organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6,8-Dihydroxy-3-methylisocoumarin

Chang-lun Shao,^a Lei Han,^a Chun-yuan Li,^b Zhen Liu^c and Chang-vun Wang^a*

^aSchool of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China, ^bCollege of Science, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China, and ^cCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China Correspondence e-mail: changyun@ouc.edu.cn

Received 4 February 2009; accepted 5 March 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.034; *wR* factor = 0.094; data-to-parameter ratio = 12.1.

The title compound, C₁₀H₈O₄, was isolated from the fermentation culture of the endophytic fungus Cephalosporium sp. In the crystal structure, molecules are connected into a one-dimensional chain along [101] by intermolecular O-H···O hydrogen bonds involving the hydroxyl and carbonyl functionalities. The chains are linked by non-classical C-H···O interactions, forming extended two-dimensional layers approximately parallel to $(11\overline{2})$.

Related literature

For new bioactive secondary metabolites from marine fungi, see: Shao et al. (2007). For the investigation of an endophytic strain Cephalosporium sp., see: Wei et al. (2008); Hemingway et al. (1977); Kendall et al. (1989). For crystal structures with non-classical $C-H \cdots O$ interactions, see: Nangia (2002).

b = 15.710 (3) Å

c = 14.196 (2) Å

V = 851.1 (3) Å³

 $\beta = 92.668 (2)^{\circ}$

Experimental

Crystal data

$C_{10}H_8O_4$	
$M_r = 192.16$	
Monoclinic, $P2_1/c$	
a = 3.8201 (7) Å	

Z = 4Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.969, T_{\max} = 0.978$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ 131 parameters $wR(F^2) = 0.094$ H-atom parameters constrained S = 1.04 $\Delta \rho_{\text{max}} = 0.18 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$ 1586 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O4-H4\cdots O2^{i}$ $C5-H5\cdots O4^{ii}$	0.82 0.93	1.96 2.60	2.7225 (15) 3.4659 (19)	155 155
	4 . 1	1 (11)		

T = 291 K

 $R_{\rm int} = 0.021$

 $0.27 \times 0.20 \times 0.19 \text{ mm}$

4781 measured reflections 1586 independent reflections

1272 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) x - 1, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (ii) -x - 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick 2008); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors acknowledge financial support from the National Natural Science Foundation of China (No. 40776073), the Basic Research Program of Science and Technology, Ministry of Science and Technology of China (No. 2007FY210500) and the Youthful Fund of Guangdong Medical College (No. XQ0511).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2219).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hemingway, R. W., McGraw, G. W. & Barras, S. J. (1977). J. Agric. Food Chem. 25 717-722
- Kendall, J. K., Fisher, T. H., Schultz, H. P. & Schultz, T. P. (1989). J. Org. Chem. 54 4218-4220
- Nangia, A. (2002). CrystEngComm, 4, 93-101.
- Shao, C. L., She, Z. G., Guo, Z. Y., Peng, H., Cai, X. L., Zhou, S. N., Gu, Y. C. & Lin, Y. C. (2007). Magn. Reson. Chem. 45, 434-438.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wei, M. Y., Li, S. D., Chen, X. T., Shao, C. L., She, Z. G. & Lin, Y. C. (2008). Chem. Res. Appl. 20, 790-792.

supporting information

Acta Cryst. (2009). E65, o736 [doi:10.1107/S1600536809008083]

6,8-Dihydroxy-3-methylisocoumarin

Chang-lun Shao, Lei Han, Chun-yuan Li, Zhen Liu and Chang-yun Wang

S1. Comment

Endophytic fungi have proven to be a rich source of novel structural compounds with interesting biological activities and a high level of biodiversity. In the course of our search for new or bioactive secondary metabolites from the marine fungi (Shao *et al.*, 2007). we have investigated an endophytic strain *Cephalosporium sp.* (Wei *et al.*, 2008). The title compound was previously isolated from the organic extracts of the fungus *Ceratocystis minor* (Hemingway *et al.*, 1977), and elucidated on the basic of spectroscopic analysis (Kendall *et al.*, 1989). Herein, the title compound was isolated from the fermentation culture of the endophytic fungus *Cephalosporium sp.*, and its crystal structure is reported.

The asymmetric unit of the title compound contains one independent molecule (Fig. 1), in which the bond lengths and angles are within the expected ranges. The structural analysis reveals that the most relevant feature is the arrangement of the molecules, which are connected to form a one-dimensional chain along the [101] direction, by the formation of intermolecular O—H…O hydrogen bonds. Furthermore, weak non-conventional intermolecular C—H…O interactions are observed (Nangia, 2002), in which C5—H5 is a donor and O4 is an acceptor. These interactions consolidate the crystal packing. Details of hydrogen bonds are given in Table 1.

S2. Experimental

A strain of fungus *Cephalosporium sp.* (No. 2090) was deposited in the School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China. Culture conditions: GYT medium (glucose 10 g/L, peptone 2 g/L, yeast extract 1 g/L, NaCl 2.5 g/L) and incubation at 298 K for 4 weeks. The cultures (70 L) were filtered through cheesecloth. The filtrate was concentrated to 3 L below 323 K, extracted five times by shaking with an equal volume of ethyl acetate. The extract was evaporated under reduced pressure below 323 K. The combined organic extracts were chromatographed on silica-gel, eluting with petroleum ether/ethyl acetate, to yield the title compound. Crystals were obtained by evaporation of an ethyl acetate solution.

S3. Refinement

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 (aromatic CH), 0.96 (methyl CH₃), and 0.82 Å (hydroxyl OH), and with $U_{iso}(H) = 1.5Ueq$ (carrier atom) or for CH₃ and OH groups and $U_{iso}(H) = 1.2Ueq$ (carrier C) otherwise.

Figure 1

View of the title molecule with atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms.

Figure 2

View of the 2D layers formed by intermolecular O—H…O hydrogen bonds and weak non-conventional intermolecular C —H…O interactions.

6,8-Dihydroxy-3-methylisocoumarin

Crystal data

 $C_{10}H_8O_4$ $M_r = 192.16$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 3.8201 (7) Å b = 15.710 (3) Å c = 14.196 (2) Å $\beta = 92.668$ (2)° V = 851.1 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans F(000) = 400 $D_x = 1.500 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1738 reflections $\theta = 2.6-25.5^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 291 KBlock, yellow $0.27 \times 0.20 \times 0.19 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.969, T_{max} = 0.978$ 4781 measured reflections 1586 independent reflections

1272 reflections with $I > 2\sigma(I)$	$h = -4 \rightarrow 4$
$R_{\rm int} = 0.021$	$k = -19 \rightarrow 13$
$\theta_{\rm max} = 25.5^\circ, \ \theta_{\rm min} = 2.6^\circ$	$l = -17 \rightarrow 17$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.094$	neighbouring sites
S = 1.04	H-atom parameters constrained
1586 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0441P)^2 + 0.1957P]$
131 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
0 constraints	$\Delta ho_{ m max} = 0.18 \ m e \ m \AA^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick
	2008), Fc [*] =kFc[1+0.001xFc ² $\lambda^{3}/sin(2\theta)$] ^{-1/4}
	Extinction coefficient: 0.015 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.3482 (3)	0.32453 (7)	0.81217 (7)	0.0451 (3)
O2	0.3544 (3)	0.19366 (7)	0.75748 (8)	0.0572 (4)
O3	0.0718 (3)	0.15766 (7)	0.58873 (8)	0.0552 (4)
Н3	0.1709	0.1476	0.6400	0.083*
O4	-0.4021 (3)	0.39231 (7)	0.41364 (7)	0.0487 (3)
H4	-0.4514	0.3541	0.3759	0.073*
C1	0.3853 (4)	0.45742 (12)	0.89102 (11)	0.0516 (4)
H1A	0.3148	0.5160	0.8859	0.077*
H1B	0.6359	0.4542	0.8987	0.077*
H1C	0.2819	0.4321	0.9446	0.077*
C2	0.2659 (4)	0.41080 (10)	0.80372 (10)	0.0395 (4)
C3	0.1028 (4)	0.44079 (10)	0.72629 (10)	0.0379 (4)
H3A	0.0505	0.4985	0.7224	0.046*
C4	0.0042 (3)	0.38590 (9)	0.64774 (9)	0.0318 (3)
C5	-0.1641 (4)	0.41528 (9)	0.56587 (10)	0.0355 (3)
Н5	-0.2230	0.4725	0.5598	0.043*
C6	-0.2453 (4)	0.35866 (10)	0.49244 (10)	0.0354 (3)
C7	-0.1659 (4)	0.27235 (9)	0.50066 (10)	0.0378 (4)
H7	-0.2235	0.2354	0.4512	0.045*
C8	-0.0016 (4)	0.24192 (9)	0.58233 (10)	0.0368 (3)
С9	0.0880 (4)	0.29837 (9)	0.65755 (9)	0.0337 (3)
C10	0.2651 (4)	0.26818 (10)	0.74166 (10)	0.0401 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0531 (7)	0.0503 (7)	0.0308 (5)	0.0018 (5)	-0.0102 (5)	-0.0008 (5)
O2	0.0802 (9)	0.0448 (7)	0.0447 (7)	0.0086 (6)	-0.0182 (6)	0.0060 (5)
03	0.0804 (9)	0.0330 (6)	0.0503 (7)	0.0065 (5)	-0.0162 (6)	-0.0011 (5)

Acta Cryst. (2009). E65, o736

supporting information

O4	0.0677 (8)	0.0425 (6)	0.0342 (6)	0.0033 (5)	-0.0174 (5)	-0.0004 (5)
C1	0.0488 (10)	0.0661 (11)	0.0390 (9)	-0.0024 (8)	-0.0060 (7)	-0.0131 (8)
C2	0.0382 (8)	0.0459 (9)	0.0344 (8)	-0.0026 (7)	0.0008 (6)	-0.0058 (6)
C3	0.0414 (8)	0.0372 (8)	0.0350 (8)	-0.0021 (6)	0.0002 (6)	-0.0034 (6)
C4	0.0311 (7)	0.0354 (8)	0.0291 (7)	-0.0033 (6)	0.0016 (6)	-0.0006 (6)
C5	0.0405 (8)	0.0314 (8)	0.0344 (7)	0.0001 (6)	-0.0011 (6)	0.0009 (6)
C6	0.0354 (8)	0.0407 (8)	0.0297 (7)	-0.0013 (6)	-0.0037 (6)	0.0029 (6)
C7	0.0437 (8)	0.0379 (9)	0.0312 (7)	-0.0045 (6)	-0.0047 (6)	-0.0053 (6)
C8	0.0412 (8)	0.0318 (8)	0.0370 (8)	-0.0010 (6)	-0.0011 (6)	-0.0003 (6)
C9	0.0344 (8)	0.0364 (8)	0.0301 (7)	-0.0011 (6)	-0.0005 (6)	0.0019 (6)
C10	0.0436 (9)	0.0422 (9)	0.0339 (8)	0.0007 (7)	-0.0030 (6)	0.0033 (6)

Geometric parameters (Å, °)

01—C10	1.3626 (18)	C3—C4	1.4457 (19)
O1—C2	1.3951 (19)	С3—НЗА	0.9300
O2—C10	1.2370 (18)	C4—C5	1.3813 (19)
O3—C8	1.3553 (18)	C4—C9	1.417 (2)
O3—H3	0.8200	C5—C6	1.394 (2)
O4—C6	1.3518 (17)	С5—Н5	0.9300
O4—H4	0.8200	C6—C7	1.393 (2)
C1—C2	1.493 (2)	C7—C8	1.378 (2)
C1—H1A	0.9600	С7—Н7	0.9300
C1—H1B	0.9600	C8—C9	1.418 (2)
C1—H1C	0.9600	C9—C10	1.426 (2)
C2—C3	1.325 (2)		
C10—O1—C2	121.61 (11)	C4—C5—C6	119.64 (13)
С8—О3—Н3	109.5	C4—C5—H5	120.2
C6—O4—H4	109.5	С6—С5—Н5	120.2
C2—C1—H1A	109.5	O4—C6—C7	122.43 (13)
C2—C1—H1B	109.5	O4—C6—C5	116.35 (13)
H1A—C1—H1B	109.5	C7—C6—C5	121.22 (13)
C2—C1—H1C	109.5	C8—C7—C6	119.81 (13)
H1A—C1—H1C	109.5	С8—С7—Н7	120.1
H1B—C1—H1C	109.5	С6—С7—Н7	120.1
C3—C2—O1	120.81 (13)	O3—C8—C7	118.69 (13)
C3—C2—C1	128.92 (15)	O3—C8—C9	121.23 (13)
O1—C2—C1	110.27 (13)	С7—С8—С9	120.08 (13)
C2—C3—C4	121.57 (14)	C4—C9—C8	119.18 (12)
С2—С3—НЗА	119.2	C4—C9—C10	120.08 (13)
С4—С3—НЗА	119.2	C8—C9—C10	120.74 (13)
C5—C4—C9	120.07 (12)	O2—C10—O1	115.39 (13)
C5—C4—C3	122.96 (13)	O2—C10—C9	125.66 (14)
C9—C4—C3	116.96 (12)	O1—C10—C9	118.96 (13)
C10—O1—C2—C3	0.1 (2)	C5—C4—C9—C8	0.3 (2)
C10-01-C2-C1	179.78 (13)	C3—C4—C9—C8	-179.69 (13)

O1—C2—C3—C4	-0.1 (2)	C5—C4—C9—C10	179.32 (13)
C1—C2—C3—C4	-179.74 (14)	C3—C4—C9—C10	-0.66 (19)
C2—C3—C4—C5	-179.60 (14)	O3—C8—C9—C4	-179.69 (13)
C2—C3—C4—C9	0.4 (2)	C7—C8—C9—C4	0.5 (2)
C9—C4—C5—C6	-1.1(2)	O3—C8—C9—C10	1.3 (2)
C3—C4—C5—C6	178.85 (13)	C7—C8—C9—C10	-178.57 (13)
C4—C5—C6—O4	-178.42 (12)	C2-O1-C10-O2	179.49 (13)
C4—C5—C6—C7	1.3 (2)	C2-O1-C10-C9	-0.4 (2)
O4—C6—C7—C8	179.14 (14)	C4—C9—C10—O2	-179.17 (15)
C5—C6—C7—C8	-0.5(2)	C8—C9—C10—O2	-0.2 (2)
C6—C7—C8—O3	179.79 (14)	C4—C9—C10—O1	0.7 (2)
C6—C7—C8—C9	-0.3 (2)	C8—C9—C10—O1	179.67 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O3—H3…O2	0.82	1.92	2.6426 (16)	146
O4—H4···O2 ⁱ	0.82	1.96	2.7225 (15)	155
C5—H5…O4 ⁱⁱ	0.93	2.60	3.4659 (19)	155

Symmetry codes: (i) x-1, -y+1/2, z-1/2; (ii) -x-1, -y+1, -z+1.