metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[[bis(4-methylbenzoato- $\kappa^2 O, O')$ zinc(II)]- μ -4,4'-bipyridine- $\kappa^2 N:N'$] tetrahydrate]

Xiao-Yan Li,^a Yin-Feng Han^{a*} and Ji-Kun Li^b

^aDepartment of Chemistry, Taishan University, 271000 Taishan, Shandong, People's Republic of China, and ^bDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China Correspondence e-mail: hanyf1978@163.com

Received 17 September 2008; accepted 17 February 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.119; data-to-parameter ratio = 14.4.

The asymmetric unit of the title compound, $\{[Zn(C_7H_7O_2)_2 (C_{10}H_8N_2)$]·4H₂O₁, contains a highly distorted octahedral Zn^{II} metal center strongly coordinated by two N atoms of two 4,4'-bipyridine (4,4'-bipy) ligands and chelated by two 4methylbenzoate anions. The crystallographic inversion center and glide plane present at the center of the C-C single bond of 4,4'-bipy, along with the cis coordination motif of the 4,4'bipy, lead to one-dimensional zigzag chains. There are a large number of water molecules in the crystal structure, which also form one-dimensional chains through O-H···O hydrogen bonds.

Related literature

For inorganic–organic hybrid frameworks containing *d*-block transition metal ions and pyridyl ligands, see: Batten & Robson (1998); Horikoshi & Mochida (2006); Fujita et al. (1994); Luan et al. (2005); Tao et al. (2002).

Experimental

Crystal data

[Zn(C7H7O2)2(C10H8N2)]·4H2O $M_r = 563.89$ Monoclinic, C2/c a = 12.024 (5) Å b = 18.803 (8) Å c = 12.283 (5) Å $\beta = 98.063 \ (6)^{\circ}$

Data collection

Bruker SMART APEX areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\rm min}=0.799,\;T_{\rm max}=0.820$

Refinement

169 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O4 - H4B \cdots O4^{i} \\ O3 - H3A \cdots O2^{ii} \end{array}$	0.85	1.93	2.761 (7)	167
	0.85	1.93	2.777 (4)	179

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x, -y, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Postgraduate Foundation of Taishan University (grant No. Y06-2-12) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2143).

References

Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.

Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Fujita, M., Kwon, S. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152

Horikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev. 250, 2595-2609.

Luan, X.-J., Wang, Y.-Y., Li, D.-S., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2005). Angew. Chem. Int. Ed. 44, 3864-3867.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tao, J., Yin, X., Huang, R. B. & Zheng, L. S. (2002). Inorg. Chem. Commun. 5, 1000-1002.

9512 measured reflections

 $R_{\rm int} = 0.065$

2439 independent reflections

2306 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2009). E65, m354 [doi:10.1107/S1600536809005571]

catena-Poly[[[bis(4-methylbenzoato- $\kappa^2 O, O'$)zinc(II)]- μ -4,4'-bipyridine- $\kappa^2 N:N'$] tetrahydrate]

Xiao-Yan Li, Yin-Feng Han and Ji-Kun Li

S1. Comment

Recently much attention has been paid to inorganic-organic hybrid frameworks that contain d-block transition metal ions and pyridyl ligands (Batten & Robson, 1998; Horikoshi & Mochida, 2006). These inorganic-organic hybrid frameworks form a wide range of interesting network topologies, such as chains, ladders or grids (Fujita *et al.*, 1994; Luan *et al.* 2005). In these compounds, the combination of 4,4'-bipy and carboxylate ligands is largely directed toward obtaining interesting topologies (Tao *et al.*, 2002). Here, we report the synthesis and crystal structure of the title complex, 1, which combines 4,4'-bipy and 4-methylbenzoate ligands.

Single-crystal X-ray diffraction studies reveal that the asymmetric unit contains the basic building block of 1, $C_{26}H_{22}N_2O_4Cd.4(H_2O)$, as shown in Figure 1. The highly distorted octahedral Zn^{II} metal center is strongly coordinated to two N atoms of two 4,4'-bipy ligands [Zn—N, 2.064 (2) Å] and chelated to two 4-methylbenzoate anions [Zn1—O1, 2.159 (3) Å and Zn1—O2, 2.261 (3) Å]. The crystallographic inversion center and glide plane present at the center of the carbon-carbon single bond of the 4,4'-bipy ligand generate one-dimensional zig-zag coordination polymers. The zig-zag chains run approximately in parallel, as shown in Figure 2. The N1—Zn1—N1A [A: -*x*, *y*, 0.5 - *z*] angle of 105.4 (3)°, contributes to the chelate formation of the 4-methylbenzoate anions. The dihedral angles between the planes through 4,4'bipy and 4-methylbenzoate are 84.68 (2)°. The Zn···Zn distances separated by the 4,4'-bipy are 11.20 (2) Å. The large number of included water molecules form one-dimensional chains through O—H···O hydrogen bonds.

S2. Experimental

Zinc dichloride hexahydrate (2 mmol), 4-methylbenzoic acid (4 mmol) and 4,4'-bipy (2 mmol) were dissolved in a 3:1 ethanol-water solution (20 ml). Aqueous 0.1 *M* sodium hydroxide was added until the solution registered a pH of 7. The solution was set aside for the growth of crystals over several days. Anal. calc. for $C_{26}H_{30}N_2O_8Zn$: C 55.38, H 5.36, N 4.97%. Found: C 55.25, H 5.40, N 4.86%.

S3. Refinement

All H atoms bound to C were placed in idealized positions (C—H = 0.93—0.97 Å) and refined as riding atoms, with the $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. Some H atoms bound to O were treated for 50:50 disorder, with all O—H bond lengths of 0.850 and $U_{iso}(H) = 1.2 U_{eq}(O)$.

Figure 1

The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme (A: -*x*, *y*, 0.5 - *z*).

Figure 2

The zig-zag chains of (I), with dashed lines indicating O—H…O hydrogen bonds.

catena-Poly[[[bis(4-methylbenzoato- $\kappa^2 O, O'$)zinc(II)]- μ -4,4'-bipyridine- $\kappa^2 N:N'$] tetrahydrate]

Crystal data

-)	
$[Zn(C_{7}H_{7}O_{2})_{2}(C_{10}H_{8}N_{2})]\cdot 4H_{2}O$ $M_{r} = 563.89$ Monoclinic, C2/c Hall symbol: -C 2yc a = 12.024 (5) Å b = 18.803 (8) Å c = 12.283 (5) Å $\beta = 98.063$ (6)°	F(000) = 1176 $D_x = 1.362 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{Å} Cell parameters from 921 reflections $\theta = 2.7-28.1^{\circ}$ $\mu = 0.94 \text{ mm}^{-1}$ T = 298 K Block vellow
p = 98.005(0) V = 2750(0) Å3	$0.25 \times 0.22 \times 0.22$ mm
$V = 2/50 (2) A^{3}$	$0.23 \times 0.23 \times 0.22$ mm
Z = 4	
Data collection	
Bruker APEX area-detector	9512 measured reflections
diffractometer	2439 independent reflections
Radiation source: fine-focus sealed tube	2306 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.065$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$

 $k = -22 \longrightarrow 22$ $l = -14 \longrightarrow 14$

(SADABS; Sheldrick, 2003) $T_{min} = 0.799, T_{max} = 0.820$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
S = 0.90	H-atom parameters constrained
2439 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0704P)^2 + 5.1543P]$
169 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.41 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zn1	0.0000	0.07933 (2)	0.2500	0.04633 (19)	
01	0.1310 (2)	0.06512 (15)	0.3876 (2)	0.0757 (7)	
O2	0.1328 (2)	-0.00574 (12)	0.2496 (2)	0.0744 (6)	
N1	0.0873 (2)	0.14583 (12)	0.15842 (18)	0.0468 (5)	
C1	0.1739 (3)	0.01398 (17)	0.3444 (3)	0.0587 (8)	
C2	0.2720 (2)	-0.02359 (15)	0.4060 (3)	0.0529 (7)	
C3	0.2954 (3)	-0.01735 (18)	0.5189 (3)	0.0658 (8)	
Н3	0.2522	0.0127	0.5560	0.079*	
C4	0.3823 (3)	-0.0552 (2)	0.5773 (3)	0.0734 (10)	
H4	0.3961	-0.0507	0.6534	0.088*	
C5	0.4488 (3)	-0.09957 (19)	0.5252 (3)	0.0695 (9)	
C6	0.5420 (4)	-0.1422 (3)	0.5892 (4)	0.1006 (15)	
H6A	0.5905	-0.1603	0.5399	0.151*	
H6B	0.5105	-0.1811	0.6252	0.151*	
H6C	0.5844	-0.1123	0.6432	0.151*	
C7	0.4265 (3)	-0.1047 (2)	0.4118 (4)	0.0744 (10)	
H7	0.4717	-0.1335	0.3748	0.089*	
C8	0.3386 (3)	-0.06778 (18)	0.3519 (3)	0.0636 (8)	
H8	0.3244	-0.0727	0.2759	0.076*	
С9	0.1610 (3)	0.19327 (18)	0.2051 (2)	0.0670 (9)	
Н9	0.1695	0.1984	0.2811	0.080*	
C10	0.2254 (3)	0.23496 (18)	0.1467 (2)	0.0650 (9)	
H10	0.2751	0.2678	0.1831	0.078*	
C11	0.2161 (2)	0.22802 (13)	0.0331 (2)	0.0436 (6)	
C12	0.1406 (3)	0.17860 (16)	-0.0138 (2)	0.0528 (7)	

1110	0 1212	0 1717	0.0007	0.0(2*		
HI2	0.1312	0.1/1/	-0.0896	0.063*		
C13	0.0785 (3)	0.13905 (17)	0.0500(2)	0.0542 (7)		
H13	0.0280	0.1059	0.0155	0.065*		
O3	0.0969 (2)	0.14890 (13)	0.70161 (19)	0.0729 (7)		
H3A	0.1086	0.1050	0.7156	0.088*		
H3B	0.1308	0.1602	0.6479	0.088*	0.50	
H3C	0.0269	0.1566	0.6855	0.088*	0.50	
O4	0.2054 (4)	0.1867 (2)	0.5310 (4)	0.1517 (19)		
H4A	0.1876	0.1557	0.4813	0.182*		
H4B	0.2322	0.2228	0.5021	0.182*	0.50	
H4C	0.1485	0.1983	0.5610	0.182*	0.50	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Zn1	0.0510 (3)	0.0440 (3)	0.0457 (3)	0.000	0.01289 (19)	0.000
01	0.0696 (15)	0.0948 (17)	0.0643 (12)	0.0361 (14)	0.0153 (9)	0.0181 (11)
O2	0.0714 (15)	0.0537 (12)	0.0922 (16)	0.0085 (9)	-0.0095 (13)	0.0086 (10)
N1	0.0511 (13)	0.0467 (12)	0.0435 (12)	-0.0026 (10)	0.0095 (10)	0.0015 (9)
C1	0.0548 (18)	0.0560 (17)	0.069 (2)	0.0016 (14)	0.0215 (15)	0.0166 (15)
C2	0.0486 (16)	0.0478 (15)	0.0642 (18)	0.0014 (12)	0.0150 (13)	0.0029 (13)
C3	0.075 (2)	0.0558 (17)	0.067 (2)	0.0092 (16)	0.0112 (16)	-0.0018 (15)
C4	0.082 (3)	0.0650 (19)	0.069 (2)	0.0048 (19)	-0.0048 (18)	0.0014 (17)
C5	0.0543 (19)	0.0577 (18)	0.093 (3)	0.0000 (15)	-0.0008 (18)	0.0053 (18)
C6	0.074 (3)	0.087 (3)	0.134 (4)	0.015 (2)	-0.008 (3)	0.015 (3)
C7	0.058 (2)	0.062 (2)	0.107 (3)	0.0102 (16)	0.0253 (19)	-0.005 (2)
C8	0.062 (2)	0.0624 (18)	0.069 (2)	0.0046 (15)	0.0179 (16)	-0.0025 (15)
C9	0.093 (3)	0.070 (2)	0.0378 (14)	-0.0261 (18)	0.0110 (15)	-0.0016 (14)
C10	0.086 (2)	0.0665 (19)	0.0415 (15)	-0.0329 (17)	0.0068 (14)	-0.0032 (13)
C11	0.0483 (14)	0.0419 (13)	0.0410 (13)	0.0010 (11)	0.0071 (11)	0.0014 (10)
C12	0.0562 (17)	0.0639 (17)	0.0387 (13)	-0.0126 (14)	0.0082 (12)	-0.0048 (12)
C13	0.0552 (17)	0.0625 (17)	0.0465 (15)	-0.0146 (14)	0.0122 (12)	-0.0072 (13)
03	0.0812 (17)	0.0674 (14)	0.0682 (15)	0.0017 (12)	0.0035 (12)	0.0014 (11)
O4	0.194 (4)	0.105 (3)	0.183 (4)	-0.051 (3)	0.121 (4)	-0.034 (3)

Geometric parameters (Å, °)

Zn1—N1 ⁱ	2.064 (2)	С6—Н6А	0.9600	
Zn1—N1	2.064 (2)	C6—H6B	0.9600	
Zn1—01	2.159 (3)	C6—H6C	0.9600	
Zn1—O1 ⁱ	2.159 (3)	C7—C8	1.386 (5)	
Zn1—O2	2.261 (3)	C7—H7	0.9300	
Zn1—O2 ⁱ	2.261 (3)	C8—H8	0.9300	
Zn1—C1 ⁱ	2.559 (3)	C9—C10	1.372 (4)	
Zn1—C1	2.559 (3)	С9—Н9	0.9300	
01—C1	1.245 (4)	C10—C11	1.390 (4)	
O2—C1	1.255 (4)	C10—H10	0.9300	
N1—C9	1.330 (4)	C11—C12	1.369 (4)	

N1—C13	1.328 (4)	C11—C11 ⁱⁱ	1.481 (5)
C1—C2	1.487 (4)	C12—C13	1.374 (4)
C2—C8	1.386 (4)	C12—H12	0.9300
C2—C3	1.381 (5)	C13—H13	0.9300
C3—C4	1.379 (5)	O3—H3A	0.8501
С3—Н3	0.9300	O3—H3B	0.8500
C4—C5	1.374 (6)	O3—H3C	0.8500
С4—Н4	0.9300	04—H4A	0.8500
C5-C7	1 385 (6)	O4—H4B	0.8501
C_{5}	1.505 (0)	O4-H4C	0.8501
05 00	1.500 (5)	or me	0.0001
N1 ⁱ —Zn1—N1	105.44 (13)	C4—C3—C2	120.7 (3)
N1 ⁱ —Zn1—O1	91.10 (10)	C4—C3—H3	119.6
N1—Zn1—O1	97.52 (10)	С2—С3—Н3	119.6
N1 ⁱ —Zn1—O1 ⁱ	97.52 (10)	C5—C4—C3	121.3 (4)
N1-Zn1-O1 ⁱ	91.10 (9)	C5—C4—H4	119.4
O1—Zn1—O1 ⁱ	165.78 (15)	C3—C4—H4	119.4
N1 ⁱ —Zn1—O2	147.44 (10)	C4—C5—C7	117.8 (3)
N1—Zn1—O2	90.82 (10)	C4—C5—C6	121.3 (4)
O1—Zn1—O2	58.40 (10)	C7—C5—C6	120.8 (4)
$O1^{i}$ Zn1 $O2$	110.41 (10)	C5—C6—H6A	109.5
$N1^{i}$ Zn1 $- O2^{i}$	90.82 (10)	C5—C6—H6B	109.5
$N1-Zn1-O2^{i}$	147.44 (10)	H6A—C6—H6B	109.5
$\Omega_1 - Z_n 1 - \Omega_2^i$	110 41 (10)	$C_5 - C_6 - H_6C$	109.5
$O1^{i}$ Zn1 $O2^{i}$	58.40 (10)	H6A - C6 - H6C	109.5
$\Omega^2 - Zn^1 - \Omega^{2^i}$	89.92 (14)	H6B-C6-H6C	109.5
$N1^{i}$ $Zn1$ $C1^{i}$	95 29 (10)	C^{8} C^{7} C^{5}	121.6 (3)
$N1 - Zn1 - C1^{i}$	119 32 (10)	C8—C7—H7	119.2
$\Omega_1 - Z_n 1 - C_1^i$	139.05(12)	C_{5} C_{7} H_{7}	119.2
$O1^{i}$ $Zn1$ $C1^{i}$	29.05 (10)	C7 - C8 - C2	119.2 119.7(3)
$\Omega^2 - 7n^1 - C1^{i}$	101.07(10)	C7 - C8 - H8	120.2
Ω^{2i} Z^{n1} C^{1i}	29.36 (10)	$C^2 - C^8 - H^8$	120.2
$N1^{i}$	119 31 (10)	N1 - C9 - C10	120.2 123.3(3)
N1 - Zn1 - C1 N1 - 7n1 - C1	95 29 (10)	N1-C9-H9	123.3 (3)
$\Omega_1 - Z_{n1} - C_1$	29.05 (10)	C10 - C9 - H9	118.4
O_1 Zn1 C_1	130.05(10)	$C_{10} = C_{10} = C_{11}$	110.4 120.0(3)
$O_1 = Z_{n1} = C_1$	139.05(12)	$C_{0} = C_{10} = C_{11}$	120.0 (3)
O2 - Zn1 - C1	29.30(10) 101.07(10)	C_{11} C_{10} H_{10}	120.0
$C_2 = Z_1 = C_1$	101.07 (10)	$C_{11} = C_{10} = 1110$	120.0
C1 - ZIII - CI	122.00(13)	C_{12} C_{11} C_{10}	110.2(3)
C1 = O2 = 7n1	93.0 (2) 88.6 (2)	C12— $C11$ — $C11$	122.0(3) 121.8(2)
C1 - O2 - ZIII	00.0(2)	C10 $C12$ $C11$	121.0(3)
C9 - N1 - C13	110.8(2) 122.06(10)	C13 - C12 - C11	120.0 (5)
C_{2} NI Z_{2}	122.00(19) 120.02(10)	C13 - C12 - H12	119.7
C_{1} C_{1} C_{1} C_{2}	120.95 (19)	$\begin{array}{c} C11 - C12 - \Pi I2 \\ N1 - C12 - C12 \end{array}$	117./
01 - 01 - 02	119.4(3)	N1 - C12 - U12	123.2 (3)
$O_1 - C_1 - C_2$	119.8 (3)	NI = C12 - H13	118.4
02 - 01 - 02	120.8(3)	U12-U13-H13	118.4
UI-UI-ZNI	5/.36(18)	нза—03—нзВ	108.4

supporting information

O2—C1—Zn1	62.03 (18)	НЗА—ОЗ—НЗС	110.1
C2—C1—Zn1	176.3 (2)	НЗВ—ОЗ—НЗС	110.1
C8—C2—C3	118.8 (3)	H4A—O4—H4B	108.7
C8—C2—C1	120.7 (3)	H4A—O4—H4C	110.5
C3—C2—C1	120.4 (3)	H4B—O4—H4C	110.5

Symmetry codes: (i) -*x*, *y*, -*z*+1/2; (ii) -*x*+1/2, -*y*+1/2, -*z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O4—H4 <i>B</i> ···O4 ⁱⁱⁱ	0.85	1.93	2.761 (7)	167
O3— $H3A$ ···O2 ^{iv}	0.85	1.93	2.777 (4)	179

Symmetry codes: (iii) -x+1/2, -y+1/2, -z+1; (iv) x, -y, z+1/2.