Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(2-Pyridylmethyleneamino)dehydroabietylamine

Yong Wu,^{a,b} Xiao-Ping Rao,^a* Zong-De Wang,^b Zhan-Qian Song^a and Xu-Jie Yao^b

^aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China, and ^bCollege of Landscape Architecture and Art, Jiangxi Agriculture University, Nanchang 330045, People's Republic of China

Correspondence e-mail: rxping2001@163.com

Received 31 December 2008; accepted 12 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.064; wR factor = 0.188; data-to-parameter ratio = 9.3.

The title compound {systematic name: $1-[(1R,4aS,10aR)-7-isopropy]-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-y]]-N-[(E)-2-pyridylmethyleneamino]methanamine}, C₂₆H₃₃N₂, has been synthesized from dehydroabietylamine. The two cyclohexane rings form a$ *trans* $ring junction with classic chair and half-chair conformations, respectively, whereas the benzene and pyridine rings are almost planar, and the dihedral angle between them is <math>80.4^{\circ}$. The two methyl groups directly attached to the tricyclic nucleus are on the same side of the tricyclic hydrophenanthrene structure.

Related literature

For the biological activity of a related compound, , see: Cannon (1952); Heinrich (1981); Kalser & Scheer (1976); Rao, Song & He (2008); Rao, Song, He & Jia (2008); Wilkerson *et al.* (1991, 1993). For the crystal structure of a related compound, see: Rao *et al.* (2006, 2007); Rao, Song, Jia & Shang (2008).

Experimental

Crystal data

 $C_{26}H_{33}N_2$ $M_r = 373.54$ Monoclinic, P2₁ a = 11.294 (2) Å b = 6.0870 (12) Å c = 16.129 (3) Å $\beta = 98.71$ (3)°

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.951, T_{\max} = 0.974$ 2478 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.188$ S = 1.002357 reflections 253 parameters $V = 1096.0 \text{ (4) } \text{\AA}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.20 \times 0.10 \text{ mm}$

2357 independent reflections 1434 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ 3 standard reflections every 200 reflections intensity decay: none

 $\begin{array}{l} 1 \mbox{ restraint} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.19 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.20 \mbox{ e } \mbox{ Å}^{-3} \end{array}$

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXL97*; software used to prepare material for publication: *SHELXL97*.

This research was supported by grants from the National Natural Science Foundation of China (grant No. 30771690) and the Forestry Commonwealth Industry Special Foundation of China (grant No. 200704008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2704).

References

- Cannon, L. C. (1952). US Patent No. 2 585 436.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Heinrich, P. (1981). German Patent No. 300 768 224.
- Kalser, A. & Scheer, M. (1976). US Patent No. 3 969 397.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Rao, X. P., Song, Z. Q. & Gao, H. (2007). Chem. Ind. For. Prod. 27, 97-99.
- Rao, X.-P., Song, Z.-Q., Gong, Y., Yao, X.-J. & Shang, S.-B. (2006). Acta Cryst. E62, 03450–03451.
- Rao, X. P., Song, Z. Q. & He, L. (2008). Heteroat. Chem. 19, 512-516.
- Rao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). *Chem. Pharm. Bull.* 56, 1575–1578.
- Rao, X. P., Song, Z. Q., Jia, W. H. & Shang, S. B. (2008). *Chemistry*, **71**, 723–730. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.
- Wilkerson, W. W., Delucca, I. & Galbraith, W. (1991). Eur. J. Med. Chem. 26, 667–676.
- Wilkerson, W. W., Galbraith, W. & Delucca, I. (1993). Bioorg. Med. Chem. Lett. 3, 2087–2092.

supporting information

Acta Cryst. (2009). E65, o786 [doi:10.1107/S1600536809009040]

N-(2-Pyridylmethyleneamino)dehydroabietylamine

Yong Wu, Xiao-Ping Rao, Zong-De Wang, Zhan-Qian Song and Xu-Jie Yao

S1. Comment

Dehydroabietylamine is a highly interesting compound for its special structure and wide range of applications (Rao, Song, He & Jia, 2008). As an excellent chiral resolving agent, dehydroabietylamine is successful applied in the coalescent of Penicillin (Cannon,1952) and the synthesis of dihydroxyphenylalanine (Kalser *et al.*, 1976). Dehydroabietylamine derivatives exhibited broad spectrum of biological properties including antibacterial, antifungal, and antipenetrant activities (Heinrich, 1981; Wilkerson *et al.*, 1991; Wilkerson *et al.*, 1993; Rao *et al.*, 2007; Rao, Song, & He, 2008; Rao, Song, Jia & Shang, 2008)). Although much attention has been paid to dehydroabietylamine derivatives, the crystal structure of the title compound has not yet been reported. In this paper, we present the crystal structure of the title compound.

The title structure is compared with previously found structure 4-chloro-2- $\{(E)-[(1R,4aS,10aR)-7\text{-isopropyl-1,4a-di$ methyl-1,2, 3,4,4a,9,10,10*a* $-octahydrophenanthren-1-yl] methyliminomethyl<math>\}$ phenol (Rao *et al.*, 2006). They exhibited the same configurations with each other. As shown in Fig.1, the title compound contains four crystrallographically rings, the two cyclohexane rings (rings C and B) form a *trans* ring junction with classic chair and half-chair conformations, respectively. The benzene ring and the pyridine ring (rings A and D) are almost planar. The two methyl groups directly attached to the tricyclic nucleus are on the same side of the tricyclic hydrophenanthrene structure, and the two methyl groups are in the axis position of the cyclohexane ring, the bond lengths and bond angles in the molecule are in normal ranges.

S2. Experimental

The title compound was prepared by the reaction of dehydroabietylamine (0.1 mol) and pyridylaldehyde (0.1 mol) in ethanol (100 ml) under 353.5 K for 4 h. Single crystals of the title compound were obtained by solvent evaporation [m.p. 372K].

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms, and C—H = 0.97–0.98Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for all other H atoms. The high Flack value was resulted by the crystal quality.

Figure 1

The molecular structure of the title compound, with H atoms represented by small spheres of arbitrary radius and displacement ellipsoids at the 30% probability level.

1-[(1*R*,4a*S*,10a*R*)-7-isopropyl-1,2,3,4,4a,9,10,10a- octahydrophenanthren-1-yl]-*N*-[(*E*)-2-pyridylmethyleneamino]methanamine

Crystal data
$C_{26}H_{33}N_2$
$M_r = 373.54$
Monoclinic, $P2_1$
Hall symbol: P 2yb
a = 11.294 (2) Å
b = 6.0870 (12) Å
c = 16.129(3) Å
$\beta = 98.71 (3)^{\circ}$
V = 1096.0 (4) Å ³
Z=2

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.951, T_{\max} = 0.974$ 2478 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.188$ S = 1.002357 reflections F(000) = 406 $D_x = 1.132 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-13^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KBlock, white $0.30 \times 0.20 \times 0.10 \text{ mm}$

2357 independent reflections 1434 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 1.3^{\circ}$ $h = 0 \rightarrow 13$ $k = 0 \rightarrow 7$ $l = -19 \rightarrow 19$ 3 standard reflections every 200 reflections intensity decay: none

253 parameters1 restraintPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
neighbouring sites	where $P = (F_0^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta ho_{ m max} = 0.19 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.2116 (4)	0.1781 (8)	-0.1368 (2)	0.0616 (12)	
N2	0.0270 (5)	0.4047 (9)	-0.3125 (3)	0.0814 (15)	
C1	0.6341 (7)	0.9761 (12)	0.3876 (4)	0.108 (3)	
H1B	0.5647	1.0519	0.3598	0.162*	
H1C	0.6861	0.9407	0.3477	0.162*	
H1D	0.6758	1.0684	0.4307	0.162*	
C2	0.7016 (5)	0.6441 (12)	0.4723 (4)	0.088 (2)	
H2B	0.6750	0.5139	0.4975	0.132*	
H2C	0.7436	0.7369	0.5151	0.132*	
H2D	0.7543	0.6041	0.4333	0.132*	
C3	0.5953 (5)	0.7653 (10)	0.4268 (3)	0.0653 (15)	
H3A	0.5469	0.8099	0.4695	0.078*	
C4	0.5153 (5)	0.6250 (9)	0.3642 (3)	0.0560 (14)	
C5	0.3996 (4)	0.5769 (10)	0.3732 (3)	0.0602 (15)	
H5A	0.3690	0.6303	0.4197	0.072*	
C6	0.3280 (4)	0.4524 (9)	0.3157 (3)	0.0541 (13)	
H6A	0.2495	0.4261	0.3239	0.065*	
C7	0.3671 (4)	0.3638 (8)	0.2458 (3)	0.0455 (11)	
C8	0.4870 (4)	0.4045 (9)	0.2362 (3)	0.0519 (12)	
C9	0.5572 (4)	0.5346 (10)	0.2954 (3)	0.0604 (14)	
H9A	0.6360	0.5623	0.2883	0.072*	
C10	0.2857 (4)	0.2215 (8)	0.1825 (3)	0.0444 (11)	
C11	0.3278 (4)	0.2466 (8)	0.0964 (2)	0.0433 (10)	
H11A	0.3290	0.4054	0.0865	0.052*	
C12	0.4589 (4)	0.1745 (10)	0.1029 (3)	0.0636 (15)	
H12A	0.4658	0.0218	0.1200	0.076*	
H12B	0.4840	0.1863	0.0482	0.076*	
C13	0.5392 (5)	0.3102 (14)	0.1640 (3)	0.092 (2)	
H13A	0.6185	0.3356	0.1576	0.110*	
C14	0.1547 (4)	0.2973 (9)	0.1759 (3)	0.0534 (13)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H14A	0.1260	0.2672	0.2284	0.064*
H14B	0.1507	0.4547	0.1666	0.064*
C15	0.0736 (4)	0.1820 (11)	0.1046 (3)	0.0639 (15)
H15A	0.0739	0.0251	0.1152	0.077*
H15B	-0.0078	0.2349	0.1022	0.077*
C16	0.1160 (4)	0.2251 (9)	0.0222 (3)	0.0538 (13)
H16A	0.1099	0.3814	0.0106	0.065*
H16B	0.0629	0.1501	-0.0217	0.065*
C17	0.2442 (4)	0.1517 (8)	0.0188 (3)	0.0482 (12)
C18	0.2950 (5)	-0.0156 (9)	0.2187 (3)	0.0686 (16)
H18A	0.2672	-0.0171	0.2721	0.103*
H18B	0.3769	-0.0633	0.2256	0.103*
H18C	0.2466	-0.1128	0.1808	0.103*
C19	0.2519 (5)	-0.1014 (9)	0.0118 (3)	0.0617 (15)
H19A	0.2274	-0.1678	0.0604	0.093*
H19B	0.3329	-0.1432	0.0082	0.093*
H19C	0.2002	-0.1500	-0.0376	0.093*
C20	0.2829 (4)	0.2563 (10)	-0.0602 (3)	0.0568 (13)
H20A	0.2753	0.4147	-0.0571	0.068*
H20B	0.3665	0.2223	-0.0615	0.068*
C21	0.1584 (5)	0.3134 (10)	-0.1878 (3)	0.0612 (14)
H21A	0.1654	0.4626	-0.1756	0.073*
C22	0.0852 (4)	0.2423 (10)	-0.2665 (3)	0.0559 (13)
C23	-0.0394 (6)	0.3452 (14)	-0.3848 (4)	0.094 (2)
H23A	-0.0807	0.4544	-0.4176	0.113*
C24	-0.0503 (6)	0.1341 (14)	-0.4132 (4)	0.085 (2)
H24A	-0.0981	0.1010	-0.4638	0.102*
C25	0.0104 (6)	-0.0273 (12)	-0.3659 (4)	0.0780 (18)
H25A	0.0054	-0.1723	-0.3843	0.094*
C26	0.0784 (5)	0.0259 (11)	-0.2916 (3)	0.0672 (15)
H26A	0.1196	-0.0824	-0.2582	0.081*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.074 (3)	0.052 (3)	0.055 (2)	-0.001 (2)	0.000 (2)	-0.007 (2)
N2	0.091 (4)	0.069 (4)	0.079 (3)	0.008 (3)	-0.008 (3)	0.003 (3)
C1	0.152 (7)	0.067 (5)	0.095 (5)	-0.038 (5)	-0.014 (4)	-0.001 (4)
C2	0.084 (4)	0.077 (5)	0.092 (4)	-0.001 (4)	-0.027 (3)	-0.013 (4)
C3	0.073 (4)	0.058 (4)	0.062 (3)	-0.005 (3)	0.003 (3)	-0.007 (3)
C4	0.067 (3)	0.047 (3)	0.049 (3)	0.006 (3)	-0.006 (2)	-0.003 (2)
C5	0.066 (3)	0.063 (4)	0.051 (3)	0.004 (3)	0.008 (3)	-0.001 (3)
C6	0.056 (3)	0.052 (3)	0.054 (3)	-0.001 (3)	0.005 (2)	0.007 (3)
C7	0.055 (3)	0.037 (3)	0.043 (2)	0.002 (2)	0.004 (2)	0.009 (2)
C8	0.050 (3)	0.053 (3)	0.051 (3)	-0.002 (3)	0.001 (2)	-0.005 (3)
C9	0.049 (3)	0.066 (4)	0.064 (3)	-0.012 (3)	0.002 (2)	0.005 (3)
C10	0.044 (2)	0.033 (3)	0.054 (2)	-0.001(2)	0.003 (2)	0.009 (2)
C11	0.046 (2)	0.033 (2)	0.050 (2)	-0.001(2)	0.0013 (19)	0.001 (2)

C12	0.049 (3)	0.075 (4)	0.066 (3)	-0.001 (3)	0.006 (2)	-0.016 (3)	
C13	0.049 (3)	0.146 (7)	0.083 (4)	-0.026 (4)	0.020 (3)	-0.055 (5)	
C14	0.050 (3)	0.052 (3)	0.060 (3)	0.000(2)	0.013 (2)	0.004 (3)	
C15	0.043 (2)	0.078 (4)	0.069 (3)	-0.001 (3)	0.000(2)	0.001 (3)	
C16	0.049 (3)	0.047 (3)	0.061 (3)	0.000 (3)	-0.005 (2)	0.005 (3)	
C17	0.055 (3)	0.030 (2)	0.059 (3)	-0.002 (2)	0.005 (2)	-0.001 (2)	
C18	0.087 (4)	0.046 (3)	0.068 (3)	-0.012 (3)	-0.002 (3)	0.019 (3)	
C19	0.067 (3)	0.041 (3)	0.073 (3)	-0.003 (3)	-0.002 (3)	-0.004 (3)	
C20	0.067 (3)	0.050 (3)	0.053 (3)	-0.008 (3)	0.005 (2)	-0.002 (3)	
C21	0.068 (3)	0.054 (3)	0.061 (3)	-0.001 (3)	0.008 (3)	-0.006 (3)	
C22	0.061 (3)	0.053 (3)	0.053 (3)	0.002 (3)	0.007 (2)	0.006 (3)	
C23	0.089 (5)	0.088 (6)	0.094 (5)	0.014 (4)	-0.021 (4)	0.016 (5)	
C24	0.087 (4)	0.098 (6)	0.065 (4)	-0.029 (4)	-0.001 (3)	0.001 (4)	
C25	0.102 (5)	0.063 (4)	0.067 (4)	-0.014 (4)	0.008 (3)	-0.005 (4)	
C26	0.076 (4)	0.060 (4)	0.064 (3)	-0.005 (3)	0.007 (3)	0.003 (3)	

Geometric parameters (Å, °)

N1—C21	1.251 (6)	C12—H12A	0.9700
N1—C20	1.449 (6)	C12—H12B	0.9700
N2—C23	1.337 (8)	C13—H13A	0.9300
N2—C22	1.345 (7)	C14—C15	1.528 (7)
C1—C3	1.523 (9)	C14—H14A	0.9700
C1—H1B	0.9600	C14—H14B	0.9700
C1—H1C	0.9600	C15—C16	1.501 (6)
C1—H1D	0.9600	C15—H15A	0.9700
C2—C3	1.502 (8)	C15—H15B	0.9700
C2—H2B	0.9600	C16—C17	1.524 (6)
C2—H2C	0.9600	C16—H16A	0.9700
C2—H2D	0.9600	C16—H16B	0.9700
C3—C4	1.513 (7)	C17—C20	1.545 (7)
С3—НЗА	0.9800	C17—C19	1.548 (7)
C4—C5	1.368 (7)	C18—H18A	0.9600
C4—C9	1.386 (7)	C18—H18B	0.9600
C5—C6	1.364 (7)	C18—H18C	0.9600
C5—H5A	0.9300	C19—H19A	0.9600
C6—C7	1.381 (6)	C19—H19B	0.9600
С6—Н6А	0.9300	С19—Н19С	0.9600
С7—С8	1.407 (6)	C20—H20A	0.9700
C7—C10	1.534 (6)	C20—H20B	0.9700
C8—C9	1.392 (7)	C21—C22	1.473 (7)
C8—C13	1.498 (7)	C21—H21A	0.9300
С9—Н9А	0.9300	C22—C26	1.376 (8)
C10—C14	1.537 (6)	C23—C24	1.363 (10)
C10—C11	1.543 (6)	С23—Н23А	0.9300
C10—C18	1.555 (7)	C24—C25	1.363 (9)
C11—C12	1.532 (6)	C24—H24A	0.9300
C11—C17	1.560 (6)	C25—C26	1.361 (8)

C11—H11A	0.9800	C25—H25A	0.9300
C12—C13	1.485 (7)	C26—H26A	0.9300
C21—N1—C20	119.6 (5)	C15—C14—H14A	109.2
C23—N2—C22	116.4 (6)	C10-C14-H14A	109.2
C3—C1—H1B	109.5	C15—C14—H14B	109.2
C3—C1—H1C	109.5	C10-C14-H14B	109.2
H1B—C1—H1C	109.5	H14A—C14—H14B	107.9
C3—C1—H1D	109.5	C16—C15—C14	110.5 (4)
H1B—C1—H1D	109.5	C16—C15—H15A	109.5
H1C—C1—H1D	109.5	C14—C15—H15A	109.5
C3—C2—H2B	109.5	C16—C15—H15B	109.5
C3—C2—H2C	109.5	C14—C15—H15B	109.5
H2B—C2—H2C	109.5	H15A—C15—H15B	108.1
C3—C2—H2D	109.5	C15—C16—C17	114.4 (4)
H2B—C2—H2D	109.5	C15—C16—H16A	108.7
H_2C — C_2 — H_2D	109.5	C17—C16—H16A	108.7
$C_{2}-C_{3}-C_{4}$	113.7 (5)	C15—C16—H16B	108.7
$C_2 - C_3 - C_1$	110.9 (6)	C17—C16—H16B	108.7
C4-C3-C1	112.2 (4)	H16A—C16—H16B	107.6
C2-C3-H3A	106.5	$C_{16} - C_{17} - C_{20}$	107.4 (4)
C4—C3—H3A	106.5	$C_{16} - C_{17} - C_{19}$	1110(4)
C1 - C3 - H3A	106.5	C_{20} C_{17} C_{19}	108.9(4)
$C_{5} - C_{4} - C_{9}$	116.6 (5)	C_{16} C_{17} C_{11}	108.9(1) 108.9(4)
$C_{5} - C_{4} - C_{3}$	122.3(5)	C_{20} C_{17} C_{11}	100.9(1) 107.2(4)
C9-C4-C3	122.3(5) 121.1(5)	C19 - C17 - C11	107.2(1) 113 1 (4)
C6-C5-C4	121.6(5)	C10-C18-H18A	109.5
C6-C5-H5A	119.2	C10-C18-H18B	109.5
C4-C5-H5A	119.2	H18A - C18 - H18B	109.5
$C_{5} - C_{6} - C_{7}$	122 8 (5)	C10-C18-H18C	109.5
C_{5} C_{6} H_{6A}	118.6	$H_{18} - C_{18} - H_{18} C$	109.5
C7—C6—H6A	118.6	H18B-C18-H18C	109.5
C6-C7-C8	116.9 (4)	C17 - C19 - H19A	109.5
C6-C7-C10	1220(4)	C17 - C19 - H19R	109.5
C8 - C7 - C10	122.0(4) 121.1(4)	H_{19A} $(19 H_{19B})$	109.5
$C_{9} - C_{8} - C_{7}$	121.1(4) 118.9(4)	C17 - C19 - H19C	109.5
$C_{9} = C_{8} = C_{13}$	110.9(4) 120.0(4)	$H_{19} = C_{19} = H_{19}C$	109.5
$C_{7} = C_{8} = C_{13}$	120.0(4)	H10R C10 H10C	109.5
$C_{1} = C_{0} = C_{13}$	121.1(4) 123.2(5)	$\frac{1119}{2} = \frac{119}{119} = \frac{119}{119}$	109.5 112.2(4)
C4 = C9 = C8	123.2 (5)	N1 = C20 = C17 N1 = C20 = H20A	112.2 (4)
C_{4}	118.4	$N1 = C_{20} = H_{20} A$	109.2
C_{3} C_{10} C_{14}	110.4	N1 C20 H20P	109.2
$C_{1} = C_{10} = C_{14}$	110.3(4) 107.0(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.2
$C_{14} = C_{10} = C_{11}$	107.9(3) 100.4(3)	$H_{20A} = C_{20} = H_{20B}$	109.2
$C_{14} = C_{10} = C_{11}$	107.4(3) 105.0(3)	$\frac{1120A}{20} \frac{120D}{120D}$	107.9
$C_1 = C_1 $	103.9 (3)	N1 = C21 = U21A	121.0(3)
$C_{14} = C_{10} = C_{18}$	100.3 (4) 114.7 (4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.2
$C_{11} = C_{10} = C_{10}$	114./ (4)	$U_{22} = U_{21} = \Pi_{21} \Lambda$	119.2
U12-U11-U10	109.0 (4)	INZ-UZZ-UZO	122.7 (3)

C12—C11—C17	114.2 (4)	N2-C22-C21	115.0 (5)
C10-C11-C17	117.0 (4)	C26—C22—C21	122.2 (5)
C12—C11—H11A	104.9	N2-C23-C24	123.9 (7)
C10-C11-H11A	104.9	N2—C23—H23A	118.0
C17—C11—H11A	104.9	C24—C23—H23A	118.0
C13—C12—C11	111.9 (5)	C25—C24—C23	118.6 (6)
C13—C12—H12A	109.2	C25—C24—H24A	120.7
C11—C12—H12A	109.2	C23—C24—H24A	120.7
C13—C12—H12B	109.2	C26—C25—C24	119.4 (7)
C11—C12—H12B	109.2	C26—C25—H25A	120.3
H12A—C12—H12B	107.9	C24—C25—H25A	120.3
C12—C13—C8	117.2 (4)	C25—C26—C22	119.0 (6)
С12—С13—Н13А	121.4	C25—C26—H26A	120.5
C8—C13—H13A	121.4	C22—C26—H26A	120.5
C15—C14—C10	112.1 (4)		
C2—C3—C4—C5	115.6 (6)	C9—C8—C13—C12	-179.5 (6)
C1—C3—C4—C5	-117.5 (6)	C7—C8—C13—C12	0.5 (9)
C2—C3—C4—C9	-63.0(7)	C7—C10—C14—C15	171.7 (4)
C1—C3—C4—C9	63.9 (7)	C11—C10—C14—C15	53.0 (5)
C9—C4—C5—C6	-2.2 (8)	C18—C10—C14—C15	-72.6 (5)
C3—C4—C5—C6	179.2 (5)	C10-C14-C15-C16	-58.8 (6)
C4—C5—C6—C7	1.1 (8)	C14—C15—C16—C17	58.4 (6)
C5—C6—C7—C8	0.9 (7)	C15—C16—C17—C20	-166.7 (4)
C5—C6—C7—C10	179.1 (5)	C15—C16—C17—C19	74.4 (6)
C6—C7—C8—C9	-1.8 (7)	C15—C16—C17—C11	-50.8 (6)
C10—C7—C8—C9	180.0 (5)	C12—C11—C17—C16	176.9 (4)
C6—C7—C8—C13	178.2 (5)	C10-C11-C17-C16	46.9 (5)
C10—C7—C8—C13	0.0 (8)	C12—C11—C17—C20	-67.1 (5)
C5—C4—C9—C8	1.3 (8)	C10-C11-C17-C20	162.8 (4)
C3—C4—C9—C8	179.9 (5)	C12—C11—C17—C19	52.9 (6)
C7—C8—C9—C4	0.7 (8)	C10—C11—C17—C19	-77.1 (5)
C13—C8—C9—C4	-179.2 (6)	C21—N1—C20—C17	124.8 (5)
C6C7C10C14	32.6 (6)	C16-C17-C20-N1	-63.6 (5)
C8—C7—C10—C14	-149.3 (4)	C19—C17—C20—N1	56.7 (6)
C6-C7-C10-C11	152.2 (4)	C11—C17—C20—N1	179.5 (4)
C8—C7—C10—C11	-29.7 (6)	C20—N1—C21—C22	179.8 (4)
C6C7C10C18	-84.5 (5)	C23—N2—C22—C26	0.3 (9)
C8—C7—C10—C18	93.6 (5)	C23—N2—C22—C21	179.4 (5)
C7—C10—C11—C12	58.8 (5)	N1-C21-C22-N2	175.8 (5)
C14—C10—C11—C12	179.2 (4)	N1-C21-C22-C26	-5.1 (8)
C18—C10—C11—C12	-59.0 (5)	C22—N2—C23—C24	-0.2 (11)
C7—C10—C11—C17	-169.0 (4)	N2—C23—C24—C25	-0.4 (12)
C14—C10—C11—C17	-48.7 (5)	C23—C24—C25—C26	0.9 (10)
C18—C10—C11—C17	73.2 (5)	C24—C25—C26—C22	-0.7 (9)
C10—C11—C12—C13	-60.7 (6)	N2—C22—C26—C25	0.1 (9)
C17—C11—C12—C13	165.7 (5)	C21—C22—C26—C25	-178.9 (5)
C11—C12—C13—C8	29.8 (8)		· · /