Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[dichloridobis[μ-1-(4-pyridylmethyl)-1H-1,2,4-triazole]copper(II)]

Zhu-Lai Li, Jian Wang,* Xiu-Zhi Xu and Xiao Ye
Faculty of Pharmacy Fujian Medical University, Fuzhou, Fujian 350004, People's Republic of China
Correspondence e-mail: wangjian7777@msn.com

Received 12 January 2009; accepted 22 February 2009

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.036 ; w R$ factor $=0.087$; data-to-parameter ratio $=16.7$.

The title coordination polymer, $\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4}\right)_{2}\right]_{n}$, arose from a layer-separated diffusion synthesis at room temperature. The Cu atom (site symmetry $\overline{1}$) is coordinated by two chloride ions and four N atoms (two from triazole rings and two from pyridyl rings) in a distorted trans $-\mathrm{CuCl}_{2} \mathrm{~N}_{4}$ octahedral arrangement. The bridging 1-(4-pyridylmethyl)- 1 H -1,2,4-triazole ligands [dihedral angle between the triazole and pyridine rings $=68.08(8)^{\circ}$] result in a two-dimensional 4^{4} sheet structure in the crystal.

Related literature

For background on the synthesis and structures of coordination polymers, see: Carlucci et al. (2000, 2004); Effendy et al. (2003); Evans et al. (1999); Huang et al. (2006); Liu et al. (2005); Moulton \& Zaworotko (2001); Ranford et al. (1999); Sharma \& Rogers (1999).

Experimental

Crystal data

$\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4}\right)_{2}\right]$
$M_{r}=454.81$
Monoclinic, $P 2_{1} / n$
$a=7.5112$ (5) А
$b=16.0876$ (9) \AA
$c=8.3390$ (6) \AA
$\beta=116.469$ (2) ${ }^{\circ}$

Data collection

Siemens SMART diffractometer Absorption correction: multi-scan (SADABS; Siemens, 1996)
$T_{\text {min }}=0.88, T_{\text {max }}=1.00$
(expected range $=0.700-0.795)$

Refinement

$$
\begin{array}{ll}
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036 & 124 \text { parameters } \\
w R\left(F^{2}\right)=0.087 & \mathrm{H} \text {-atom parameters constrained } \\
S=1.01 & \Delta \rho_{\max }=0.81 \mathrm{e}^{-3} \\
2067 \text { reflections } & \Delta \rho_{\min }=-0.56 \mathrm{e}^{-3}
\end{array}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cu} 1-\mathrm{N} 3$	$2.034(2)$	$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.7167(7)$
$\mathrm{Cu} 1-\mathrm{N} 4^{\mathrm{i}}$	$2.087(2)$		
Symmetry code: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$.			

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2898).

References

Carlucci, L., Ciani, G., Moret, M., Proserpio, D. M. \& Rizzato, S. (2000). Angew. Chem. Int. Ed. 39, 1506-1510.
Carlucci, L., Ciani, G. \& Proserpio, D. M. (2004). Chem. Commun. 4, 380-386.
Effendy, Marchetti, F. \& Pettinari, C. (2003). Inorg. Chem. 42, 112-117.
Evans, O. R., Xiong, R. G., Wang, Z. Y., Wong, G. K. \& Lin, W. B. (1999). Angew. Chem. Int. Ed. 38, 536-538.
Huang, M., Liu, P., Chen, Y., Wang, J. \& Liu, Z. (2006). J. Mol. Struct. 788, 211217.

Liu, Z., Liu, P., Chen, Y., Wang, J. \& Huang, M. H. (2005). Inorg. Chem. Comтии. 8, 212-215.
Moulton, B. \& Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
Ranford, J. D., Vittal, J. J. \& Wu, D. (1999). Angew. Chem. Int. Ed. 38, 34983501.

Sharma, C. V. K. \& Rogers, R. D. (1999). Chem. Commun. 1, 83-84.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2009). E65, m340 [doi:10.1107/S160053680900645X]

Poly[dichloridobis[μ-1-(4-pyridylmethyl)-1H-1,2,4-triazole]copper(II)]

Zhu-Lai Li, Jian Wang, Xiu-Zhi Xu and Xiao Ye

S1. Comment

In the research of supramolecular chemistry, a great interest has recently been focused on the crystal engineering of coordination frameworks due to their intriguing architectures, new topologies, intertwining phenomena and potential applications in microelectronics, nonlinear optics, ion exchange, molecular selection, molecular separation and recognition (Carlucci et al., 2000; Evans et al., 1999; Ranford et al., 1999; Sharma et al., 1999). The structural motifs of coordination polymers rest on several factors, but the choice of appropriate ligands is no doubt the key factor because it has an obvious influence on the topologies of coordination polymers and behavior of the molecules. Some flexible ligands, such as bis(triazole), bis(benzotriazole) and bis(pyridyl) alkyl, have been utilized to construct coordination polymers with aesthetics and useful properties (Moulton et al., 2001; Carlucci et al., 2004; Effendy et al., 2003), but the symmetry greatly limits the novelty and variety of the configuration.
Recently, our group have focused on the design and synthesis of some flexible unsymmetric ligands(Liu et al., 2005; Huang et al., 2006), and we have got a new heterocyclic ligand pyta [pyta $=N$-(4-pyridylmethyl)(1,2,4-triazole)]. In order to explore the architectural styles and other chemistry of this kind of ligands, we selected copper chloride as representative subject for stereoregular coordination. Among our attempts, a new polymer, namely $\left[\mathrm{Cu}(\mathrm{pyta})_{2} \mathrm{Cl}_{2}\right] \mathrm{n},(\mathrm{I})$, was obtained as crystals suitable for single-crystal X-ray analysis.

The crystal structure of (I) is illustrated in Fig.1. The asymmetric unit contains one copper atom lying on an inversion centre, one chloride ion donor and one pyta bridging group. The $\mathrm{Cu}(\mathrm{II})$ center lies in an octahedral [$\mathrm{CuN}_{4} \mathrm{Cl}_{2}$] environment with the axial positions occupied by two chloride ions and the equatorial positions occupied by two trans triazolium nitrogen atoms and two trans pyridyl nitrogen atoms, each of which respectively belongs to four different pyta ligands. The bond angles about the $\mathrm{Cu}(1)$ octahedron range from $87.20(8)^{\circ}$ to $92.80(8)^{\circ}$ and deviate slightly from those of a perfect octahedron. The $\mathrm{Cu}-\mathrm{N}$ bond lengths are in the range 2.034 (2) - 2.087 (2) \AA. Due to the existence of the CH_{2} spacer between the triazole and the pyridyl ring, sufficient flexibility make it possible for pyta to be twisted to meet the requirment of coordination geometries of $\mathrm{Cu}(\mathrm{II})$ center with the $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$ torsion angle $115.6(2)^{\circ}$ and the dihedral angle $68.08(8)^{\circ}$.
The polymer results in an infinite two-dimensional rhombohedral sheet containing 36-membered sandglass rings, as shown in Fig.2. The sp-3 configuration of $\mathrm{C}(3)$ forces the pyta ligand to be non-linear, generating the nonlinear grid sides and thereby the sandglass grids. Every complementary four $\left[\mathrm{Cu}_{4}(\mathrm{pyta})_{4}\right]$ grids are joined together by sharing the copper apices to give the 4^{4} two-dimensional structure with a side length of $10.495 \AA$ and a diagonal measurement of about $13.483 \times 16.088 \AA$.

S2. Experimental

A solution of pyta $(0.016 \mathrm{~g}, 0.10 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{ml})$ was carefully layered on a solution of $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}(0.017 \mathrm{~g}$, $0.10 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$. Diffusion between the two phases over about twenty days produced blue prisms of (I) (yield
$0.013 \mathrm{~g}, 28.6 \%)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{Cl}_{2} \mathrm{Cu}(\%)$: C, 32.16; H, 2.74; N, 19.02. Found: C, 32.78; H, 2.45; N, 19.30. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3700-3500(\mathrm{~s}), 2374(\mathrm{~m}), 1488(\mathrm{~m}), 1425(\mathrm{~s}), 1409(\mathrm{~s}), 1273(\mathrm{~m}), 1185(\mathrm{~m}), 1169(\mathrm{~m}), 1025(\mathrm{~s}), 1011(\mathrm{~m})$, 783 (m), 659 (w), 452 (w).

S3. Refinement

The hydrogen atom positions were generated geometrically and refined as riding with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.

Figure 1

A view of the asymmetric unit of (I), showing 50% probability displacement ellipsoids, expanded to show the Cu geometry. Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $1 / 2-x, y-1 / 2,3 / 2-z$; (iii) $x+1 / 2,1 / 2-y, z-1 / 2$; (iv) $1 / 2-x, 1 / 2+y, 3 / 2-z$.

Figure 2

The two-dimensional extended structure of (I), constructed of rhombus-shaped grids.

Poly[dichloridobis[μ-1-(4-pyridylmethyl)-1H-1,2,4-triazole]copper(II)]

Crystal data

$\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4}\right)_{2}\right]$
$M_{r}=454.81$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=7.5112$ (5) \AA
$b=16.0876(9) \AA$
$c=8.3390(6) \AA$
$\beta=116.469(2)^{\circ}$
$V=902.03(10) \AA^{3}$
$Z=2$

Data collection

Siemens SMART
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$F(000)=462$
$D_{\mathrm{x}}=1.674 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2134 reflections
$\theta=2.7-27.5^{\circ}$
$\mu=1.53 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, blue
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$
ω scans
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
$T_{\text {min }}=0.88, T_{\text {max }}=1.00$

6345 measured reflections
2067 independent reflections
1864 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.087$
$S=1.01$
2067 reflections
124 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=3.0^{\circ} \\
& h=-9 \rightarrow 6 \\
& k=-20 \rightarrow 16 \\
& l=-10 \rightarrow 10
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cu1	0.5000	0.0000	0.5000	$0.02592(13)$
C11	$0.10912(10)$	$0.03685(4)$	$0.30125(10)$	$0.03818(18)$
C1	$0.6294(4)$	$0.07131(16)$	$0.8758(4)$	$0.0365(6)$
H1A	0.7634	0.0666	0.9032	0.044^{*}
C2	$0.3175(4)$	$0.06044(15)$	$0.7390(4)$	$0.0307(5)$
H2A	0.1881	0.0482	0.6555	0.037^{*}
C3	$0.2381(5)$	$0.12190(16)$	$0.9732(4)$	$0.0355(6)$
H3A	0.3014	0.1057	1.0984	0.043^{*}
H3B	0.1159	0.0902	0.9147	0.043^{*}
C4	$0.1852(4)$	$0.21295(15)$	$0.9625(3)$	$0.0291(5)$
C5	$0.2897(4)$	$0.27713(16)$	$0.9343(4)$	$0.0358(6)$
H5A	0.3987	0.2659	0.9130	0.043^{*}
C6	$0.2312(4)$	$0.35851(16)$	$0.9379(4)$	$0.0337(6)$
H6A	0.3050	0.4011	0.9211	0.040^{*}
C7	$-0.0305(4)$	$0.31581(17)$	$0.9856(4)$	$0.0403(7)$
H7A	-0.1439	0.3284	0.9991	0.048^{*}
C8	$0.0212(4)$	$0.23381(17)$	$0.9888(5)$	$0.0419(7)$
H8A	-0.0534	0.1925	1.0084	0.050^{*}
N1	$0.3680(4)$	$0.09900(13)$	$0.8939(3)$	$0.0322(5)$
N2	$0.5650(4)$	$0.10725(15)$	$0.9833(3)$	$0.0378(5)$
N3	$0.4802(3)$	$0.04199(13)$	$0.7215(3)$	$0.0300(5)$

N4	$0.0740(3)$	$0.37867(12)$	$0.9642(3)$	$0.0279(4)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0367(2)$	$0.0165(2)$	$0.0367(2)$	$-0.00556(16)$	$0.0272(2)$	$-0.00450(16)$
C11	$0.0402(4)$	$0.0381(4)$	$0.0442(4)$	$-0.0050(3)$	$0.0260(3)$	$-0.0017(3)$
C1	$0.0337(14)$	$0.0291(13)$	$0.0474(16)$	$0.0011(11)$	$0.0189(12)$	$-0.0053(11)$
C2	$0.0349(13)$	$0.0266(12)$	$0.0366(13)$	$-0.0025(10)$	$0.0214(11)$	$-0.0046(10)$
C3	$0.0505(16)$	$0.0232(12)$	$0.0460(16)$	$0.0040(11)$	$0.0334(14)$	$-0.0026(11)$
C4	$0.0387(14)$	$0.0217(11)$	$0.0313(13)$	$0.0030(10)$	$0.0196(11)$	$-0.0027(9)$
C5	$0.0411(15)$	$0.0286(12)$	$0.0522(17)$	$0.0053(11)$	$0.0337(14)$	$0.0005(11)$
C6	$0.0393(14)$	$0.0264(12)$	$0.0478(16)$	$0.0000(11)$	$0.0305(13)$	$0.0015(11)$
C7	$0.0376(15)$	$0.0259(13)$	$0.071(2)$	$0.0007(11)$	$0.0364(15)$	$-0.0021(13)$
C8	$0.0444(16)$	$0.0223(12)$	$0.073(2)$	$-0.0047(11)$	$0.0383(16)$	$-0.0034(12)$
N1	$0.0439(13)$	$0.0221(10)$	$0.0374(12)$	$0.0032(9)$	$0.0243(11)$	$-0.0023(8)$
N2	$0.0409(13)$	$0.0329(12)$	$0.0409(13)$	$-0.0017(10)$	$0.0195(11)$	$-0.0107(10)$
N3	$0.0321(11)$	$0.0252(10)$	$0.0396(12)$	$-0.0018(8)$	$0.0223(10)$	$-0.0039(9)$
N4	$0.0330(11)$	$0.0195(9)$	$0.0375(11)$	$0.0024(8)$	$0.0212(10)$	$0.0018(8)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cu} 1-\mathrm{N} 3$	2.034 (2)	C3-H3A	0.9700
$\mathrm{Cu}-\mathrm{N} 3{ }^{\text {i }}$	2.034 (2)	C3-H3B	0.9700
$\mathrm{Cu} 1-\mathrm{N} 4{ }^{\text {ii }}$	2.087 (2)	C4-C5	1.379 (4)
$\mathrm{Cu} 1-\mathrm{N} 4{ }^{\text {iii }}$	2.087 (2)	C4-C8	1.386 (4)
$\mathrm{Cu} 1-\mathrm{Cl1}$	2.7167 (7)	C5-C6	1.385 (4)
$\mathrm{Cu}-\mathrm{Cl1}^{\text {i }}$	2.7167 (7)	C5-H5A	0.9300
$\mathrm{C} 1-\mathrm{N} 2$	1.327 (4)	C6-N4	1.334 (3)
$\mathrm{C} 1-\mathrm{N} 3$	1.359 (4)	C6-H6A	0.9300
C1-H1A	0.9300	C7-N4	1.340 (3)
C2-N1	1.327 (3)	C7-C8	1.372 (4)
$\mathrm{C} 2-\mathrm{N} 3$	1.327 (3)	C7-H7A	0.9300
C2-H2A	0.9300	C8-H8A	0.9300
$\mathrm{C} 3-\mathrm{N} 1$	1.450 (3)	N1-N2	1.334 (3)
$\mathrm{C} 3-\mathrm{C} 4$	1.510 (3)	$\mathrm{N} 4-\mathrm{Cu} 1^{\text {iv }}$	2.0870 (19)
N3-Cu1-N3 ${ }^{\text {i }}$	180.0	H3A-C3-H3B	107.4
N3-Cu1-N4 ${ }^{\text {ii }}$	92.80 (8)	C5-C4-C8	117.3 (2)
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 4{ }^{\text {ii }}$	87.20 (8)	C5-C4-C3	125.6 (2)
N3-Cu1-N4iii	87.20 (8)	C8-C4-C3	117.0 (2)
$\mathrm{N} 3{ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{N} 4{ }^{\text {iii }}$	92.80 (8)	C4-C5-C6	119.6 (2)
$\mathrm{N} 4{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{N} 4{ }^{\text {iii }}$	180.0	C4-C5-H5A	120.2
N3-Cu1-Cl1	89.14 (6)	C6-C5-H5A	120.2
N3- $\mathrm{Cu} 1-\mathrm{Cl} 1$	90.86 (6)	N4-C6-C5	123.1 (2)
$\mathrm{N} 4{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{Cl1}$	90.41 (6)	N4-C6-H6A	118.5
N4 ${ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{Cl} 1$	89.59 (6)	C5-C6-H6A	118.5
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{Cl1}^{\text {i }}$	90.86 (6)	N4-C7-C8	123.4 (2)

N3 ${ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{Cl1}^{\text {i }}$	89.14 (6)	N4-C7-H7A	118.3
$\mathrm{N} 4{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{Cl}^{\text {i }}$	89.59 (6)	C8-C7-H7A	118.3
$\mathrm{N} 4{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{Cl}^{\text {i }}$	90.41 (6)	C7-C8-C4	119.6 (2)
$\mathrm{Cl1}-\mathrm{Cu} 1-\mathrm{Cl1}^{\text {i }}$	180.0	C7-C8-H8A	120.2
N2-C1-N3	113.3 (2)	C4-C8-H8A	120.2
N2-C1-H1A	123.4	C2-N1-N2	110.8 (2)
N3-C1-H1A	123.4	C2-N1-C3	127.2 (2)
N1-C2-N3	109.5 (2)	N2-N1-C3	121.6 (2)
N1-C2-H2A	125.3	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 1$	103.1 (2)
N3-C2-H2A	125.3	C2-N3-C1	103.3 (2)
N1-C3-C4	115.6 (2)	C2-N3-Cu1	128.15 (19)
N1-C3-H3A	108.4	$\mathrm{C} 1-\mathrm{N} 3-\mathrm{Cu} 1$	127.69 (18)
C4-C3-H3A	108.4	C6-N4-C7	116.9 (2)
N1-C3-H3B	108.4	C6-N4-Cu1 ${ }^{\text {iv }}$	124.24 (17)
C4-C3-H3B	108.4	C7-N4-Cu1 ${ }^{\text {iv }}$	118.55 (17)

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (iii) $x+1 / 2,-y+1 / 2, z-1 / 2$; (iv) $-x+1 / 2, y+1 / 2,-z+3 / 2$.

