Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[[bis[2,2'-(propane-1,3-diyldithio)bis(1.3.4-thiadiazole)- κN^4]copper(II)]-bis[μ -2,2'-(propane-1,3-diy]dithio)bis(1,3,4-thiadiazole)- $\kappa^2 N^4$: $N^{4'}$ bis(perchlorate)]

lian-Hua Oin.* lian-Ge Wang and Pu-Zhou Hu

College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China Correspondence e-mail: jh_g128105@126.com

Received 15 February 2009; accepted 24 February 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.006 Å; R factor = 0.040; wR factor = 0.110; data-to-parameter ratio = 15.1.

In the title compound, $\{[Cu(C_7H_8N_4S_4)_4](ClO_4)_2\}_n$, the Cu^{II} atom, occupying a crystallographic inversion centre, is sixcoordinated by six N atoms of three symmetry-related 2,2'-(propane-1,3-divldithio)bis(1,3,4-thiadiazole) (L) ligands in a slightly distorted octahedral geometry. The ligand L adopts two kinds of coordination modes in the crystal structure; one is a monodentate coordination mode and serves to complete the octahedral coordination of the Cu atom and the other is an N:N'-bidentate bridging mode in a trans configuration, bridging Cu atoms via translation symmetry along the b axis into a chain structure. The perchlorate ions serve as acceptors for intermolecular $C-H \cdots O$ hydrogen bonds, which link the chains into a three-dimensional network.

Related literature

For Cu-N bonds see, for example: Huang et al. (2009); Wang et al. (2008).

9833 measured reflections

 $R_{\rm int} = 0.017$

4857 independent reflections 4081 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$[Cu(C_7H_8N_4S_4)_4](ClO_4)_2$	$\gamma = 76.675 \ (3)^{\circ}$
$M_r = 1368.10$	V = 1312.3 (6) Å ³
Triclinic, P1	Z = 1
a = 10.321 (3) Å	Mo $K\alpha$ radiation
b = 11.122 (3) Å	$\mu = 1.22 \text{ mm}^{-1}$
c = 12.908 (4) Å	T = 294 K
$\alpha = 67.213 \ (3)^{\circ}$	$0.39 \times 0.28 \times 0.24$ mm
$\beta = 76.602 \ (3)^{\circ}$	

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\min} = 0.646, \ T_{\max} = 0.756$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	322 parameters
$wR(F^2) = 0.110$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 1.05 \text{ e } \text{\AA}^{-3}$
4857 reflections	$\Delta \rho_{\rm min} = -0.50 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected	bond	lengths	(Å).
		0	· ·

Cu1-N1	2.021 (2)	Cu1-N4 ⁱ	2.445 (3)
Cu1-N5	2.053 (2)		

Symmetry code: (i) x, y - 1, z.

Table 2 Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C3-H3B\cdots O3^{ii}$	0.97	2.47	3.357 (6)	153
C7-H7···O3 ⁱⁱⁱ	0.93	2.51	3.172 (6)	128
$C8-H8\cdots O4^{i}$	0.93	2.47	3.010 (6)	117
$C10-H10A\cdots O2^{iv}$	0.97	2.50	3.423 (7)	159
$C14{-}H14{\cdot}{\cdot}{\cdot}O1^v$	0.93	2.51	3.419 (7)	167

Symmetry codes: (i) x, y - 1, z; (ii) x - 1, y, z; (iii) x - 1, y + 1, z; (iv) -x + 1, -y, -z + 2; (v) -x + 1, -y + 1, -z + 2.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Luoyang Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2158).

References

Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Huang, H.-M., Ju, F.-Y., Wang, J.-G. & Qin, J.-H. (2009). Acta Cryst. E65, m80– m81. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, J. G., Qin, J. H., Hu, P. Z. & Zhao, B. T. (2008). Z. Kristallogr. New Cryst, Struct. 223, 225–227.

supporting information

Acta Cryst. (2009). E65, m349-m350 [doi:10.1107/S1600536809006722]

catena-Poly[[[bis[2,2'-(propane-1,3-diyldithio)bis(1,3,4-thiadiazole)- κN^4]copper(II)]-bis[μ -2,2'-(propane-1,3-diyldithio)bis(1,3,4-thiadiazole)- $\kappa^2 N^4$: N^4 ']] bis(perchlorate)]

Jian-Hua Qin, Jian-Ge Wang and Pu-Zhou Hu

S1. Comment

The asymmetric structure unit of the title compound consists of a half Cu(II) atom, two [1,3-propanediylbis(thio)]bis-[1,3,4-thiadiazole] ligands L, and one perchlorate ion. As depicted in Fig. 1,the Cu(II) atom is coordinated by six N atoms from six ligands L in a slightly distorted octahedral geometry of the central atom. All six Cu—N bond distances are within the range expected for such coordination bonds (Tab. 1) (Huang *et al.*, 2009; Wang *et al.*, 2008). The ligand L adopts two kinds of coordination modes in the crystal structure. One *N*,*N*-bidentate bridging mode in trans configuration for bridging the copper atom into a one-dimensional chain, with the bridged Cu-Cu distance of 11.122 (3) Å (Fig. 2). The centroid separation and dihedral angle of thiadiazole rings are 9.131 (2) Å and 74.09 (8) °, respectively. The other thiadiazole ligands adopt monodentate coordination mode and serve to complete the octahedral coordination sphere of the copper atom. The corresponding centroid separation and dihedral angle are 8.1499 (16) Å and 65.04 (12) °, respectively. The region between the chains is taken up by uncoordinated perchlorate ions. The perchlorate ions serve as acceptor for C—H···O hydrogen-bonds, which link the chains into a three-dimensional network (Tab. 2. & Fig. 3).

S2. Experimental

The reaction of [1,3-propanediylbis(thio)]bis[1,3,4-thiadiazole] (0.4 mmol) with Cu(ClO₄)₂ (0.1 mmol) in MeOH(10 ml) for a few minutes afforded a light blue solid, which was filtered, washed with acetone, and dried on air. The single crystals suitable for X-ray analysis were obtained by slow diffusion of Et₂O into the acetonitrile solution of the solid.

S3. Refinement

All hydrogen atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å (CH) and $U_{iso}(H) = 1.2U_{eq}(C)$, with C—H = 0.97 Å (CH2) and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

A view of the local coordination of the Cu(II) cation in the title compound. Displacement ellipsoids are drawn at the 30% probability level. The H atoms and perchlorate ion were omitted for clarity. Symmetry codes: (A) -x + 1, -y, -z + 1; (B) x, y - 1, z; (C) -x + 1, -y + 1, -z + 1.

Figure 2

A view of the polymeric chain in the title compound.

Figure 3

A view of the compound packing down the b axis.

catena-Poly[[[bis[2,2'-(propane-1,3-diyldithio)bis(1,3,4-thiadiazole)- κN^4]copper(II)]-bis[μ -2,2'-(propane-1,3-diyldithio)bis(1,3,4-thiadiazole)- $\kappa^2 N^4$: N^4 ']] bis(perchlorate)]

Crystal data	
$[Cu(C_7H_8N_4S_4)_4](ClO_4)_2$ $M_r = 1368.10$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 10.321 (3) Å b = 11.122 (3) Å c = 12.908 (4) Å a = 67.213 (3)° $\beta = 76.602$ (3)° $\gamma = 76.675$ (3)° V = 1312.3 (6) Å ³	Z = 1 F(000) = 695 $D_x = 1.731 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4352 reflections $\theta = 2.5-28.1^{\circ}$ $\mu = 1.22 \text{ mm}^{-1}$ T = 294 K Block, blue $0.39 \times 0.28 \times 0.24 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator <i>a</i> and <i>a</i> scans	Absorption correction: multi-scan (SADABS; Bruker, 1997) $T_{min} = 0.646$, $T_{max} = 0.756$ 9833 measured reflections 4857 independent reflections

4081 reflections with $I > 2\sigma(I)$	$h = -12 \rightarrow 12$
$R_{\rm int} = 0.017$	$k = -13 \rightarrow 13$
$\theta_{\rm max} = 25.5^{\circ}, \theta_{\rm min} = 2.5^{\circ}$	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.110$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
4857 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0533P)^2 + 1.507P]$
322 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 1.05 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.5000	0.0000	0.5000	0.02910 (14)	
C11	0.89564 (9)	0.39343 (8)	0.71273 (7)	0.0469 (2)	
S1	0.60750 (10)	0.13642 (9)	0.74944 (8)	0.0494 (2)	
S2	0.42947 (13)	0.39702 (10)	0.69426 (11)	0.0728 (4)	
S3	-0.00185 (9)	0.78315 (9)	0.62689 (9)	0.0516 (2)	
S4	0.02700 (10)	1.01392 (10)	0.68458 (9)	0.0569 (3)	
S5	0.58105 (10)	-0.40131 (8)	0.77434 (7)	0.0458 (2)	
S6	0.33608 (12)	-0.34525 (10)	0.94441 (8)	0.0615 (3)	
S 7	0.15521 (18)	0.11517 (12)	0.90859 (13)	0.0951 (5)	
S 8	0.11321 (15)	0.35074 (11)	0.97930 (11)	0.0777 (4)	
01	0.8989 (5)	0.4074 (5)	0.8153 (4)	0.1235 (17)	
O2	0.8069 (6)	0.3095 (6)	0.7325 (4)	0.156 (2)	
03	1.0235 (4)	0.3459 (4)	0.6637 (4)	0.1009 (12)	
O4	0.8505 (4)	0.5164 (4)	0.6350 (4)	0.1255 (17)	
N1	0.5187 (2)	0.0858 (2)	0.6070 (2)	0.0307 (5)	
N2	0.4504 (3)	0.2109 (2)	0.6008 (2)	0.0347 (6)	
N3	0.2075 (2)	0.9204 (2)	0.5508 (2)	0.0371 (6)	
N4	0.2550 (3)	1.0248 (2)	0.5561 (2)	0.0376 (6)	
N5	0.5102 (3)	-0.1771 (2)	0.6333 (2)	0.0336 (5)	
N6	0.4134 (3)	-0.1871 (2)	0.7283 (2)	0.0399 (6)	
N7	0.2510 (4)	0.1319 (3)	1.0804 (3)	0.0609 (9)	
N8	0.2522 (4)	0.2173 (4)	1.1350 (3)	0.0696 (10)	
C1	0.6013 (3)	0.0364 (3)	0.6800 (3)	0.0366 (7)	
H1	0.6529	-0.0470	0.6933	0.044*	
C2	0.4879 (3)	0.2496 (3)	0.6710 (3)	0.0402 (7)	
C3	0.3046 (4)	0.4799 (3)	0.6013 (3)	0.0510 (9)	
H3A	0.3478	0.5122	0.5226	0.061*	
H3B	0.2451	0.4200	0.6088	0.061*	
C4	0.2261 (4)	0.5940 (3)	0.6378 (4)	0.0560 (10)	
H4A	0.2884	0.6480	0.6366	0.067*	
H4B	0.1801	0.5594	0.7154	0.067*	

C5	0.1235 (4)	0.6790 (3)	0.5613 (3)	0.0466 (8)
H5A	0.0789	0.6227	0.5442	0.056*
H5B	0.1696	0.7341	0.4901	0.056*
C6	0.0906 (3)	0.9029 (3)	0.6139 (3)	0.0376 (7)
C7	0.1716 (3)	1.0817 (3)	0.6212 (3)	0.0462 (8)
H7	0.1887	1.1538	0.6326	0.055*
C8	0.6026 (3)	-0.2808 (3)	0.6447 (3)	0.0381 (7)
H8	0.6739	-0.2882	0.5873	0.046*
C9	0.4384 (3)	-0.3003 (3)	0.8092 (3)	0.0418 (7)
C10	0.3970 (5)	-0.2527 (4)	1.0086 (3)	0.0651 (11)
H10A	0.3613	-0.2815	1.0893	0.078*
H10B	0.4945	-0.2750	1.0011	0.078*
C11	0.3601 (5)	-0.1024 (4)	0.9580 (3)	0.0645 (11)
H11A	0.4071	-0.0620	0.9898	0.077*
H11B	0.3898	-0.0730	0.8764	0.077*
C12	0.2129 (5)	-0.0586 (4)	0.9817 (4)	0.0760 (13)
H12A	0.1868	-0.0778	1.0630	0.091*
H12B	0.1665	-0.1103	0.9608	0.091*
C13	0.1830 (4)	0.1885 (4)	0.9971 (3)	0.0544 (9)
C14	0.1852 (4)	0.3311 (4)	1.0921 (4)	0.0614 (10)
H14	0.1762	0.3984	1.1203	0.074*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0416 (3)	0.0211 (2)	0.0251 (2)	0.00102 (19)	-0.0102 (2)	-0.00926 (19)
Cl1	0.0481 (5)	0.0429 (4)	0.0516 (5)	-0.0084 (4)	-0.0051 (4)	-0.0196 (4)
S1	0.0611 (6)	0.0441 (5)	0.0574 (5)	0.0031 (4)	-0.0342 (4)	-0.0256 (4)
S2	0.0904 (8)	0.0534 (6)	0.1059 (9)	0.0226 (5)	-0.0577 (7)	-0.0569 (6)
S3	0.0360 (4)	0.0434 (5)	0.0709 (6)	-0.0081 (4)	-0.0010 (4)	-0.0186 (4)
S4	0.0479 (5)	0.0579 (6)	0.0659 (6)	-0.0016 (4)	0.0071 (4)	-0.0358 (5)
S5	0.0629 (5)	0.0276 (4)	0.0415 (4)	0.0035 (4)	-0.0184 (4)	-0.0068 (3)
S6	0.0777 (7)	0.0484 (5)	0.0432 (5)	-0.0163 (5)	0.0037 (5)	-0.0036 (4)
S7	0.1475 (13)	0.0572 (7)	0.0988 (10)	0.0182 (8)	-0.0737 (10)	-0.0357 (7)
S8	0.1132 (10)	0.0470 (6)	0.0778 (8)	0.0187 (6)	-0.0536 (7)	-0.0231 (5)
01	0.136 (4)	0.153 (4)	0.130 (3)	0.027 (3)	-0.063 (3)	-0.107 (3)
O2	0.191 (5)	0.200 (5)	0.137 (4)	-0.153 (5)	0.053 (4)	-0.098 (4)
O3	0.072 (2)	0.086 (2)	0.125 (3)	0.0190 (18)	0.004 (2)	-0.045 (2)
O4	0.104 (3)	0.091 (3)	0.107 (3)	0.038 (2)	-0.002 (2)	0.005 (2)
N1	0.0351 (13)	0.0263 (12)	0.0310 (12)	0.0002 (10)	-0.0080 (10)	-0.0118 (10)
N2	0.0408 (14)	0.0289 (12)	0.0397 (14)	0.0025 (10)	-0.0136 (11)	-0.0183 (11)
N3	0.0336 (13)	0.0342 (13)	0.0441 (15)	-0.0026 (10)	-0.0057 (11)	-0.0162 (11)
N4	0.0381 (14)	0.0330 (13)	0.0433 (15)	-0.0018 (11)	-0.0092 (11)	-0.0155 (12)
N5	0.0445 (14)	0.0261 (12)	0.0295 (13)	-0.0005 (10)	-0.0091 (11)	-0.0103 (10)
N6	0.0473 (15)	0.0330 (13)	0.0338 (14)	-0.0022 (11)	-0.0054 (11)	-0.0085 (11)
N7	0.071 (2)	0.0506 (18)	0.0563 (19)	0.0094 (16)	-0.0230 (17)	-0.0175 (16)
N8	0.086 (3)	0.064 (2)	0.064 (2)	0.0160 (19)	-0.0347 (19)	-0.0300 (18)
C1	0.0423 (17)	0.0323 (15)	0.0371 (16)	0.0015 (13)	-0.0144 (13)	-0.0140 (13)

C2	0.0447 (18)	0.0357 (16)	0.0486 (18)	0.0006 (14)	-0.0164 (14)	-0.0228 (15)
C3	0.053 (2)	0.0424 (19)	0.064 (2)	0.0020 (16)	-0.0183 (18)	-0.0267 (18)
C4	0.066 (2)	0.0387 (19)	0.070 (3)	0.0057 (17)	-0.024 (2)	-0.0267 (18)
C5	0.051 (2)	0.0367 (17)	0.056 (2)	-0.0069 (15)	-0.0110 (16)	-0.0183 (16)
C6	0.0355 (16)	0.0337 (16)	0.0398 (17)	0.0008 (13)	-0.0064 (13)	-0.0123 (13)
C7	0.050(2)	0.0391 (18)	0.054 (2)	0.0009 (15)	-0.0135 (16)	-0.0217 (16)
C8	0.0463 (18)	0.0332 (16)	0.0357 (16)	0.0015 (13)	-0.0133 (13)	-0.0135 (13)
C9	0.054 (2)	0.0306 (16)	0.0377 (17)	-0.0075 (14)	-0.0097 (14)	-0.0073 (13)
C10	0.078 (3)	0.064 (3)	0.046 (2)	0.000 (2)	-0.0054 (19)	-0.0201 (19)
C11	0.084 (3)	0.064 (3)	0.049 (2)	-0.021 (2)	-0.001 (2)	-0.024 (2)
C12	0.088 (3)	0.052 (2)	0.087 (3)	0.001 (2)	-0.020 (3)	-0.027 (2)
C13	0.065 (2)	0.0404 (19)	0.053 (2)	0.0016 (17)	-0.0184 (18)	-0.0126 (17)
C14	0.071 (3)	0.054 (2)	0.062 (2)	0.004 (2)	-0.020 (2)	-0.025 (2)

Geometric parameters (Å, °)

Cu1—N1 ⁱ	2.021 (2)	N3—N4	1.390 (4)
Cu1—N1	2.021 (2)	N4—C7	1.293 (4)
Cu1—N5 ⁱ	2.053 (2)	N4—Cu1 ^{iv}	2.445 (3)
Cu1—N5	2.053 (2)	N5—C8	1.299 (4)
Cu1—N4 ⁱⁱ	2.445 (3)	N5—N6	1.375 (3)
Cu1—N4 ⁱⁱⁱ	2.445 (3)	N6—C9	1.304 (4)
Cl1—O2	1.370 (4)	N7—C13	1.291 (5)
Cl104	1.398 (4)	N7—N8	1.387 (5)
Cl103	1.404 (3)	N8—C14	1.271 (5)
Cl1-01	1.400 (4)	C1—H1	0.9300
S1—C1	1.696 (3)	C3—C4	1.517 (5)
S1—C2	1.735 (3)	С3—Н3А	0.9700
S2—C2	1.727 (3)	C3—H3B	0.9700
S2—C3	1.806 (4)	C4—C5	1.514 (5)
S3—C6	1.746 (3)	C4—H4A	0.9700
S3—C5	1.815 (4)	C4—H4B	0.9700
S4—C7	1.714 (4)	C5—H5A	0.9700
S4—C6	1.735 (3)	C5—H5B	0.9700
S5—C8	1.695 (3)	С7—Н7	0.9300
S5—С9	1.719 (3)	C8—H8	0.9300
S6—C9	1.767 (3)	C10—C11	1.530 (6)
S6—C10	1.829 (5)	C10—H10A	0.9700
S7—C13	1.742 (4)	C10—H10B	0.9700
S7—C12	1.816 (5)	C11—C12	1.483 (6)
S8—C14	1.703 (4)	C11—H11A	0.9700
S8—C13	1.727 (4)	C11—H11B	0.9700
N1—C1	1.293 (4)	C12—H12A	0.9700
N1—N2	1.388 (3)	C12—H12B	0.9700
N2-C2	1.302 (4)	C14—H14	0.9300
N3—C6	1.299 (4)		
N1 ⁱ —Cu1—N1	180.0	C4—C3—H3B	110.5

N1 ⁱ —Cu1—N5 ⁱ	88.01 (9)	S2—C3—H3B	110.5
N1—Cu1—N5 ⁱ	91.99 (9)	НЗА—СЗ—НЗВ	108.7
N1 ⁱ —Cu1—N5	91.99 (9)	C3—C4—C5	112.1 (3)
N1—Cu1—N5	88.01 (9)	C3—C4—H4A	109.2
N5 ⁱ —Cu1—N5	180.0	C5—C4—H4A	109.2
N1 ⁱ —Cu1—N4 ⁱⁱ	91.50 (9)	C3—C4—H4B	109.2
N1—Cu1—N4 ⁱⁱ	88.50 (9)	C5—C4—H4B	109.2
N5 ⁱ —Cu1—N4 ⁱⁱ	87.34 (9)	H4A—C4—H4B	107.9
N5—Cu1—N4 ⁱⁱ	92.66 (9)	C4—C5—S3	111.8 (3)
N1 ⁱ —Cu1—N4 ⁱⁱⁱ	88.50 (9)	C4—C5—H5A	109.3
N1—Cu1—N4 ⁱⁱⁱ	91.50 (9)	S3—C5—H5A	109.3
N5 ⁱ —Cu1—N4 ⁱⁱⁱ	92.66 (9)	C4—C5—H5B	109.3
N5—Cu1—N4 ⁱⁱⁱ	87.34 (9)	S3—C5—H5B	109.3
N4 ⁱⁱ —Cu1—N4 ⁱⁱⁱ	180.0	H5A—C5—H5B	107.9
02-011-04	108.6 (4)	N3—C6—S4	1141(2)
02 - C11 - O3	1101(3)	N3-C6-S3	1250(2)
04 - C11 - 03	107.8(2)	S4-C6-S3	120.83(18)
0^{2} - Cl1 - O1	107.8(2) 108.9(3)	N4	120.03(10) 114.8(3)
04-C11-01	100.3(3)	N4_C7_H7	122.6
03-01-01	107.3(3) 112.2(3)	S4_C7_H7	122.0
$C_1 = S_1 = C_2$	86.96 (14)	N5_C8_S5	122.0 113.6(2)
$C_{1} = S_{1} = C_{2}$	103.64(16)	N5-C8-H8	113.0 (2)
$C_{2} = S_{2} = C_{3}$	103.04(10) 101.32(16)	S5 C8 H8	123.2
$C_{0} = S_{0} = C_{0}$	86 73 (16)	N6 C0 S5	123.2 114.4(2)
$C^{2} = 54 - C0$	87.40 (15)	$N_{0} = C_{9} = S_{3}$	114.4(2) 122.0(2)
$C_{0} = S_{0} = C_{0}$	07.49(13) 00.42(18)	10-0-30	122.9(3)
$C_{9} = 50 = C_{10}$	99.45 (10) 102.4 (2)	53-0-50	122.70(10)
$C_{13} = S_{12} = C_{12}$	102.4(2)	$C_{11} = C_{10} = S_0$	113.4 (3)
C1 = N1 = N2	80.78(19)	CII = CI0 = HI0A	108.4
C1 = N1 = Cr1	113.7(2)	S0 - C10 - H10A	108.4
CI-NI-Cui	124.3(2)	CII—CIO—HIOB	108.4
$N_2 = N_1 = Cu_1$	121./3(1/)	S6-C10-HI0B	108.4
$C_2 = N_2 = N_1$	110.3 (2)	HI0A - CI0 - HI0B	107.5
C_{0} N3 N4	111.9 (2)		111.8 (4)
C/-N4-N3	112.5 (3)	CI2—CII—HIIA	109.2
C / - N4 - CulW	133.3 (2)	CIO—CII—HIIA	109.2
$N3-N4-Cul^{W}$	109.59 (17)	CI2—CII—HIIB	109.2
C8—N5—N6	113.8 (2)	CI0—CII—HIIB	109.2
C8—N5—Cul	128.7 (2)	HIIA—CII—HIIB	107.9
N6—N5—Cul	117.31 (18)	C11—C12—S7	115.4 (4)
C9—N6—N5	110.7 (3)	C11—C12—H12A	108.4
C13—N7—N8	111.7 (3)	S7—C12—H12A	108.4
C14—N8—N7	112.8 (3)	C11—C12—H12B	108.4
NI—CI—SI	114.4 (2)	S7—C12—H12B	108.4
N1—C1—H1	122.8	H12A—C12—H12B	107.5
S1—C1—H1	122.8	N7—C13—S8	113.8 (3)
N2—C2—S2	127.1 (2)	N7—C13—S7	126.1 (3)
N2—C2—S1	114.6 (2)	S8—C13—S7	120.0 (2)
S2—C2—S1	118.30 (18)	N8—C14—S8	114.9 (3)

C4—C3—S2	106.2 (2)	N8—C14—H14	122.5
C4—C3—H3A	110.5	S8—C14—H14	122.5
S2—C3—H3A	110.5		
N5 ⁱ —Cu1—N1—C1	-137.6 (3)	S2—C3—C4—C5	175.9 (3)
N5—Cu1—N1—C1	42.4 (3)	C3—C4—C5—S3	163.0 (3)
N4 ⁱⁱ —Cu1—N1—C1	-50.3 (3)	C6—S3—C5—C4	74.5 (3)
N4 ⁱⁱⁱ —Cu1—N1—C1	129.7 (3)	N4—N3—C6—S4	0.6 (3)
N5 ⁱ —Cu1—N1—N2	36.6 (2)	N4—N3—C6—S3	178.9 (2)
N5—Cu1—N1—N2	-143.4 (2)	C7—S4—C6—N3	-0.2 (3)
N4 ⁱⁱ —Cu1—N1—N2	123.9 (2)	C7—S4—C6—S3	-178.5 (2)
N4 ⁱⁱⁱ —Cu1—N1—N2	-56.1 (2)	C5—S3—C6—N3	12.7 (3)
C1—N1—N2—C2	0.6 (4)	C5—S3—C6—S4	-169.1 (2)
Cu1—N1—N2—C2	-174.2 (2)	N3—N4—C7—S4	0.7 (4)
C6—N3—N4—C7	-0.8 (4)	Cu1 ^{iv} —N4—C7—S4	-151.87 (18)
C6— $N3$ — $N4$ — $Cu1$ ^{iv}	158.3 (2)	C6—S4—C7—N4	-0.3 (3)
N1 ⁱ —Cu1—N5—C8	65.1 (3)	N6—N5—C8—S5	-0.5 (3)
N1—Cu1—N5—C8	-114.9 (3)	Cu1—N5—C8—S5	173.93 (14)
N4 ⁱⁱ —Cu1—N5—C8	-26.5 (3)	C9—S5—C8—N5	0.4 (3)
N4 ⁱⁱⁱ —Cu1—N5—C8	153.5 (3)	N5—N6—C9—S5	-0.1 (3)
N1 ⁱ —Cu1—N5—N6	-120.6 (2)	N5—N6—C9—S6	178.9 (2)
N1—Cu1—N5—N6	59.4 (2)	C8—S5—C9—N6	-0.1 (3)
N4 ⁱⁱ —Cu1—N5—N6	147.8 (2)	C8—S5—C9—S6	-179.1 (2)
N4 ⁱⁱⁱ —Cu1—N5—N6	-32.2 (2)	C10—S6—C9—N6	-78.7 (3)
C8—N5—N6—C9	0.4 (4)	C10—S6—C9—S5	100.2 (2)
Cu1—N5—N6—C9	-174.7 (2)	C9—S6—C10—C11	69.0 (3)
C13—N7—N8—C14	0.8 (6)	S6-C10-C11-C12	66.9 (4)
N2—N1—C1—S1	-0.6 (3)	C10-C11-C12-S7	-171.5 (3)
Cu1—N1—C1—S1	174.06 (14)	C13—S7—C12—C11	-83.7 (4)
C2—S1—C1—N1	0.3 (3)	N8—N7—C13—S8	-0.6 (5)
N1—N2—C2—S2	-179.2 (2)	N8—N7—C13—S7	-179.1 (3)
N1—N2—C2—S1	-0.4 (3)	C14—S8—C13—N7	0.2 (4)
C3—S2—C2—N2	1.0 (4)	C14—S8—C13—S7	178.8 (3)
C3—S2—C2—S1	-177.8 (2)	C12—S7—C13—N7	11.3 (5)
C1—S1—C2—N2	0.1 (3)	C12—S7—C13—S8	-167.1 (3)
C1—S1—C2—S2	179.0 (2)	N7—N8—C14—S8	-0.6 (5)
C2—S2—C3—C4	166.7 (3)	C13—S8—C14—N8	0.2 (4)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*, *y*-1, *z*; (iv) *x*, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
C3—H3 <i>B</i> ···O3 ^v	0.97	2.47	3.357 (6)	153
C7—H7···O3 ^{vi}	0.93	2.51	3.172 (6)	128
C8—H8····O4 ⁱⁱⁱ	0.93	2.47	3.010 (6)	117

			supportin	supporting information		
C10—H10 <i>A</i> ···O2 ^{vii}	0.97	2.50	3.423 (7)	159		
C14—H14···O1 ^{viii}	0.93	2.51	3.419 (7)	167		

Symmetry codes: (iii) *x*, *y*-1, *z*; (v) *x*-1, *y*, *z*; (vi) *x*-1, *y*+1, *z*; (vii) -*x*+1, -*y*, -*z*+2; (viii) -*x*+1, -*y*+1, -*z*+2.