.0056 (4)	-0.0100 (5)
C11	0.0393 (7)	0.0457 (8)	0.0587 (9)	-0.0063 (6)	0.0043 (6)	-0.0239 (6)
N1	0.038 (2)	0.046 (3)	0.040(2)	0.000(2)	0.0034 (18)	0.0025 (19)
C11	0.048 (3)	0.045 (3)	0.039 (3)	0.005 (2)	-0.001 (2)	0.002 (2)
C3	0.047 (3)	0.044 (3)	0.041 (3)	-0.005 (2)	0.008 (2)	0.000 (2)
C9	0.050 (3)	0.044 (3)	0.038 (3)	0.001 (2)	0.006 (2)	-0.001 (2)
C10	0.041 (3)	0.053 (3)	0.043 (3)	-0.006 (3)	0.002 (2)	0.000 (2)
C1	0.045 (3)	0.061 (4)	0.054 (4)	0.006 (3)	0.012 (3)	0.003 (3)
C8	0.043 (3)	0.041 (3)	0.040 (3)	-0.003(2)	0.005 (2)	0.002 (2)
C6	0.052 (4)	0.058 (4)	0.061 (4)	0.005 (3)	-0.001 (3)	0.006 (3)
C7	0.056 (4)	0.056 (4)	0.045 (3)	0.009 (3)	0.000 (3)	0.001 (3)
C5	0.066 (4)	0.062 (4)	0.042 (3)	-0.014 (3)	-0.005 (3)	0.008 (3)
C4	0.066 (4)	0.053 (4)	0.039 (3)	-0.006 (3)	0.009 (3)	-0.002(2)
C2	0.060 (4)	0.060 (4)	0.045 (3)	0.009 (3)	0.016 (3)	-0.005 (3)

Geometric parameters (Å, °)

Zn1—Cl1 ⁱ	2.3043 (14)	С9—Н9	0.9300	
Zn1—Cl1	2.3043 (14)	C10—H10A	0.9700	
Zn1—Cl2 ⁱ	2.3158 (12)	C10—H10B	0.9700	
Zn1—Cl2	2.3158 (12)	C1—C2	1.350 (9)	
N1—C9	1.330(7)	C1—H1	0.9300	
N1—C1	1.384 (8)	C8—C7	1.423 (9)	
N1—C10	1.488 (7)	C6—C7	1.357 (9)	
C11—C10	1.502 (8)	C6—C5	1.423 (10)	
С11—С11 ^{іі}	1.520 (12)	С6—Н6	0.9300	
C11—H11A	0.9700	С7—Н7	0.9300	
C11—H11B	0.9700	C5—C4	1.356 (10)	
C3—C4	1.412 (9)	С5—Н5	0.9300	
C3—C8	1.416 (8)	C4—H4	0.9300	
C3—C2	1.431 (9)	C2—H2	0.9300	
С9—С8	1.411 (8)			
Cl1 ⁱ —Zn1—Cl1	108.47 (9)	N1-C10-H10B	109.4	
Cl1 ⁱ —Zn1—Cl2 ⁱ	109.41 (5)	C11-C10-H10B	109.4	
Cl1—Zn1—Cl2 ⁱ	109.62 (5)	H10A—C10—H10B	108.0	
Cl1 ⁱ —Zn1—Cl2	109.62 (5)	C2—C1—N1	120.7 (6)	
Cl1—Zn1—Cl2	109.41 (5)	C2—C1—H1	119.7	
Cl2 ⁱ —Zn1—Cl2	110.28 (7)	N1-C1-H1	119.7	
C9—N1—C1	121.0 (5)	C9—C8—C3	118.9 (5)	
C9—N1—C10	120.6 (5)	C9—C8—C7	120.6 (5)	
C1—N1—C10	118.4 (5)	C3—C8—C7	120.4 (5)	
C10-C11-C11 ⁱⁱ	115.5 (4)	C7—C6—C5	120.7 (6)	
C10-C11-H11A	108.4	С7—С6—Н6	119.7	
C11 ⁱⁱ —C11—H11A	108.4	С5—С6—Н6	119.7	
C10-C11-H11B	108.4	C6—C7—C8	119.0 (6)	
C11 ⁱⁱ —C11—H11B	108.4	С6—С7—Н7	120.5	
H11A—C11—H11B	107.5	С8—С7—Н7	120.5	

C4—C3—C8	118.7 (6)	C4—C5—C6	121.1 (6)
C4—C3—C2	123.8 (6)	С4—С5—Н5	119.5
C8—C3—C2	117.5 (5)	С6—С5—Н5	119.5
N1—C9—C8	121.2 (5)	C5—C4—C3	120.1 (6)
N1—C9—H9	119.4	С5—С4—Н4	120.0
С8—С9—Н9	119.4	C3—C4—H4	120.0
N1-C10-C11	111.1 (5)	C1—C2—C3	120.7 (6)
N1-C10-H10A	109.4	C1—C2—H2	119.7
C11—C10—H10A	109.4	С3—С2—Н2	119.7
C1—N1—C9—C8	0.7 (9)	C2—C3—C8—C7	-179.1 (6)
C10—N1—C9—C8	-179.1 (5)	C5—C6—C7—C8	0.0 (10)
C9—N1—C10—C11	-96.2 (6)	C9—C8—C7—C6	-177.3 (6)
C1-N1-C10-C11	83.9 (6)	C3—C8—C7—C6	1.0 (9)
C11 ⁱⁱ —C11—C10—N1	71.4 (7)	C7—C6—C5—C4	-1.3 (10)
C9—N1—C1—C2	-1.2 (9)	C6—C5—C4—C3	1.6 (10)
C10-N1-C1-C2	178.6 (6)	C8—C3—C4—C5	-0.5 (9)
N1—C9—C8—C3	0.3 (8)	C2—C3—C4—C5	177.7 (6)
N1—C9—C8—C7	178.6 (6)	N1—C1—C2—C3	0.7 (10)
C4—C3—C8—C9	177.6 (5)	C4—C3—C2—C1	-178.0 (6)
C2—C3—C8—C9	-0.7 (8)	C8—C3—C2—C1	0.2 (10)
C4—C3—C8—C7	-0.8 (9)		
	• •		

Symmetry codes: (i) -x, y, -z+1/2; (ii) -x+1, y, -z+1/2.