Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diaquabis(5-fluoro-2-hydroxybenzoatoκO^{1})zinc(II)

Diana Rishmawi, ${ }^{\text {a }}$ Jennifer Kelley, ${ }^{\text {a }}$ Mark D. Smith, ${ }^{\text {b }}$ LeRoy Peterson Jr ${ }^{\mathbf{a}}$ and Hans-Conrad zur Loye ${ }^{\text {b* }}$
${ }^{\text {a }}$ Chemistry Department, Francis Marion University, Florence, South Carolina 29501, USA, and ${ }^{\text {b }}$ Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
Correspondence e-mail: Ipeterson@fmarion.edu

Received 9 February 2009; accepted 17 February 2009
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.035 ; w R$ factor $=0.081$; data-to-parameter ratio $=12.1$.

The title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{FO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, is a monomeric $\mathrm{Zn}^{\mathrm{II}}$ complex. The $\mathrm{Zn}^{\mathrm{II}}$ atom, which lies on a twofold rotation axis, is situated in a distorted tetrahedral environment composed of two monodentate carboxlyate O atoms and two water O atoms. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link these units, forming sheets that are stacked along the c axis.

Related literature

For general background, see: Ellsworth \& zur Loye (2008); Janiak (2003); Mehrotra \& Bohra (1983); Wasuke et al. (2005). For related structures, see: Brownless et al. (1999); Wang et al. (2006).

Experimental

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{FO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=411.61$
Monoclinic, $C 2 / c$
$a=15.3096$ (10) A
$b=5.4706$ (4) \AA
$c=17.7741$ (12) \AA
$\beta=91.674$ (1) ${ }^{\circ}$

Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.893, T_{\text {max }}=1.000$
(expected range $=0.820-0.918)$
8435 measured reflections 1520 independent reflections
1341 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.053$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.081$
$S=1.09$
1520 reflections
126 parameters
3 restraints

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.43 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

$\mathrm{Zn} 1-\mathrm{O} 4$	$1.966(2)$	$\mathrm{Zn} 1-\mathrm{O} 1$	$1.9716(17)$
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{i}}$	$100.61(13)$	$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{i}}$	
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{O} 1$	$121.01(8)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{i}}$	$94.50(8)$
Symmetry code: (i) $-x+1, y,-z+\frac{3}{2}$.		$124.62(11)$	

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 $\cdots \mathrm{O} 1$	$0.803(18)$	$1.84(2)$	$2.564(3)$	$149(3)$
O4-H4A $\mathrm{O}^{\text {ii }}$	$0.834(18)$	$1.83(2)$	$2.641(3)$	$162(3)$
O4-H4B $^{\text {(2ii }}$	$0.834(19)$	$1.89(2)$	$2.711(3)$	$170(4)$

Symmetry codes: (ii) $x, y-1, z$; (iii) $x-\frac{1}{2}, y-\frac{1}{2}, z$.
Data collection: SMART (Bruker, 2007); cell refinement: SAINTPlus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Financial support from the National Science Foundation, awards CHE-0714555 and CHE-0714439, is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2183).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Brownless, J. B., Edwards, D. A. \& Mahon, M. F. (1999). Inorg. Chim. Acta, 287, 89-94.
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Ellsworth, J. M. \& zur Loye, H.-C. (2008). Dalton Trans. pp. 5823-5835.
Janiak, C. (2003). Dalton Trans. pp. 2781-2804.
Mehrotra, R. C. \& Bohra, R. (1983). In Metal Carboxylates. London: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, Z., Zhang, H., Chen, Y., Huang, C., Sun, R., Cao, Y. \& Yu, X. (2006). J. Solid State Chem. 179, 1536-1544.
Wasuke, M., Tomohiko, S., Tesushi, O., Chika, N. K. \& Tohru, T. (2005). J. Solid State Chem. 178, 2555-2573.

supporting information

Acta Cryst. (2009). E65, m331 [doi:10.1107/S1600536809005716]

Diaquabis(5-fluoro-2-hydroxybenzoato- κO^{1})zinc(II)

Diana Rishmawi, Jennifer Kelley, Mark D. Smith, LeRoy Peterson and Hans-Conrad zur Loye

S1. Comment

Metal carboxylate complexes have long been an extensively studied class of compounds (Mehrotra \& Bohra, 1983), and in recent years they have become a major focus of study due to their potentally useful properties (Janiak, 2003; Wasuke et al., 2005). As a continuation of our own studies (Ellsworth \& zur Loye, 2008), we report here the crystal structure of the title compound.

The structure of the title compound is built from the monomeric complex of formula $\mathrm{Zn}(5-\text { fsalcyl })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}($ Fig. 1) (5fsalcyl $=5$-fluorosalicylate). The asymmetric unit consists of one $\mathrm{Zn}^{\text {II }}$ atom that lies on a twofold rotation axis, one 5fsalcyl ligand, and one water molecule. The coordination environment of the $\mathrm{Zn}^{\mathrm{II}}$ atom is that of a distorted tetrahedron consisting of two equivalent O atoms from two monodentate carboxylates, and two equivalent O atoms from two water molecules. All four $\mathrm{Zn}-\mathrm{O}$ bond distances fall within the normal range, with an average length of 1.969 (2) \AA. It is worth noting that for the carboxylate O 2 atom, the $\mathrm{Zn} \cdots \mathrm{O} 2$ distance of 2.692 (2) \AA falls outside the range considered normal for a $\mathrm{Zn}-\mathrm{O}$ coordination bond (Wang et al., 2006).
Due to its monodentate binding mode, the 5-fsalcyl carboxylate group adopts a highly asymmetrical configuration. This is manifested in a $\mathrm{C} 1 — \mathrm{O} 1$ distance $[1.289(3) \AA$] for the coordinating O atom that is noticeably longer than the $\mathrm{C} 1 — \mathrm{O} 2$ distance $[1.246(3) \AA$] corresponding to the noncoordinating O atom. In addition, the carboxylate group of the 5-fsalcyl ligand is twisted with a dihedral angle of $9.7(2)^{\circ}$ with respect to the phenyl ring. As is typical for salicylates, the hydroxyl group of 5-fsalcyl is internally hydrogen bonded to its carboxylate O 1 that is located on the same side of the ligand (Brownless et al., 1999).
The monomeric units are hydrogen bonded into chains that are themselves hydrogen bonded into sheets that are stacked along the c axis (Fig. 2).

S2. Experimental

All chemicals and solvents were purchased from commercial sources and used without further purification. 5-Fluorosalicylic acid (3 mmol) was added to 100 ml of water and subsequently brought to pH 6.5 by the addition of 3 M NaOH with constant stirring. To this solution was added 10 ml of a 0.10 M solution of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Single crystals of the title compound were formed in four weeks after complete evaporation of the solution under ambient conditions.

S3. Refinement

H atoms bonded to C atoms were positioned geometrically and refined as riding atoms. O -bound H atoms were located in a difference Fourier map and refined isotropically, with their $\mathrm{O}-\mathrm{H}$ distances restrained to 0.84 (2) \AA.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are represented by dashed lines. [Symmetry code: (i) $-\mathrm{x}+1, \mathrm{y},-\mathrm{z}+3 / 2$.]

Figure 2

View of the crystal packing in the title compound. All H atoms except for those of water and the hydroxyl group are omitted for clarity. Hydrogen bonds are represented by dashed lines.

Diaquabis(5-fluoro-2-hydroxybenzoato- $\kappa \mathrm{O}^{1}$)zinc(II)

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{FO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=411.61$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=15.3096$ (10) \AA
$b=5.4706$ (4) \AA
$c=17.7741$ (12) \AA
$\beta=91.674(1)^{\circ}$

$$
\begin{aligned}
& V=1487.99(18) \AA^{3} \\
& Z=4 \\
& F(000)=832 \\
& D_{\mathrm{x}}=1.837 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2066 \text { reflections } \\
& \theta=2.7-24.1^{\circ} \\
& \mu=1.72 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=150 \mathrm{~K}$
Plate, colorless

Data collection

Bruker SMART APEX CCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min }=0.893, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.081$
$S=1.09$
1520 reflections
126 parameters
3 restraints
Primary atom site location: structure-invariant direct methods
$0.16 \times 0.12 \times 0.05 \mathrm{~mm}$

> 8435 measured reflections
> 1520 independent reflections
> 1341 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.053$
> $\theta_{\max }=26.4^{\circ}, \theta_{\min }=2.3^{\circ}$
> $h=-18 \rightarrow 18$
> $k=-6 \rightarrow 6$
> $l=-22 \rightarrow 22$

Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0397 P)^{2}+0.7409 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.43$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Zn 1	0.5000	$0.08063(8)$	0.7500	$0.01954(15)$
C 1	$0.56321(16)$	$0.4151(5)$	$0.65619(14)$	$0.0204(5)$
C 2	$0.62447(16)$	$0.5945(5)$	$0.62352(14)$	$0.0199(5)$
C 3	$0.71316(16)$	$0.6031(5)$	$0.64632(14)$	$0.0191(5)$
C 4	$0.76803(16)$	$0.7820(5)$	$0.61874(14)$	$0.0221(6)$
H 4	0.8278	0.7864	0.6346	0.026^{*}
C5	$0.73553(18)$	$0.9533(5)$	$0.56829(15)$	$0.0246(6)$
H5	0.7724	1.0775	0.5495	0.029^{*}
C6	$0.64862(18)$	$0.9416(5)$	$0.54547(15)$	$0.0248(6)$
C7	$0.59321(16)$	$0.7666(5)$	$0.57150(14)$	$0.0223(6)$
H7	0.5339	0.7624	0.5543	0.027^{*}
O1	$0.59620(11)$	$0.2481(3)$	$0.69963(10)$	$0.0233(4)$
O2	$0.48283(11)$	$0.4310(3)$	$0.64435(11)$	$0.0265(4)$
F1	$0.61747(11)$	$1.1088(3)$	$0.49488(10)$	$0.0391(5)$
O3	$0.74885(12)$	$0.4400(4)$	$0.69676(11)$	$0.0266(4)$
H3	$0.7120(18)$	$0.341(5)$	$0.7060(18)$	$0.044(10)^{*}$
O4	$0.42296(13)$	$-0.1489(4)$	$0.69475(13)$	$0.0305(5)$
H4A	$0.437(2)$	$-0.271(5)$	$0.6700(16)$	$0.039(10)^{*}$
H4B	$0.3689(13)$	$-0.132(8)$	$0.691(2)$	$0.068(14)^{*}$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.0113(2)$	$0.0184(2)$	$0.0290(3)$	0.000	$0.00249(16)$	0.000

C1	$0.0169(13)$	$0.0199(13)$	$0.0245(14)$	$0.0015(10)$	$0.0036(10)$	$-0.0063(11)$
C2	$0.0174(12)$	$0.0209(13)$	$0.0214(13)$	$-0.0025(11)$	$0.0021(10)$	$-0.0012(11)$
C3	$0.0149(12)$	$0.0239(14)$	$0.0186(13)$	$0.0015(10)$	$0.0019(10)$	$-0.0007(11)$
C4	$0.0118(12)$	$0.0293(15)$	$0.0252(14)$	$-0.0026(11)$	$0.0016(10)$	$-0.0009(12)$
C5	$0.0224(14)$	$0.0238(15)$	$0.0277(14)$	$-0.0068(11)$	$0.0065(11)$	$0.0003(12)$
C6	$0.0233(14)$	$0.0255(15)$	$0.0256(14)$	$0.0021(12)$	$0.0000(11)$	$0.0056(12)$
C7	$0.0151(13)$	$0.0263(14)$	$0.0253(14)$	$-0.0005(11)$	$-0.0013(10)$	$0.0008(12)$
O1	$0.0150(9)$	$0.0239(10)$	$0.0312(10)$	$0.0009(8)$	$0.0054(7)$	$0.0060(8)$
O2	$0.0121(9)$	$0.0233(10)$	$0.0443(12)$	$-0.0014(8)$	$0.0025(8)$	$-0.0025(9)$
F1	$0.0282(9)$	$0.0390(10)$	$0.0500(11)$	$0.0008(8)$	$-0.0028(8)$	$0.0232(9)$
O3	$0.0132(9)$	$0.0315(11)$	$0.0350(11)$	$-0.0020(8)$	$-0.0020(8)$	$0.0111(9)$
O4	$0.0139(10)$	$0.0277(11)$	$0.0497(13)$	$0.0020(8)$	$-0.0017(9)$	$-0.0155(10)$

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

$\mathrm{Zn} 1-\mathrm{O} 4$	1.966 (2)	C4-C5	1.380 (4)
$\mathrm{Zn} 1-\mathrm{O} 4^{\text {i }}$	1.966 (2)	C4-H4	0.9500
$\mathrm{Zn} 1-\mathrm{O} 1$	1.9716 (17)	C5-C6	1.381 (4)
$\mathrm{Zn} 1-\mathrm{Ol}^{\text {i }}$	1.9717 (17)	C5-H5	0.9500
$\mathrm{C} 1-\mathrm{O} 2$	1.246 (3)	C6-F1	1.359 (3)
C1-O1	1.289 (3)	C6-C7	1.369 (4)
$\mathrm{C} 1-\mathrm{C} 2$	1.487 (4)	C7-H7	0.9500
C2-C7	1.394 (4)	O3-H3	0.803 (18)
C2-C3	1.406 (4)	O4-H4A	0.834 (18)
C3-O3	1.367 (3)	O4-H4B	0.834 (19)
C3-C4	1.388 (4)		
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{O} 4{ }^{\text {i }}$	100.61 (13)	C5-C4-H4	120.1
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{O} 1$	121.01 (8)	C3-C4-H4	120.1
$\mathrm{O} 4{ }^{\text {i }} \mathrm{Zn} 1-\mathrm{O} 1$	94.50 (8)	C4-C5-C6	119.0 (2)
$\mathrm{O} 4-\mathrm{Znl}-\mathrm{Ol}^{\text {i }}$	94.50 (8)	C4-C5-H5	120.5
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{i}}$	121.01 (8)	C6-C5-H5	120.5
$\mathrm{O} 1-\mathrm{Znl}-\mathrm{Ol}^{\text {i }}$	124.62 (11)	F1-C6-C7	119.0 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	121.2 (2)	F1-C6-C5	118.7 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	121.3 (2)	C7-C6-C5	122.3 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	117.4 (2)	C6-C7- 22	119.5 (2)
C7-C2-C3	118.6 (2)	C6-C7-H7	120.3
C7- $22-\mathrm{C} 1$	119.8 (2)	C2-C7-H7	120.3
C3-C2-C1	121.6 (2)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Zn} 1$	108.44 (15)
O3-C3-C4	117.2 (2)	C3-O3-H3	108 (2)
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	122.1 (2)	$\mathrm{Zn} 1-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~A}$	128 (2)
C4-C3-C2	120.7 (2)	$\mathrm{Zn} 1-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B}$	123 (3)
C5-C4-C3	119.9 (2)	H4A-O4-H4B	109 (4)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	-7.8(4)	C4-C5-C6-F1	-179.0 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	174.9 (2)	C4-C5-C6-C7	0.4 (4)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	169.2 (2)	F1-C6-C7-C2	-179.9 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-8.1 (4)	C5-C6-C7-C2	0.7 (4)

$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	$-179.6(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	$3.3(4)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.2(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-175.8(2)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-179.3(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.1(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.7(4)$

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-1.5(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$175.6(2)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1-\mathrm{Zn} 1$	$-8.5(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1-\mathrm{Zn} 1$	$168.89(17)$
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 1$	$73.68(18)$
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 1$	$178.91(17)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 1$	$-48.07(15)$

Symmetry code: (i) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3—H3 $\cdots \mathrm{O} 1$	$0.80(2)$	$1.84(2)$	$2.564(3)$	$149(3)$
O4—H4A $\cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.83(2)$	$1.83(2)$	$2.641(3)$	$162(3)$
$\mathrm{O}^{\mathrm{H}} \mathrm{H} 4 B \cdots 3^{\mathrm{iii}}$	$0.83(2)$	$1.89(2)$	$2.711(3)$	$170(4)$

Symmetry codes: (ii) $x, y-1, z$; (iii) $x-1 / 2, y-1 / 2, z$.

