

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-3-Allylsulfanyl-*N*-(4-methoxybenzylidene)-5-(3,4,5-trimethoxyphenyl)-4*H*-1,2,4-triazol-4-amine

Qian-Zhu Li,^{a,b} Bao-An Song,^a* Song Yang,^a Yu-Guo Zheng^a and Qing-Qing Guo^a

^aCenter for Research and Development of Fine Chemicals, Guizhou University, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Guiyang 550025, People's Republic of China, and ^bDepartment of Chemistry, Bijie University, Bijie 551700, People's Republic of China Correspondence e-mail: songbaoan22@yahoo.com

Received 28 October 2008; accepted 21 January 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.103; data-to-parameter ratio = 14.0.

The title compound, $C_{22}H_{24}N_4O_4S$, adopts a *trans* configuration with respect to the C=N double bond. A weak intramolecular C-H···N hydrogen bond is observed between the N atom of the C=N double bond and its neighboring phenyl H atom. The crystal structure is stabilized by intermolecular C-H···N hydrogen bonds and C-H··· π interactions.

Related literature

For background on the biological activity of triazole compounds, see: Bekircan & Gumrukcuoglu (2005); Ewiss *et al.* (1986); Ikizler *et al.* (1998). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data C₂₂H₂₄N₄O₄S

 $M_r = 440.51$

Z = 4

Mo $K\alpha$ radiation

 $0.36 \times 0.30 \times 0.26 \text{ mm}$

 $\mu = 0.18 \text{ mm}^{-1}$

T = 293 (2) K

Monoclinic, $P2_1/n$ a = 7.9414 (12) Å b = 15.043 (2) Å c = 19.047 (3) Å $\beta = 100.385$ (6)° V = 2238.1 (6) Å³

Data collection

Bruker SMART CCD area-detector	23323 measured reflections
diffractometer	3929 independent reflections
Absorption correction: multi-scan	3354 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.028$
$T_{\min} = 0.936, \ T_{\max} = 0.956$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	281 parameters
$wR(F^2) = 0.103$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
3929 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C6 and C13-C18 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1\cdots N4$	0.93	2.38	2.960 (2)	120
$C12-H12\cdots N2^{i}$	0.93	2.59	3.359 (2)	141
C19−H19A…N1 ⁱⁱ	0.96	2.60	3.477 (3)	152
$C9-H9A\cdots Cg1^{iii}$	0.97	2.79	3.616 (2)	143
$C11 - H11A \cdots Cg2^{iv}$	0.93	2.83	3.703 (2)	158
$C15 - H15 \cdots Cg1^{v}$	0.93	2.70	3.514 (2)	147
$C22 - H22C \cdot \cdot \cdot Cg2^{vi}$	0.96	2.94	3.747 (2)	143

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) x - 1, y, z; (iv) x - 1, y - 1, z; (v) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (vi) -x + 1, -y + 1, -z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the National Key Project for International Cooperation in Science and Technology (grant No. 2005DFA30650) and the National Natural Science Foundation of China (No. 20872021) for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2154).

References

- Bekircan, O. & Gumrukcuoglu, N. (2005). Indian J. Chem. Sect. B, 44, 2107–2113.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ewiss, N. F., Bahajaj, A. A. & Elsherbini, E. A. (1986). J. Heterocycl. Chem. 23, 1451–1458.
- Ikizler, A. A., Demirbas, A., Johansson, C. B., Celik, C., Serdar, M. & Yüksek, H. (1998). Acta Pol. Pharm. Drug Res. 55, 117–123.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o469 [doi:10.1107/S1600536809002645]

(*E*)-3-Allylsulfanyl-*N*-(4-methoxybenzylidene)-5-(3,4,5-trimethoxy-phenyl)-4*H*-1,2,4-triazol-4-amine

Qian-Zhu Li, Bao-An Song, Song Yang, Yu-Guo Zheng and Qing-Qing Guo

S1. Comment

Triazole derivatives are of great interest in medicinal chemistry in relation to antibacterial bioactivities (Bekircan & Gumrukcuoglu, 2005; Ewiss *et al.*, 1986; Ikizler *et al.*, 1998). However, to date, only a few reports have been dedicated to the synthesis and antimicrobial activity evaluation of triazole derivatives with a 3,4,5-trimethoxyphenyl substituent. Herein, we want to report on the synthesis and structure such a compound, (*E*)-4-(4-methoxybenzylideneamino)-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-3-thiol.

The molecule of the title compound (Fig. 1), exists in an *E* configuration with respect to the C12=N4 double bond [1.278 (2) Å] with a N3–N4–C12–C13 torsion angle of 179.08 (13)°. The whole molecule is not planar as the dihedral angles between the triazole ring and the two phenyl rings are 25.3 (2)° and 113.8 (2)°, respectively. There is one weak intramolecular C–H…N hydrogen bond between C1 and N4 (Table 1).

In the crystal structure (Fig. 3), two neighboring molecules are linked by weak C12—H12···N2 intermolecular interactions into a centrosymmetric $R_2^2(12)$ ring motif (Bernstein *et al.*, 1995) with two parallel trizole rings with a centroid-centroid separation of 3.650 (1) Å between them (Fig. 2). Moreover, an intermolecular C-H···N hydrogen bond (C19—H19A···N1) is also observed. The molecular packing is further stabilized by C—H··· π interactions (Table 1, *Cg*1 and *Cg*2 are the centroids of the C1–C6 and C13–C18 rings, respectively).

S2. Experimental

A mixture of 3-bromoprop-1-ene (5 mmol) and methanol (3 mL) was added dropwise to a stirred solution of (E)-4-(4-methoxybenzylideneamino)-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-3-thiol (5 mmol) and sodium hydroxide (5 mmol) in water (15 mL). The resulting mixture was stirred at room temperature for 4 hours. After allowing the resulting solution to stand in air at room temperature for 2 days, colorless block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent. The crystals were isolated, washed with ethanol and dried.

S3. Refinement

H atoms were placed in calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 - 0.97 Å, and with $U_{iso}(H) = 1.5 U_{eq}(C)$ for methyl C atoms or $U_{iso}(H) = 1.2 U_{eq}(C)$ for the other C atoms.

Figure 1

The structure of the title compound showing displacement ellipsoids drawn at the 30% probability level.

Figure 2

A perspective view of the $R_2^2(12)$ ring motif formed through the intermolecular C12—H12···N2 hydrogen bond. Dashed lines indicate C-H···N hydrogen bonds and π - π stacking interactions.

Figure 3

Crystal structure of the title compound viewed along the a-axis. Hydrogen bonds are shown as dashed lines.

(E)-3-Allylsulfanyl-N-(4-methoxybenzylidene)-5-(3,4,5- trimethoxyphenyl)-4H-1,2,4-triazol-4-amine

Crystal data	
$C_{22}H_{24}N_4O_4S$	F(000) = 928
$M_r = 440.51$	$D_{\rm x} = 1.307 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2895 reflections
a = 7.9414 (12) Å	$\theta = 2.4 - 27.9^{\circ}$
b = 15.043 (2) Å	$\mu = 0.18 \text{ mm}^{-1}$
c = 19.047 (3) Å	T = 293 K
$\beta = 100.385 \ (6)^{\circ}$	Block, colorless
V = 2238.1 (6) Å ³	$0.36 \times 0.30 \times 0.26 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.936, T_{\max} = 0.956$ Refinement	23323 measured reflections 3929 independent reflections 3354 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -8 \rightarrow 9$ $k = -17 \rightarrow 17$ $l = -22 \rightarrow 22$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.103$ S = 1.07 3929 reflections 281 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0532P)^2 + 0.4889P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.35$ e Å ⁻³ $\Delta\rho_{min} = -0.20$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0132 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	-0.32086 (5)	0.40159 (3)	0.50696 (2)	0.05036 (16)	
O2	0.53116 (15)	0.34899 (8)	0.80320 (6)	0.0566 (3)	
O4	0.63039 (17)	0.63866 (9)	0.73084 (7)	0.0647 (4)	
01	0.27845 (18)	-0.05796 (9)	0.56221 (8)	0.0737 (4)	
N4	0.04176 (16)	0.33704 (8)	0.60779 (7)	0.0419 (3)	
N3	-0.00642 (16)	0.42733 (8)	0.59683 (7)	0.0392 (3)	
03	0.72831 (15)	0.49408 (9)	0.81168 (6)	0.0614 (4)	
N2	-0.15075 (18)	0.54951 (9)	0.56327 (8)	0.0505 (4)	
N1	0.00133 (18)	0.57222 (9)	0.60765 (8)	0.0493 (3)	
C13	0.10497 (19)	0.20262 (10)	0.55230 (8)	0.0412 (4)	
C3	0.5743 (2)	0.49373 (11)	0.76468 (8)	0.0461 (4)	
C6	0.25403 (19)	0.49468 (10)	0.67595 (8)	0.0394 (3)	
C12	0.05405 (19)	0.29577 (10)	0.55028 (8)	0.0426 (4)	
H12	0.0303	0.3254	0.5068	0.051*	
C14	0.1270 (2)	0.15253 (11)	0.61543 (9)	0.0464 (4)	

H14	0.1020	0.1778	0.6569	0.056*
C8	-0.1542 (2)	0.46257 (10)	0.55731 (8)	0.0431 (4)
C7	0.0855 (2)	0.49833 (10)	0.62810 (8)	0.0398 (3)
C1	0.3077 (2)	0.41986 (10)	0.71705 (8)	0.0415 (4)
H1	0.2368	0.3704	0.7150	0.050*
C2	0.4679 (2)	0.41929 (11)	0.76131 (8)	0.0435 (4)
C5	0.3589 (2)	0.56949 (10)	0.67940 (8)	0.0443 (4)
Н5	0.3221	0.6196	0.6524	0.053*
C4	0.5188 (2)	0.56862 (11)	0.72351 (9)	0.0463 (4)
C15	0.1852 (2)	0.06656 (11)	0.61640 (10)	0.0517 (4)
H15	0.2013	0.0342	0.6587	0.062*
C16	0.2205 (2)	0.02742 (11)	0.55411 (10)	0.0518 (4)
C18	0.1392 (2)	0.16211 (12)	0.49085 (9)	0.0517 (4)
H18	0.1234	0.1943	0.4485	0.062*
C10	-0.3730 (3)	0.30522 (14)	0.62529 (10)	0.0633 (5)
H10	-0.2735	0.3199	0.6569	0.076*
C9	-0.4510 (2)	0.37642 (12)	0.57463 (10)	0.0558 (4)
H9A	-0.4645	0.4300	0.6014	0.067*
H9B	-0.5639	0.3575	0.5511	0.067*
C19	0.4213 (3)	0.27423 (13)	0.80370 (12)	0.0717 (6)
H19A	0.4793	0.2294	0.8349	0.108*
H19B	0.3912	0.2507	0.7562	0.108*
H19C	0.3194	0.2922	0.8203	0.108*
C17	0.1965 (2)	0.07488 (12)	0.49092 (10)	0.0561 (5)
H17	0.2184	0.0488	0.4492	0.067*
C21	0.5991 (3)	0.70808 (15)	0.68073 (15)	0.0924 (8)
H21A	0.6853	0.7531	0.6925	0.139*
H21B	0.4884	0.7333	0.6816	0.139*
H21C	0.6021	0.6852	0.6339	0.139*
C11	-0.4301 (3)	0.22612 (15)	0.62922 (12)	0.0764 (6)
H11A	-0.5292	0.2083	0.5987	0.092*
H11B	-0.3724	0.1865	0.6626	0.092*
C20	0.8754 (3)	0.47977 (17)	0.78013 (13)	0.0797 (6)
H20A	0.9762	0.4808	0.8165	0.120*
H20B	0.8829	0.5258	0.7459	0.120*
H20C	0.8664	0.4231	0.7566	0.120*
C22	0.3150 (3)	-0.10321 (14)	0.50050 (15)	0.0858 (8)
H22A	0.3545	-0.1623	0.5135	0.129*
H22B	0.4019	-0.0714	0.4818	0.129*
H22C	0.2129	-0.1063	0.4648	0.129*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
S1	0.0433 (3)	0.0626 (3)	0.0420 (3)	-0.00628 (19)	-0.00102 (17)	0.00451 (18)
02	0.0536 (7)	0.0571 (7)	0.0529 (7)	-0.0027 (6)	-0.0065 (5)	0.0096 (6)
O4	0.0612 (8)	0.0609 (8)	0.0682 (8)	-0.0265 (6)	0.0013 (6)	-0.0029 (6)
01	0.0718 (9)	0.0497 (7)	0.0989 (11)	0.0117 (6)	0.0139 (8)	-0.0119 (7)

Acta Cryst. (2009). E65, o469

N4	0.0437 (7)	0.0341 (7)	0.0443 (7)	-0.0016 (5)	-0.0015 (6)	0.0014 (5)
N3	0.0391 (7)	0.0357 (6)	0.0410 (7)	-0.0017 (5)	0.0026 (5)	0.0035 (5)
03	0.0438 (7)	0.0890 (9)	0.0478 (7)	-0.0136 (6)	-0.0018 (5)	-0.0031 (6)
N2	0.0465 (8)	0.0451 (8)	0.0576 (9)	0.0013 (6)	0.0032 (6)	0.0085 (6)
N1	0.0475 (8)	0.0402 (7)	0.0582 (9)	-0.0013 (6)	0.0036 (7)	0.0031 (6)
C13	0.0378 (8)	0.0434 (8)	0.0413 (8)	-0.0037 (6)	0.0038 (6)	-0.0012 (7)
C3	0.0399 (9)	0.0610 (10)	0.0365 (8)	-0.0068 (7)	0.0046 (7)	-0.0069 (7)
C6	0.0382 (8)	0.0426 (8)	0.0378 (8)	-0.0028 (6)	0.0076 (6)	-0.0048 (6)
C12	0.0397 (8)	0.0447 (8)	0.0421 (9)	-0.0025 (7)	0.0042 (7)	0.0056 (7)
C14	0.0513 (9)	0.0446 (9)	0.0451 (9)	-0.0001 (7)	0.0137 (7)	0.0000 (7)
C8	0.0408 (9)	0.0453 (9)	0.0423 (9)	-0.0010 (7)	0.0045 (7)	0.0076 (7)
C7	0.0419 (8)	0.0371 (8)	0.0406 (8)	-0.0032 (6)	0.0083 (7)	0.0002 (6)
C1	0.0415 (8)	0.0427 (8)	0.0396 (8)	-0.0062 (6)	0.0056 (7)	-0.0025 (6)
C2	0.0440 (9)	0.0486 (9)	0.0376 (8)	0.0000 (7)	0.0063 (7)	-0.0020 (7)
C5	0.0493 (9)	0.0403 (8)	0.0434 (9)	-0.0051 (7)	0.0087 (7)	-0.0021 (7)
C4	0.0448 (9)	0.0505 (9)	0.0445 (9)	-0.0136 (7)	0.0101 (7)	-0.0086 (7)
C15	0.0523 (10)	0.0467 (9)	0.0575 (10)	0.0028 (8)	0.0141 (8)	0.0081 (8)
C16	0.0399 (9)	0.0437 (9)	0.0707 (12)	-0.0015 (7)	0.0068 (8)	-0.0087 (8)
C18	0.0538 (10)	0.0591 (10)	0.0404 (9)	-0.0002 (8)	0.0038 (7)	-0.0009 (7)
C10	0.0613 (12)	0.0763 (13)	0.0538 (11)	-0.0111 (10)	0.0142 (9)	-0.0017 (9)
C9	0.0467 (10)	0.0563 (10)	0.0668 (12)	-0.0027 (8)	0.0169 (9)	-0.0012 (9)
C19	0.0762 (14)	0.0586 (11)	0.0720 (13)	-0.0088 (10)	-0.0088 (10)	0.0201 (10)
C17	0.0496 (10)	0.0647 (11)	0.0531 (11)	0.0005 (8)	0.0068 (8)	-0.0199 (9)
C21	0.0758 (15)	0.0691 (14)	0.124 (2)	-0.0331 (12)	-0.0033 (14)	0.0223 (14)
C11	0.0755 (14)	0.0708 (14)	0.0833 (15)	0.0001 (11)	0.0154 (12)	0.0125 (11)
C20	0.0458 (11)	0.1008 (17)	0.0890 (16)	0.0021 (11)	0.0027 (11)	-0.0133 (13)
C22	0.0673 (14)	0.0626 (13)	0.128 (2)	0.0019 (10)	0.0205 (14)	-0.0384 (13)

Geometric parameters (Å, °)

<u>81–C8</u>	1.7477 (16)	C1—H1	0.9300
S1—C9	1.8312 (18)	C5—C4	1.391 (2)
O2—C2	1.3649 (19)	С5—Н5	0.9300
O2—C19	1.424 (2)	C15—C16	1.397 (2)
O4—C4	1.3676 (19)	C15—H15	0.9300
O4—C21	1.406 (3)	C16—C17	1.383 (3)
O1—C16	1.364 (2)	C18—C17	1.389 (2)
O1—C22	1.433 (3)	C18—H18	0.9300
N4—C12	1.278 (2)	C10—C11	1.280 (3)
N4—N3	1.4164 (17)	С10—С9	1.499 (3)
N3—C7	1.3681 (19)	C10—H10	0.9300
N3—C8	1.3810 (19)	С9—Н9А	0.9700
O3—C3	1.3795 (19)	С9—Н9В	0.9700
O3—C20	1.423 (2)	C19—H19A	0.9600
N2—C8	1.313 (2)	C19—H19B	0.9600
N2—N1	1.3863 (19)	C19—H19C	0.9600
N1—C7	1.319 (2)	C17—H17	0.9300
C13—C18	1.389 (2)	C21—H21A	0.9600

C13—C14	1403(2)	C21—H21B	0.9600
C13 - C12	1.103(2) 1.457(2)	C_{21} H21C	0.9600
C_{3}	1 397 (2)	C11—H11A	0.9300
C_{3} C_{4}	1 398 (2)	C11—H11B	0.9300
C6-C1	1 393 (2)		0.9600
C6C5	1.393(2) 1 394(2)	C20_H20B	0.9600
C6C7	1.394(2) 1.478(2)	C_{20} H20C	0.9600
C_{12} H12	0.0300	$C_{20} = H_{20}$	0.9600
C12— $III2C14$ $C15$	1,372(2)	C22 H22R	0.9000
C14 H14	0.0300	C_{22} H22C	0.9000
$C_1 = C_2$	1.394(2)	022-11220	0.9000
01-02	1.574 (2)		
C8—S1—C9	100.95 (8)	С16—С15—Н15	119.9
C2—O2—C19	117.02 (13)	O1—C16—C17	125.13 (17)
C4—O4—C21	118.08 (15)	O1—C16—C15	114.57 (17)
C16—O1—C22	117.95 (17)	C17—C16—C15	120.29 (16)
C12—N4—N3	113.56 (12)	C17—C18—C13	121.84 (16)
C7—N3—C8	105.79 (12)	C17—C18—H18	119.1
C7—N3—N4	125.15 (12)	C13—C18—H18	119.1
C8—N3—N4	128.97 (12)	C11—C10—C9	126.3 (2)
C3—O3—C20	115.13 (14)	C11—C10—H10	116.8
C8—N2—N1	107.50 (13)	С9—С10—Н10	116.8
C7—N1—N2	108.17 (13)	C10—C9—S1	112.37 (13)
C18—C13—C14	118.26 (15)	С10—С9—Н9А	109.1
C18—C13—C12	119.68 (14)	S1—C9—H9A	109.1
C14—C13—C12	122.03 (14)	С10—С9—Н9В	109.1
O3—C3—C2	119.41 (15)	S1—C9—H9B	109.1
O3—C3—C4	120.93 (15)	H9A—C9—H9B	107.9
C2—C3—C4	119.56 (15)	O2—C19—H19A	109.5
C1—C6—C5	120.38 (15)	O2—C19—H19B	109.5
C1—C6—C7	121.86 (13)	H19A—C19—H19B	109.5
C5—C6—C7	117.75 (14)	O2—C19—H19C	109.5
N4—C12—C13	120.54 (14)	H19A—C19—H19C	109.5
N4—C12—H12	119.7	H19B—C19—H19C	109.5
C13—C12—H12	119.7	C16—C17—C18	118.84 (16)
C15—C14—C13	120.48 (15)	C16—C17—H17	120.6
C15—C14—H14	119.8	C18—C17—H17	120.6
C13—C14—H14	119.8	O4—C21—H21A	109.5
N2—C8—N3	109.43 (13)	O4—C21—H21B	109.5
N2—C8—S1	124.92 (12)	H21A—C21—H21B	109.5
N3—C8—S1	125.65 (12)	O4—C21—H21C	109.5
N1—C7—N3	109.08 (14)	H21A—C21—H21C	109.5
N1—C7—C6	124.59 (14)	H21B—C21—H21C	109.5
N3—C7—C6	126.32 (13)	C10-C11-H11A	120.0
C6—C1—C2	119.90 (14)	C10-C11-H11B	120.0
C6—C1—H1	120.1	H11A—C11—H11B	120.0
C2—C1—H1	120.1	O3—C20—H20A	109.5
O2—C2—C1	123.92 (14)	O3—C20—H20B	109.5

O2—C2—C3	115.99 (14)	H20A—C20—H20B	109.5	
C1—C2—C3	120.09 (15)	O3—C20—H20C	109.5	
C4—C5—C6	119.56 (15)	H20A—C20—H20C	109.5	
C4—C5—H5	120.2	H20B-C20-H20C	109.5	
С6—С5—Н5	120.2	O1—C22—H22A	109.5	
O4—C4—C5	123.97 (16)	O1—C22—H22B	109.5	
O4—C4—C3	115.52 (15)	H22A—C22—H22B	109.5	
C5—C4—C3	120.51 (14)	O1—C22—H22C	109.5	
C14—C15—C16	120.28 (16)	H22A—C22—H22C	109.5	
C14—C15—H15	119.9	H22B—C22—H22C	109.5	

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D···A	D—H···A
C1—H1···N4	0.93	2.38	2.960 (2)	120
$C12$ — $H12$ ··· $N2^{i}$	0.93	2.59	3.359 (2)	141
C19—H19A…N1 ⁱⁱ	0.96	2.60	3.477 (3)	152
С9—Н9А…Сд1 ^{ііі}	0.97	2.79	3.616 (2)	143
C11—H11 <i>A</i> … <i>Cg</i> 2 ^{iv}	0.93	2.83	3.703 (2)	158
C15—H15···· $Cg1^{v}$	0.93	2.70	3.514 (2)	147
C22—H22C····Cg2 ^{vi}	0.96	2.94	3.747 (2)	143

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1/2, *y*-1/2, -*z*+3/2; (iii) *x*-1, *y*, *z*; (iv) *x*-1, *y*-1, *z*; (v) -*x*+3/2, *y*+1/2, -*z*+1/2; (vi) -*x*+1, -*y*+1, -*z*.