

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N'-Bis(4-bromobenzylidene)-2,2dimethylpropane-1,3-diamine

Reza Kia,^a Hoong-Kun Fun^a* and Hadi Kargar^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran Correspondence e-mail: hkfun@usm.my

Received 2 March 2009; accepted 5 March 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.079; data-to-parameter ratio = 45.5.

The molecule of the title compound, $C_{19}H_{20}Br_2N_2$, is a potential bidentate Schiff base ligand. The two benzene rings are inclined at a dihedral angle of 30.85 (8)°. An interesting feature of the crystal structure is a weak intermolecular Br...Br [3.4752 (4) Å] interaction which is shorter than the sum of the van der Waals radii of the Br atoms and links neighbouring molecules into chains along the *c* axis. The crystal structure is further stabilized by intermolecular C– H… π interactions.

Related literature

For details of hydrogen-bond motifs, see: Bernstein *et al.* (1995). For related structure see, for example: Li *et al.* (2005); Bomfim *et al.* (2005); Glidewell *et al.* (2005, 2006); Sun *et al.* (2004); Fun *et al.* (2008). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data	
$C_{19}H_{20}Br_2N_2$	a = 5.6687 (1) Å
$M_r = 436.19$	b = 7.7919 (2) Å
Orthorhombic, $P2_12_12_1$	c = 41.5932 (9) Å

V = 1837.17 (7) Å³ Z = 4Mo *K* α radiation

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.229, T_{max} = 0.586$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.079$ S = 1.039454 reflections 208 parameters H-atom parameters constrained $\mu = 4.41 \text{ mm}^{-1}$ T = 100 K $0.45 \times 0.44 \times 0.12 \text{ mm}$

38732 measured reflections 9454 independent reflections 7585 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.049$

 $\begin{array}{l} \Delta \rho_{max} = 1.04 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.61 \ e \ \mathring{A}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ 3971 \ \mbox{Friedel pairs} \\ \mbox{Flack parameter: } 0.019 \ (6) \end{array}$

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4A\cdots Cg1^{i}$ $C13-H13A\cdots Cg2^{ii}$	0.95	2.85	3.5630 (18)	132
	0.95	2.74	3.4648 (18)	134

Symmetry codes: (i) $x + \frac{7}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $-x - 1, y + \frac{1}{2}, -z + \frac{5}{2}$. Cg1 and Cg2 are the centroids of the C1–C6 and C9–C17 benzene rings, respectively.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/ PFIZIK/811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2737).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, 053–056.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.
- Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). *Acta Cryst.* E**61**, 03551–03553.
- Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). *Acta Cryst.* C62, 01–04.
- Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, 04156–04157.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707-o1708.

supporting information

Acta Cryst. (2009). E65, o747 [doi:10.1107/S1600536809008113]

N,N'-Bis(4-bromobenzylidene)-2,2-dimethylpropane-1,3-diamine

Reza Kia, Hoong-Kun Fun and Hadi Kargar

S1. Comment

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and supramolecular architectures. Structures of Schiff bases derived from substituted benzaldehydes and closely related to the title compound have been reported previously (Li *et al.*, 2005; Bomfim *et al.*, 2005; Glidewell *et al.*, 2005, 2006; Sun *et al.*, 2004; Fun *et al.*, 2008).

In the title compound, Fig. 1, intramolecular C—H···N hydrogen bonds forms five-membered rings, producing S(5) ring motifs (Bernstein *et al.*, 1995). The two benzene rings make a dihedral angle of 30.85 (8)°. The crystal structure is further stabilized by weak intermolecular C—H··· π interactions [*Cg*1 and *Cg*2 are the centroids of the C1–C6 and C12–C17 benzene rings] (Table 1). The interesting feature of the crystal structure is weak intermolecular Br···Br [3.4752 (4) Å; symmetry code: 5/2 - x, 1 - y, -1/2 + z] interaction which is shorter than the sum of the van der Waals radius of Br atoms and link neighbouring molecules into chains along the *c* axis (Fig. 2).

S2. Experimental

The synthetic method has been described earlier (Fun *et al.*, 2008), except that 4-bromobenzaldehyde was used. Single crystals suitable for *X*-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

S3. Refinement

All of the hydrogen atoms were positioned geometrically and refined using a riding model approximation with C—H = 0.95-0.99 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. In the presence of the sufficient anomalous scattering, the absoulte configuration was determined (3971 Friedel pairs).

Figure 1

The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dashed line.

Figure 2

The crystal packing of the title compound, viewed down the a- axis showing chains along the c-axis by Br···Br interactions.

N,N'-Bis(4-bromobenzylidene)-2,2-dimethylpropane-1,3-diamine

Crystal data

C₁₉H₂₀Br₂N₂ $M_r = 436.19$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 5.6687 (1) Å b = 7.7919 (2) Å c = 41.5932 (9) Å $V = 1837.17 (7) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.229, T_{\max} = 0.586$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.079$ S = 1.039454 reflections 208 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 872 $D_x = 1.577 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9987 reflections $\theta = 2.7-35.5^{\circ}$ $\mu = 4.41 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.45 \times 0.44 \times 0.12 \text{ mm}$

38732 measured reflections 9454 independent reflections 7585 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 37.5^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -10 \rightarrow 13$ $l = -71 \rightarrow 55$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0316P)^2 + 0.2032P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.011$ $\Delta\rho_{max} = 1.04$ e Å⁻³ $\Delta\rho_{min} = -0.61$ e Å⁻³ Absolute structure: Flack (1983), 3971 Friedel pairs Absolute structure parameter: 0.019 (6)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}$ */ $U_{\rm eq}$ Ζ х v Br1 1.59060(4) 0.70918 (3) 0.679860(5)0.03041(5)Br2 1.02132 (3) 0.35735 (2) 1.095005 (4) 0.02216 (4) N1 0.82239 (4) 0.0214 (3) 0.9734(3)0.7039(2)N2 0.8180(3)0.93830(4)0.0198(3)0.6175(2)0.74067 (5) C1 1.0509(3) 0.5599(2)0.0203(3)H1A 0.9062 0.4991 0.7388 0.024* C2 1.1894 (4) 0.0219(3)0.5835(3)0.71353 (5) H2A 1.1410 0.5403 0.6932 0.026* C3 1.4013 (3) 0.71684(4)0.0212 (3) 0.6720(2) C4 1.4767 (3) 0.7348(2)0.74652 (4) 0.0197(3)H4A 1.6230 0.7935 0.7484 0.024* C5 0.77327 (4) 1.3353 (3) 0.7104 (3) 0.0184(3)H5A 1.3848 0.7528 0.7936 0.022* C6 1.1191 (3) 0.6235(2)0.77059 (4) 0.0180(3)C7 0.9574 (3) 0.6067 (2) 0.79820 (5) 0.0198 (3) H7A 0.8386 0.5208 0.7978 0.024* C8 0.8001(3)0.6814(3)0.84805 (4) 0.0209(3)H8A 0.6996 0.5808 0.8432 0.025* H8B 0.025* 0.6972 0.7839 0.8491 C9 0.9225(3)0.6548(2)0.88094(4)0.0179(3)C10 0.7242(3)0.6457 (2) 0.90606 (4) 0.0188 (3) H10A 0.9057 0.023* 0.6333 0.7542 H10B 0.6152 0.5510 0.9005 0.023* C11 0.6955 (3) 0.5293 (2) 0.95790 (4) 0.0178 (3) H11A 0.5486 0.4841 0.9509 0.021* C12 0.7732(3)0.4951 (2) 0.99097(4)0.0165(3)C13 0.6324(3)0.3938(2)1.01110 (5) 0.0184(3)H13A 0.4861 0.3514 1.0033 0.022* C14 0.7025(3)0.3543(3)1.04224 (4) 0.0196(3)H14A 0.6050 0.2867 1.0558 0.024* C15 0.9177 (3) 0.4158 (2) 1.05301 (4) 0.0184(3)C16 0.5189(2)0.0192(3)1.0606(3)1.03375 (4) 0.023* H16A 1.2063 0.5616 1.0417

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C17	0.0977(2)	0.5592 (2)	1 00200 (4)	0.0102 (2)	
CI/	0.9877(3)	0.5585 (2)	1.00290 (4)	0.0195 (5)	
H17A	1.0838	0.6289	0.9897	0.023*	
C18	1.0856 (3)	0.8053 (3)	0.88844 (5)	0.0241 (4)	
H18A	1.1615	0.7866	0.9093	0.036*	
H18B	0.9935	0.9117	0.8891	0.036*	
H18C	1.2065	0.8142	0.8717	0.036*	
C19	1.0619 (4)	0.4868 (3)	0.88061 (5)	0.0244 (4)	
H19A	1.1393	0.4706	0.9015	0.037*	
H19B	1.1816	0.4913	0.8636	0.037*	
H19C	0.9544	0.3908	0.8765	0.037*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Br1	0.02919 (10)	0.04538 (12)	0.01667 (8)	0.00266 (9)	0.00467 (7)	0.00429 (9)
Br2	0.02804 (9)	0.02117 (7)	0.01728 (8)	-0.00042 (7)	-0.00430 (7)	0.00085 (7)
N1	0.0223 (6)	0.0248 (7)	0.0169 (6)	-0.0017 (6)	0.0014 (6)	0.0021 (6)
N2	0.0204 (7)	0.0234 (8)	0.0155 (7)	0.0001 (6)	0.0011 (5)	0.0003 (6)
C1	0.0215 (8)	0.0207 (8)	0.0189 (8)	0.0001 (6)	-0.0015 (6)	-0.0033 (6)
C2	0.0239 (8)	0.0251 (8)	0.0168 (8)	0.0028 (7)	-0.0041 (7)	-0.0041 (7)
C3	0.0228 (7)	0.0233 (9)	0.0176 (8)	0.0044 (6)	0.0029 (6)	0.0023 (6)
C4	0.0183 (7)	0.0218 (7)	0.0190 (7)	-0.0006 (6)	0.0004 (6)	0.0019 (6)
C5	0.0194 (7)	0.0208 (8)	0.0150 (7)	-0.0003 (7)	-0.0011 (6)	-0.0011 (7)
C6	0.0209 (7)	0.0170 (8)	0.0161 (7)	0.0012 (6)	0.0000 (6)	0.0006 (6)
C7	0.0178 (7)	0.0216 (8)	0.0199 (8)	-0.0008 (6)	-0.0005 (6)	0.0034 (6)
C8	0.0181 (7)	0.0277 (10)	0.0168 (8)	-0.0001 (6)	0.0012 (6)	0.0024 (7)
C9	0.0160 (7)	0.0201 (7)	0.0175 (7)	0.0003 (6)	0.0006 (5)	0.0009 (6)
C10	0.0186 (7)	0.0221 (7)	0.0157 (7)	-0.0007 (6)	-0.0008 (6)	0.0019 (8)
C11	0.0191 (7)	0.0186 (8)	0.0157 (7)	-0.0003 (6)	0.0002 (6)	-0.0017 (6)
C12	0.0181 (7)	0.0161 (7)	0.0152 (7)	0.0006 (6)	0.0006 (6)	-0.0013 (6)
C13	0.0166 (7)	0.0197 (8)	0.0189 (8)	-0.0009 (6)	0.0002 (6)	-0.0003 (6)
C14	0.0206 (7)	0.0205 (7)	0.0178 (8)	-0.0013 (7)	0.0020 (6)	0.0015 (7)
C15	0.0226 (8)	0.0186 (7)	0.0141 (7)	0.0027 (6)	-0.0013 (6)	-0.0020 (6)
C16	0.0176 (8)	0.0191 (7)	0.0208 (8)	-0.0016 (6)	0.0004 (6)	-0.0026 (6)
C17	0.0206 (7)	0.0192 (7)	0.0180 (7)	-0.0022 (7)	0.0004 (7)	-0.0009 (6)
C18	0.0212 (8)	0.0259 (9)	0.0251 (9)	-0.0045 (7)	0.0019 (7)	-0.0011 (8)
C19	0.0246 (9)	0.0235 (8)	0.0250 (9)	0.0057 (7)	0.0037 (7)	0.0021 (7)

Geometric parameters (Å, °)

Br1—C3	1.8978 (19)	C9—C19	1.529 (3)	
Br2-C15	1.8983 (18)	C9—C10	1.536 (2)	
N1—C7	1.263 (2)	C10—H10A	0.9900	
N1—C8	1.462 (2)	C10—H10B	0.9900	
N2—C11	1.272 (2)	C11—C12	1.469 (3)	
N2-C10	1.459 (2)	C11—H11A	0.9500	
C1—C2	1.387 (3)	C12—C13	1.400 (3)	
C1—C6	1.394 (3)	C12—C17	1.402 (3)	

C1—H1A	0.9500	C13—C14	1.389 (3)
C2—C3	1.392 (3)	С13—Н13А	0.9500
C2—H2A	0.9500	C14—C15	1.385 (3)
C3—C4	1.395 (3)	C14—H14A	0.9500
C4—C5	1.384 (2)	C15—C16	1.394 (3)
C4—H4A	0.9500	C16—C17	1.383 (3)
C5—C6	1.404 (3)	C16—H16A	0.9500
C5—H5A	0.9500	С17—Н17А	0.9500
C6—C7	1.475 (3)	C18—H18A	0.9800
C7—H7A	0.9500	C18—H18B	0.9800
C8—C9	1.548 (3)	C18—H18C	0.9800
C8—H8A	0.9900	C19—H19A	0.9800
C8—H8B	0.9900	C19—H19B	0.9800
C9—C18	1.525 (3)	C19—H19C	0.9800
0, 010	1.020 (5)		0.9000
C7—N1—C8	117.50 (17)	C9—C10—H10A	109.3
C11—N2—C10	118.11 (16)	N2-C10-H10B	109.3
C2—C1—C6	121.48 (17)	C9—C10—H10B	109.3
C2—C1—H1A	119.3	H10A—C10—H10B	108.0
C6—C1—H1A	119.3	N2—C11—C12	122.30 (17)
C1—C2—C3	118.26 (18)	N2—C11—H11A	118.9
C1—C2—H2A	120.9	C12—C11—H11A	118.9
C3—C2—H2A	120.9	C13—C12—C17	118.72 (17)
C2—C3—C4	121.73 (18)	C13—C12—C11	119.43 (16)
C2—C3—Br1	118.89 (15)	C17—C12—C11	121.84 (17)
C4—C3—Br1	119.37 (14)	C14—C13—C12	121.29 (17)
C5—C4—C3	119.03 (17)	C14—C13—H13A	119.4
C5—C4—H4A	120.5	C12—C13—H13A	119.4
C3—C4—H4A	120.5	C15—C14—C13	118.47 (17)
C4—C5—C6	120.53 (16)	C15—C14—H14A	120.8
С4—С5—Н5А	119.7	C13—C14—H14A	120.8
С6—С5—Н5А	119.7	C14—C15—C16	121.70 (17)
C1—C6—C5	118.96 (16)	C14—C15—Br2	119.15 (14)
C1—C6—C7	119.40 (17)	C16—C15—Br2	119.15 (14)
C5—C6—C7	121.56 (16)	C17—C16—C15	119.17 (17)
N1—C7—C6	121.50 (17)	C17—C16—H16A	120.4
N1—C7—H7A	119.3	C15—C16—H16A	120.4
С6—С7—Н7А	119.3	C16—C17—C12	120.63 (17)
N1—C8—C9	111.10 (15)	C16—C17—H17A	119.7
N1—C8—H8A	109.4	С12—С17—Н17А	119.7
С9—С8—Н8А	109.4	C9—C18—H18A	109.5
N1—C8—H8B	109.4	C9—C18—H18B	109.5
С9—С8—Н8В	109.4	H18A—C18—H18B	109.5
H8A—C8—H8B	108.0	C9—C18—H18C	109.5
C18—C9—C19	110.28 (15)	H18A—C18—H18C	109.5
C18—C9—C10	109.88 (15)	H18B—C18—H18C	109.5
C19—C9—C10	110.16 (15)	С9—С19—Н19А	109.5
C18—C9—C8	110.46 (16)	C9—C19—H19B	109.5
	. /		

C19—C9—C8 C10—C9—C8 N2—C10—C9 N2—C10—H10A	109.78 (16) 106.20 (14) 111.43 (14) 109.3	H19A—C19—H19B C9—C19—H19C H19A—C19—H19C H19B—C19—H19C	109.5 109.5 109.5 109.5
C6—C1—C2—C3 C1—C2—C3—C4	0.4 (3) 0.7 (3)	C11—N2—C10—C9 C18—C9—C10—N2	-146.93 (17) -61.5 (2)
C1 - C2 - C3 - Br1 C2 - C3 - C4 - C5 Br1 - C3 - C4 - C5 C2 - C3 - C4 - C5	-1/8.88 (14) -0.9 (3) 178.64 (14)	C19—C9—C10—N2 C8—C9—C10—N2 C10—N2—C11—C12	60.2 (2) 178.99 (16) -179.41 (16)
C_{3} C_{4} C_{5} C_{6} C_{2} C_{1} C_{6} C_{5} C_{2} C_{1} C_{6} C_{7} C_{4} C_{5} C_{6} C_{1}	-1.2 (3) 175.36 (17)	N2-C11-C12-C13 N2-C11-C12-C17 C17-C12-C13-C14	-1/8.58(17) 0.2 (3) -0.6(3) 178.16(17)
C4-C5-C6-C7 C8-N1-C7-C6 C1-C6-C7 N1	-175.54(17) 177.89(16) -157.81(18)	C12-C13-C14-C15 C12-C13-C14-C15 C13-C14-C15-C16 C13-C14-C15-Br2	-0.8(3) 1.7(3) -17806(14)
C1	-137.81 (18) 18.7 (3) 126.29 (18) 57.0 (2)	C13 - C14 - C13 - B12 C14 - C15 - C16 - C17 Br2 - C15 - C16 - C17 C15 - C16 - C17 C15 - C16 - C17	-1.2(3) 178.54(14) -0.2(3)
N1-C8-C9-C19 N1-C8-C9-C19 N1-C8-C9-C10	-64.8 (2) 176.10 (15)	C13—C12—C17—C12 C13—C12—C17—C16 C11—C12—C17—C16	1.1 (3) -177.63 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C18—H18C…N1	0.98	2.59	2.929 (3)	101
C4—H4 A ··· $Cg1^i$	0.95	2.85	3.5630 (18)	132
C13—H13 <i>A</i> ··· <i>C</i> g2 ⁱⁱ	0.95	2.74	3.4648 (18)	134

Symmetry codes: (i) x+7/2, -y+1/2, -z+1; (ii) -x-1, y+1/2, -z+5/2.