organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-[(2-Benzoyl-4-chlorophenyl)diazenyl]-3-methyl-1-phenyl-1H-pyrazol-5(4H)one

Zaker Bahreni,^a Hossein Rahmani^a and Seik Weng Ng^{b*}

^aInstitute of Chemical Industries, Iranian Research Organization for Science and Technology, PO Box 15815-358, Tehran, Iran, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 3 February 2009; accepted 5 February 2009

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.105; data-to-parameter ratio = 15.7.

In the title compound, $C_{23}H_{17}CIN_4O_2$, the amino H atom forms an intramolecular hydrogen bond to the exocyclic carbonyl O atom as well as to the O atom of the benzoyl group.

Related literature

For the crystal structure of 1-phenyl-3-methyl-4-(4'-chlorophenyazo)-pyrazol-5-one, whose amino H atom is intramolecularly hydrogen-bonded to the carbonyl O atom, see: Golinski et al. (1983).

Experimental

Crystal data C23H17ClN4O2 $M_r = 416.86$

Monoclinic, C2/c a = 25.800 (3) Å

b = 12.124 (1) Å	
c = 13.966 (1) Å	
$\beta = 119.179 \ (1)^{\circ}$	
V = 3813.9 (7) Å ³	
Z = 8	

Data collection

Bruker SMART APEX	10753 measured reflections
diffractometer	4346 independent reflections
Absorption correction: multi-scan	3309 reflections with $I > 2\sigma($
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.032$
$T_{\min} = 0.791, T_{\max} = 0.862$	
(expected range = 0.897 - 0.977)	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$wR(F^2) = 0.105$	independent and constrained
S = 1.00	refinement
4346 reflections	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
276 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
1 restraint	

Mo $K\alpha$ radiation $\mu = 0.23 \text{ mm}^{-1}$

 $0.35 \times 0.25 \times 0.10 \text{ mm}$

 $> 2\sigma(I)$

T = 120 (2) K

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N4-H4···O1	0.89(1)	2.06 (2)	2.755 (2)	135 (2)
$N4-H4\cdots O2$	0.89 (1)	2.05 (2)	2.698 (2)	130 (2)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank the Iranian Research Organization for Science and Technology and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2371).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Golinski, B., Reck, G. & Kutschabsky, L. (1983). Z. Kristallogr. 158, 271-278.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, o510 [doi:10.1107/S1600536809004243]

4-[(2-Benzoyl-4-chlorophenyl)diazenyl]-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)one

Zaker Bahreni, Hossein Rahmani and Seik Weng Ng

S1. Experimental

2-Amino-5-chlorobenzophenone (2.32 g, 0.01 mol) was suspended in strong hydrochloric acid (20 ml, pH ca. 5) at 273 K. A solution of sodium nitrite (0.69 g in 15 ml water) was added. Following the diazotization, an aqueous solution of 3-methyl-1-phenyl-2-pyrazoline-5-one (1.75 g, 0.01 mol) was added. The compound that separated was collected and recrystallized from ethanol.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of $N-H 0.85\pm0.01$ Å; its temperature factors was freely refined.

Figure 1

Thermal displacement plot (Barbour, 2001) of $C_{23}H_{17}ClN_4O_2$; probability levels are set at 70% and H-atoms are drawn as spheres of arbitrary radius.

4-[(2-Benzoyl-4-chlorophenyl)diazenyl]-3-methyl-1-phenyl-1H-pyrazol- 5(4H)-one

Crystal data

 $C_{23}H_{17}CIN_4O_2$ $M_r = 416.86$ Monoclinic, C2/cHall symbol: -C 2yc a = 25.800 (3) Å b = 12.124 (1) Å c = 13.966 (1) Å $\beta = 119.179$ (1)° V = 3813.9 (7) Å³ Z = 8

Data collection

Bruker SMART APEX	10753 measured reflections
diffractometer	4346 independent reflections
Radiation source: fine-focus sealed tube	3309 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.032$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -33 \rightarrow 33$
(SADABS; Sheldrick, 1996)	$k = -15 \rightarrow 12$
$T_{\min} = 0.791, T_{\max} = 0.862$	$l = -18 \rightarrow 17$
Refinement	
P afinament on F^2	Secondary atom site location: difference Fo

F(000) = 1728

 $\theta = 2.2 - 26.9^{\circ}$

 $\mu = 0.23 \text{ mm}^{-1}$ T = 120 K

Block, orange

 $0.35 \times 0.25 \times 0.10 \text{ mm}$

 $D_x = 1.452 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2643 reflections

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 2.1067P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	<i>Y</i>		7	II */II	
	λ	У	2	$U_{\rm iso} / U_{\rm eq}$	
Cl1	0.176742 (18)	0.72052 (4)	0.10069 (4)	0.03104 (13)	
01	0.51920 (5)	0.65437 (10)	0.64529 (9)	0.0270 (3)	
O2	0.42743 (6)	0.81878 (10)	0.49190 (10)	0.0301 (3)	
N1	0.56804 (6)	0.48796 (11)	0.72365 (11)	0.0209 (3)	
N2	0.55349 (6)	0.37433 (11)	0.70777 (11)	0.0208 (3)	
N3	0.42128 (6)	0.49431 (11)	0.50462 (11)	0.0200 (3)	
N4	0.40777 (6)	0.59936 (12)	0.47918 (11)	0.0204 (3)	
H4	0.4336 (7)	0.6518 (13)	0.5167 (15)	0.037 (6)*	
C1	0.62606 (7)	0.51899 (15)	0.80413 (13)	0.0214 (4)	
C2	0.66295 (7)	0.44153 (15)	0.88027 (13)	0.0239 (4)	
H2	0.6489	0.3691	0.8799	0.029*	
C3	0.72042 (8)	0.47068 (16)	0.95664 (14)	0.0279 (4)	

112	0 7459	0 4175	1 0092	0.024*
пэ	0.7438	0.41/3	1.0082	0.034*
C4	0.74136 (8)	0.57598 (16)	0.958/8 (15)	0.0307 (4)
H4A	0.7810	0.5951	1.0108	0.037*
C5	0.70394 (8)	0.65311 (16)	0.88431 (15)	0.0310 (4)
H5	0.7179	0.7261	0.8866	0.037*
C6	0.64650 (8)	0.62588 (15)	0.80647 (14)	0.0270 (4)
H6	0.6213	0.6794	0.7552	0.032*
C7	0.52131 (7)	0.55349 (14)	0.65290 (13)	0.0204 (3)
C8	0.47428 (7)	0.47380 (14)	0.58702 (13)	0.0195 (3)
C9	0.49904 (7)	0.36666 (14)	0.62833 (13)	0.0201 (3)
C10	0.46871 (7)	0.25862 (14)	0.59029 (15)	0.0246 (4)
H10A	0.4962	0.1992	0.6323	0.037*
H10B	0.4559	0.2492	0.5122	0.037*
H10C	0.4340	0.2562	0.6012	0.037*
C11	0.35288 (7)	0.62787 (14)	0.38933 (13)	0.0198 (3)
C12	0.30754 (7)	0.55002 (14)	0.34178 (13)	0.0226 (4)
H12	0.3140	0.4770	0.3700	0.027*
C13	0.25322 (7)	0.57835 (15)	0.25382 (14)	0.0241 (4)
H13	0.2221	0.5255	0.2224	0.029*
C14	0.24456 (7)	0.68414 (15)	0.21197 (13)	0.0221 (4)
C15	0.28903 (7)	0.76156 (14)	0.25581 (13)	0.0213 (3)
H15	0.2822	0.8336	0.2252	0.026*
C16	0.34421 (7)	0.73499 (14)	0.34516 (13)	0.0200 (3)
C17	0.39169 (7)	0.82058 (14)	0.39359 (13)	0.0210 (3)
C18	0.39651 (7)	0.90830 (14)	0.32340 (13)	0.0205 (3)
C19	0.42522 (7)	1.00593 (14)	0.37423 (14)	0.0251 (4)
H19	0.4377	1.0172	0.4497	0.030*
C20	0.43574 (8)	1.08644 (15)	0.31600 (15)	0.0298 (4)
H20	0.4549	1.1531	0.3513	0.036*
C21	0.41840 (8)	1.07047 (15)	0.20623 (15)	0.0299 (4)
H21	0.4257	1.1259	0.1662	0.036*
C22	0.39037 (8)	0.97341 (15)	0.15512 (14)	0.0273 (4)
H22	0.3787	0.9623	0.0799	0.033*
C23	0.37924 (7)	0.89228 (14)	0.21274 (13)	0.0230 (4)
H23	0.3599	0.8259	0.1771	0.028*
-				

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0196 (2)	0.0284 (3)	0.0321 (2)	0.00060 (17)	0.00242 (17)	0.00243 (19)
O1	0.0295 (7)	0.0183 (7)	0.0261 (6)	-0.0014 (5)	0.0080 (5)	0.0012 (5)
O2	0.0339 (7)	0.0233 (7)	0.0217 (6)	-0.0045 (5)	0.0045 (5)	-0.0012 (5)
N1	0.0219 (7)	0.0173 (7)	0.0210 (7)	-0.0018 (6)	0.0086 (6)	0.0006 (5)
N2	0.0209 (7)	0.0177 (7)	0.0238 (7)	-0.0010 (6)	0.0109 (6)	0.0014 (6)
N3	0.0219 (7)	0.0200 (8)	0.0204 (7)	0.0008 (6)	0.0121 (6)	0.0028 (6)
N4	0.0210 (7)	0.0181 (8)	0.0195 (7)	-0.0015 (6)	0.0079 (6)	0.0013 (6)
C1	0.0192 (8)	0.0252 (9)	0.0193 (8)	-0.0022 (7)	0.0089 (7)	-0.0021 (7)
C2	0.0247 (9)	0.0248 (10)	0.0229 (8)	-0.0011 (7)	0.0121 (7)	-0.0003 (7)

C3	0.0263 (9)	0.0311 (10)	0.0233 (9)	0.0028 (8)	0.0097 (7)	0.0006 (8)
C4	0.0226 (9)	0.0373 (11)	0.0264 (9)	-0.0057 (8)	0.0073 (7)	-0.0078 (8)
C5	0.0309 (10)	0.0271 (10)	0.0325 (10)	-0.0085 (8)	0.0133 (8)	-0.0061 (8)
C6	0.0272 (9)	0.0239 (10)	0.0270 (9)	-0.0015 (7)	0.0109 (7)	0.0012 (7)
C7	0.0229 (8)	0.0209 (9)	0.0180 (8)	0.0010 (7)	0.0105 (7)	0.0024 (6)
C8	0.0209 (8)	0.0204 (9)	0.0184 (8)	-0.0010 (6)	0.0106 (7)	0.0017 (6)
C9	0.0193 (8)	0.0224 (9)	0.0205 (8)	0.0006 (7)	0.0111 (7)	0.0029 (7)
C10	0.0216 (8)	0.0198 (9)	0.0295 (9)	-0.0019 (7)	0.0102 (7)	-0.0006 (7)
C11	0.0184 (8)	0.0223 (9)	0.0185 (8)	0.0008 (6)	0.0090 (7)	-0.0007 (6)
C12	0.0245 (8)	0.0191 (9)	0.0251 (9)	-0.0001 (7)	0.0129 (7)	0.0036 (7)
C13	0.0211 (8)	0.0218 (9)	0.0276 (9)	-0.0047 (7)	0.0106 (7)	-0.0006 (7)
C14	0.0157 (8)	0.0261 (9)	0.0208 (8)	0.0021 (7)	0.0062 (6)	0.0000(7)
C15	0.0214 (8)	0.0180 (9)	0.0233 (8)	0.0026 (6)	0.0100 (7)	0.0007 (7)
C16	0.0211 (8)	0.0193 (9)	0.0205 (8)	0.0003 (7)	0.0107 (7)	-0.0011 (6)
C17	0.0204 (8)	0.0178 (8)	0.0212 (8)	0.0024 (6)	0.0074 (7)	-0.0016 (7)
C18	0.0168 (7)	0.0180 (9)	0.0229 (8)	0.0016 (6)	0.0067 (6)	0.0008 (7)
C19	0.0231 (8)	0.0214 (9)	0.0248 (9)	-0.0009 (7)	0.0070 (7)	-0.0036 (7)
C20	0.0294 (9)	0.0188 (9)	0.0353 (10)	-0.0049 (7)	0.0110 (8)	-0.0018 (8)
C21	0.0300 (10)	0.0241 (10)	0.0348 (10)	-0.0013 (8)	0.0151 (8)	0.0053 (8)
C22	0.0266 (9)	0.0275 (10)	0.0247 (9)	0.0021 (7)	0.0099 (7)	0.0021 (7)
C23	0.0207 (8)	0.0192 (9)	0.0247 (9)	-0.0007 (7)	0.0076 (7)	-0.0019 (7)

Geometric parameters (Å, °)

Cl1—C14	1.738 (2)	C10—H10A	0.9800
O1—C7	1.227 (2)	C10—H10B	0.9800
O2—C17	1.225 (2)	C10—H10C	0.9800
N1—C7	1.378 (2)	C11—C12	1.394 (2)
N1-C1	1.416 (2)	C11—C16	1.408 (2)
N1—N2	1.417 (2)	C12—C13	1.383 (2)
N2-C9	1.301 (2)	C12—H12	0.9500
N3—C8	1.312 (2)	C13—C14	1.382 (2)
N3—N4	1.323 (2)	C13—H13	0.9500
N4—C11	1.402 (2)	C14—C15	1.374 (2)
N4—H4	0.885 (9)	C15—C16	1.398 (2)
C1—C2	1.390 (2)	C15—H15	0.9500
C1—C6	1.393 (2)	C16—C17	1.492 (2)
C2—C3	1.385 (2)	C17—C18	1.492 (2)
С2—Н2	0.9500	C18—C19	1.393 (2)
C3—C4	1.381 (3)	C18—C23	1.397 (2)
С3—Н3	0.9500	C19—C20	1.380 (3)
C4—C5	1.382 (3)	C19—H19	0.9500
C4—H4A	0.9500	C20—C21	1.385 (3)
C5—C6	1.384 (3)	C20—H20	0.9500
С5—Н5	0.9500	C21—C22	1.383 (3)
С6—Н6	0.9500	C21—H21	0.9500
С7—С8	1.471 (2)	C22—C23	1.387 (2)
С8—С9	1.438 (2)	C22—H22	0.9500

supporting information

C9—C10	1.485 (2)	С23—Н23	0.9500
C7—N1—C1	129.3 (2)	H10B-C10-H10C	109.5
C7—N1—N2	112.1 (1)	C12—C11—N4	120.4 (2)
C1—N1—N2	118.7 (1)	C12—C11—C16	119.9 (2)
C9—N2—N1	107.2 (1)	N4—C11—C16	119.7 (1)
C8—N3—N4	116.3 (1)	C13—C12—C11	120.4 (2)
N3—N4—C11	119.8 (1)	C13—C12—H12	119.8
N3—N4—H4	121 (1)	C11—C12—H12	119.8
C11—N4—H4	120 (1)	C12—C13—C14	119.4 (2)
C2—C1—C6	120.0 (2)	С12—С13—Н13	120.3
C2-C1-N1	119.5 (2)	C14—C13—H13	120.3
C6-C1-N1	120.5 (2)	C15-C14-C13	121.2 (2)
C3—C2—C1	119.6 (2)	C15—C14—Cl1	118.9 (1)
C3—C2—H2	120.2	C13—C14—Cl1	119.9 (1)
C1—C2—H2	120.2	C14—C15—C16	120.4 (2)
C4—C3—C2	120.9 (2)	C14—C15—H15	119.8
C4—C3—H3	119.6	С16—С15—Н15	119.8
С2—С3—Н3	119.6	C15—C16—C11	118.6 (2)
C3—C4—C5	119.2 (2)	C15—C16—C17	119.9 (2)
C3—C4—H4A	120.4	C11—C16—C17	121.5 (2)
C5—C4—H4A	120.4	O2—C17—C18	119.4 (2)
C4—C5—C6	121.2 (2)	O2—C17—C16	119.9 (2)
C4—C5—H5	119.4	C18—C17—C16	120.7 (1)
С6—С5—Н5	119.4	C19—C18—C23	119.0 (2)
C5—C6—C1	119.2 (2)	C19—C18—C17	117.7 (2)
С5—С6—Н6	120.4	C23—C18—C17	122.9 (2)
С1—С6—Н6	120.4	C20—C19—C18	120.6 (2)
O1—C7—N1	128.6 (2)	С20—С19—Н19	119.7
O1—C7—C8	127.8 (2)	С18—С19—Н19	119.7
N1—C7—C8	103.7 (1)	C19—C20—C21	120.2 (2)
N3—C8—C9	126.3 (2)	C19—C20—H20	119.9
N3—C8—C7	127.8 (2)	C21—C20—H20	119.9
C9—C8—C7	105.8 (1)	C20—C21—C22	119.7 (2)
N2—C9—C8	111.2 (2)	C20—C21—H21	120.1
N2—C9—C10	122.0 (2)	C22—C21—H21	120.1
C8—C9—C10	126.8 (2)	C21—C22—C23	120.5 (2)
C9-C10-H10A	109.5	C21—C22—H22	119.7
C9—C10—H10B	109.5	C23—C22—H22	119.7
H10A—C10—H10B	109.5	C22—C23—C18	119.9 (2)
C9—C10—H10C	109.5	С22—С23—Н23	120.0
H10A—C10—H10C	109.5	C18—C23—H23	120.0
C7—N1—N2—C9	0.5 (2)	N3—N4—C11—C12	14.3 (2)
C1—N1—N2—C9	-178.1 (1)	N3—N4—C11—C16	-164.0(1)
C8—N3—N4—C11	177.4 (1)	N4—C11—C12—C13	179.4 (2)
C7—N1—C1—C2	168.3 (2)	C16—C11—C12—C13	-2.4 (2)
N2—N1—C1—C2	-13.4 (2)	C11-C12-C13-C14	1.2 (3)

C7—N1—C1—C6	-12.6 (3)	C12—C13—C14—C15	0.3 (3)
N2—N1—C1—C6	165.8 (2)	C12—C13—C14—Cl1	179.4 (1)
C6-C1-C2-C3	-1.4 (3)	C13—C14—C15—C16	-0.7 (3)
N1—C1—C2—C3	177.8 (2)	Cl1—C14—C15—C16	-179.8 (1)
C1—C2—C3—C4	0.6 (3)	C14—C15—C16—C11	-0.5 (2)
C2—C3—C4—C5	0.8 (3)	C14—C15—C16—C17	-178.6 (2)
C3—C4—C5—C6	-1.4 (3)	C12—C11—C16—C15	2.0 (2)
C4—C5—C6—C1	0.6 (3)	N4-C11-C16-C15	-179.8 (1)
C2-C1-C6-C5	0.8 (3)	C12—C11—C16—C17	-179.9 (2)
N1—C1—C6—C5	-178.4 (2)	N4-C11-C16-C17	-1.6 (2)
C1—N1—C7—O1	-1.6 (3)	C15—C16—C17—O2	148.1 (2)
N2—N1—C7—O1	180.0 (2)	C11—C16—C17—O2	-30.0 (2)
C1—N1—C7—C8	177.7 (2)	C15—C16—C17—C18	-32.3 (2)
N2—N1—C7—C8	-0.7 (2)	C11—C16—C17—C18	149.6 (2)
N4—N3—C8—C9	-179.0 (2)	O2—C17—C18—C19	-23.7 (2)
N4—N3—C8—C7	-1.8 (2)	C16—C17—C18—C19	156.7 (2)
O1—C7—C8—N3	2.3 (3)	O2—C17—C18—C23	149.5 (2)
N1-C7-C8-N3	-177.0 (2)	C16—C17—C18—C23	-30.1 (2)
O1—C7—C8—C9	180.0 (2)	C23-C18-C19-C20	0.9 (3)
N1—C7—C8—C9	0.6 (2)	C17—C18—C19—C20	174.4 (2)
N1—N2—C9—C8	-0.1 (2)	C18—C19—C20—C21	-0.7 (3)
N1-N2-C9-C10	-179.3 (1)	C19—C20—C21—C22	0.1 (3)
N3—C8—C9—N2	177.3 (2)	C20—C21—C22—C23	0.3 (3)
C7—C8—C9—N2	-0.4 (2)	C21—C22—C23—C18	-0.1 (3)
N3—C8—C9—C10	-3.5 (3)	C19—C18—C23—C22	-0.5 (2)
C7—C8—C9—C10	178.8 (2)	C17—C18—C23—C22	-173.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A
N4—H4…O1	0.89(1)	2.06 (2)	2.755 (2)	135 (2)
N4—H4…O2	0.89 (1)	2.05 (2)	2.698 (2)	130 (2)