

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1S*,2R*,4aS*,6aS*,6bR*,10S*,12aR*,-14aS*)-10-Hydroxy-1,2,6a,6b,9,9,12aheptamethylperhydropicene-4a,14acarbolactone

Dan-Wei Ou-yang,^a Jian-Ping Gao,^a* Oing-Shan Li^a* and lian-Ping Guo^b

^aInstitute of Pharmaceutical Science, Shanxi Medical University, 56 South Xinjian Road, Taiyuan 030001, People's Republic of China, and ^bInstitute of Chemistry and Engineering, Shanxi University, 96 Wucheng Road, Taiyuan 030006, People's Republic of China

Correspondence e-mail: jpgao123@sina.com, qingshanl@yahoo.com.cn

Received 12 December 2008; accepted 6 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.052; wR factor = 0.142; data-to-parameter ratio = 8.1.

The title compound, $C_{30}H_{48}O_3$, was extracted from the plant Dracocephalum rupestre Hance. The molecule contains five fused cyclohexane rings and one five-membered lactone ring. Intermolecular O-H···O hydrogen bonds between the hydroxyl and carbonyl groups link the molecules into chains along [010]. The absolute structure has not been determined.

Related literature

For related literature concerning the title compound and the plant Dracocephalum rupestre Hance, see: Jiangsu College of New Medicine (1977); Katai et al. (1983).

5150 measured reflections

 $R_{\rm int} = 0.032$

2428 independent reflections

2052 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C ₃₀ H ₄₈ O ₃	V = 1319.3 (9) Å ³
$M_r = 456.68$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 8.156 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 12.005 (5) Å	$T = 293 { m K}$
c = 13.475 (5) Å	$0.60 \times 0.50 \times 0.30 \text{ mm}$
$\beta = 90.520 \ (7)^{\circ}$	

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.958, T_{\max} = 0.979$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	1 restraint
$wR(F^2) = 0.142$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$
2428 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
299 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3-H3A···O2 ⁱ	0.82	2.24	3.059 (4)	176
	1 -			

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + 2$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Financial support from the Science and Technology Commission of Taiyuan (2006), and from the Undergraduate Innovation Item of Shanxi Medical University (No. 200448) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2335).

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Jiangsu College of New Medicine (1977). A Dictionary of the Traditional Chinese Medicines, p. 549. Shanghai: Shanghai Science and Technology Press.

Katai, M., Terai, T. & Meguri, H. (1983). Chem. Pharm. Bull. 31, 1567-1571. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o753 [doi:10.1107/S1600536809008253]

(1*S**,2*R**,4a*S**,6a*S**,6b*R**,10*S**,12a*R**,14a*S**)-10-Hydroxy-1,2,6a,6b,9,9,12aheptamethylperhydropicene-4a,14a-carbolactone

Dan-Wei Ou-yang, Jian-Ping Gao, Qing-Shan Li and Jian-Ping Guo

S1. Comment

The title compound is extracted from the plant *Dracocephalum rupestre Hance* (Jiangsu College of New Medicine, 1977) with ethanol. The compound (Katai *et al.*, 1983) was successfully crystallized from methanol. There are five sixmembered rings and one five-membered ring in the molecule. The six-membered rings are composed of *sp*³-hybridised C and the five-membered ring is a lactone in which C28 is *sp*² hybridised. The bond distances between C28 and O are 1.349 (3) [O1—C28] and 1.218 (4) Å [O2—C28]. The O2—C28 bond length of 1.216 (5) Å is a typical C=O double bond.

S2. Experimental

The dry aerial part of the plant (5.3 kg) was extracted with 95% ethanol 3 times under reflux. The ethanol extract was diluted with a large amount of water, and then extracted with petroleum ether, chloroform, EtOAc and n-butanol. The chloroform fraction (70 g) was subjected to Si gel column (1.5 kg,200–300 mesh) chromatography eluting with a gradient (petroleum ether-EtOAc, 99:1, 98:2, 97:3, 95:5, 9:1, 8:2,7:3, 1:1, v/v) to obtain 8 fractions (F1—F8). Fraction F3 (19.4 g) was separated by Si gel column (500 g, 200–300 mesh) chromatography eluting with a gradient (chloroform-methanol, 99:1, 98:2, 97:3, 95:5, 9:1, 8:2,7:3, 1:1, v/v) to yield four portions. Subfraction 1 was subsequently subjected to Si gel column chromatography eluting with chloroform-methanol (10:1), and recrystallized from methanol, to obtain the title compound (25 mg).

S3. Refinement

H atoms were placed geometrically and allowed to ride with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C/O)$. In the absence of significant anomalous scattering, Friedel pairs were merged as equivalent data, and the absolute structure has not been determined.

Molecular structure showing displacement ellipsoids at 50% probability for non-H atoms.

$(1S^*, 2R^*, 4aS^*, 6aS^*, 6bR^*, 10S^*, 12aR^*, 14aS^*) - 10 - Hydroxy - 1, 2, 6a, 6b, 9, 9, 12a - 10 - Hydroxy - 1, 2, 6a, 6b, 9, 12a - 10 - Hydroxy - 1, 2, 6a, 6b, 9, 12a - 10 - Hydroxy - 1, 2, 6a, 6b, 7, 12a - 10 - Hydroxy - 1, 2, 6a, 7, 12a - 10a, 7, 1$

heptamethylperhydropicene-4a,14a-carbolactone

Crystal data

 $C_{30}H_{48}O_3$ $M_r = 456.68$ Monoclinic, P2₁ Hall symbol: P 2yb a = 8.156 (3) Å b = 12.005 (5) Å c = 13.475 (5) Å $\beta = 90.520$ (7)° V = 1319.3 (9) Å³ Z = 2

Data collection

Bruker SMART CCD	5150 measured reflections
diffractometer	2428 independent reflections
Radiation source: fine-focus sealed tube	2052 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.032$
ω scans	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 1.5^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 7$
(SADABS; Sheldrick, 1996)	$k = -14 \rightarrow 14$
$T_{\min} = 0.958, \ T_{\max} = 0.979$	$l = -13 \rightarrow 16$

F(000) = 504 $D_x = 1.150 \text{ Mg m}^{-3}$ Melting point: 519 K Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 2717 reflections $\theta = 2.3-26.2^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.60 \times 0.50 \times 0.30 \text{ mm}$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.142$	neighbouring sites
S = 1.03	H-atom parameters constrained
2428 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0816P)^2 + 0.1773P]$
299 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.24$ e Å ⁻³
direct methods	$\Delta ho_{ m min} = -0.25 \ m e \ m \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O1	-0.1317 (3)	0.74752 (19)	0.69165 (16)	0.0521 (6)
O2	-0.1163 (4)	0.6395 (2)	0.5579 (2)	0.0776 (9)
O3	0.2976 (4)	0.9857 (3)	1.2991 (2)	0.0794 (9)
H3A	0.2459	1.0276	1.3353	0.119*
C1	-0.0162 (4)	0.9125 (4)	1.1007 (3)	0.0566 (9)
H1A	-0.0476	0.9870	1.0801	0.068*
H1B	-0.1154	0.8681	1.1051	0.068*
C2	0.0658 (5)	0.9185 (4)	1.2036 (3)	0.0654 (10)
H2A	-0.0095	0.9529	1.2497	0.078*
H2B	0.0879	0.8435	1.2268	0.078*
C3	0.2236 (5)	0.9837 (3)	1.2033 (3)	0.0592 (9)
H3B	0.1969	1.0606	1.1852	0.071*
C4	0.3498 (4)	0.9406 (3)	1.1284 (3)	0.0543 (8)
C5	0.2606 (4)	0.9273 (3)	1.0255 (2)	0.0464 (8)
H5A	0.2293	1.0034	1.0072	0.056*
C6	0.3736 (4)	0.8899 (4)	0.9416 (3)	0.0590 (9)
H6A	0.4776	0.9287	0.9472	0.071*
H6B	0.3946	0.8107	0.9475	0.071*
C7	0.2955 (4)	0.9145 (4)	0.8405 (3)	0.0583 (9)
H7A	0.3690	0.8888	0.7891	0.070*
H7B	0.2838	0.9945	0.8332	0.070*
C8	0.1261 (4)	0.8596 (3)	0.8242 (2)	0.0466 (8)
С9	0.0174 (3)	0.8830 (3)	0.9165 (2)	0.0432 (7)
H9A	-0.0032	0.9634	0.9147	0.052*
C10	0.0967 (4)	0.8611 (3)	1.0212 (2)	0.0457 (7)

C11	-0.1523 (4)	0.8290 (3)	0.9008 (2)	0.0510 (8)
H11A	-0.1393	0.7492	0.8930	0.061*
H11B	-0.2190	0.8421	0.9589	0.061*
C12	-0.2392 (4)	0.8762 (3)	0.8096 (2)	0.0527 (8)
H12A	-0.3415	0.8363	0.7998	0.063*
H12B	-0.2660	0.9536	0.8222	0.063*
C13	-0.1418 (4)	0.8697 (3)	0.7150 (2)	0.0439 (7)
C14	0.0382 (4)	0.9125 (3)	0.7273 (2)	0.0430 (7)
C15	0.1341 (4)	0.8817 (4)	0.6322 (2)	0.0550 (9)
H15A	0.2303	0.9289	0.6284	0.066*
H15B	0.1718	0.8053	0.6382	0.066*
C16	0.0360 (4)	0.8931 (3)	0.5351 (2)	0.0532 (9)
H16A	0.0952	0.8559	0.4825	0.064*
H16B	0.0282	0.9714	0.5179	0.064*
C17	-0.1378 (4)	0.8442 (3)	0.5403 (2)	0.0477 (8)
C18	-0.2370 (4)	0.9073 (3)	0.6187 (2)	0.0445 (7)
H18A	-0.3417	0.8675	0.6216	0.053*
C19	-0.2835 (4)	1.0265 (3)	0.5865 (2)	0.0496 (8)
H19A	-0.1825	1.0694	0.5774	0.059*
C20	-0.3750 (4)	1.0192 (3)	0.4849 (2)	0.0530 (8)
H20A	-0.4761	0.9767	0.4949	0.064*
C21	-0.2730 (5)	0.9578 (4)	0.4078 (3)	0.0577 (9)
H21A	-0.1745	1.0005	0.3949	0.069*
H21B	-0.3353	0.9533	0.3462	0.069*
C22	-0.2241 (5)	0.8403 (3)	0.4399 (3)	0.0592 (9)
H22A	-0.3210	0.7939	0.4441	0.071*
H22B	-0.1516	0.8080	0.3910	0.071*
C23	0.4318 (5)	0.8333 (4)	1.1653 (3)	0.0712 (11)
H23A	0.4847	0.8471	1.2281	0.107*
H23B	0.5118	0.8094	1.1181	0.107*
H23C	0.3504	0.7763	1.1730	0.107*
C24	0.4838 (5)	1.0301 (4)	1.1204 (3)	0.0748 (12)
H24A	0.5386	1.0381	1.1833	0.112*
H24B	0.4348	1.0998	1.1018	0.112*
H24C	0.5616	1.0083	1.0710	0.112*
C25	0.1145 (5)	0.7347 (3)	1.0452 (3)	0.0612 (9)
H25A	0.1114	0.7239	1.1157	0.092*
H25B	0.2171	0.7080	1.0202	0.092*
H25C	0.0261	0.6944	1.0144	0.092*
C26	0.1588 (5)	0.7321 (3)	0.8123 (3)	0.0622 (10)
H26A	0.2380	0.7085	0.8611	0.093*
H26B	0.2002	0.7176	0.7471	0.093*
H26C	0.0584	0.6918	0.8214	0.093*
C27	0.0327 (4)	1.0412 (3)	0.7341 (3)	0.0542 (8)
H27A	-0.0192	1.0708	0.6755	0.081*
H27B	0.1423	1.0698	0.7395	0.081*
H27C	-0.0286	1.0629	0.7914	0.081*
C28	-0.1268 (4)	0.7329 (3)	0.5923 (3)	0.0546 (8)

C29	-0.3888 (5)	1.0861 (4)	0.6629 (3)	0.0715 (11)	
H29A	-0.3304	1.0900	0.7250	0.107*	
H29B	-0.4892	1.0456	0.6718	0.107*	
H29C	-0.4132	1.1600	0.6401	0.107*	
C30	-0.4225 (5)	1.1339 (4)	0.4454 (3)	0.0727 (11)	
H30A	-0.4788	1.1258	0.3830	0.109*	
H30B	-0.3254	1.1778	0.4363	0.109*	
H30C	-0.4930	1.1702	0.4919	0.109*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0634 (14)	0.0347 (12)	0.0582 (13)	-0.0028 (11)	0.0101 (10)	0.0014 (10)
O2	0.115 (2)	0.0379 (14)	0.0798 (18)	0.0061 (15)	0.0098 (16)	-0.0079 (13)
O3	0.088 (2)	0.084 (2)	0.0662 (16)	0.0096 (17)	-0.0086 (15)	-0.0169 (15)
C1	0.0500 (19)	0.064 (2)	0.056 (2)	-0.0025 (17)	0.0118 (15)	-0.0011 (17)
C2	0.067 (2)	0.072 (3)	0.057 (2)	0.002 (2)	0.0129 (18)	-0.0041 (18)
C3	0.066 (2)	0.051 (2)	0.060(2)	0.0044 (18)	-0.0036 (17)	-0.0040 (16)
C4	0.0513 (19)	0.049 (2)	0.063 (2)	0.0008 (16)	-0.0003 (16)	0.0036 (16)
C5	0.0414 (16)	0.0422 (18)	0.0556 (19)	0.0017 (14)	0.0075 (14)	0.0048 (14)
C6	0.0375 (16)	0.072 (3)	0.068 (2)	0.0045 (17)	0.0072 (15)	0.0029 (19)
C7	0.0363 (16)	0.079 (3)	0.060(2)	0.0016 (17)	0.0129 (14)	0.0043 (18)
C8	0.0405 (16)	0.0441 (18)	0.0554 (18)	0.0041 (14)	0.0097 (14)	-0.0002 (14)
C9	0.0378 (15)	0.0371 (17)	0.0548 (18)	-0.0002 (13)	0.0093 (13)	0.0008 (14)
C10	0.0448 (16)	0.0393 (17)	0.0534 (18)	-0.0012 (14)	0.0095 (13)	0.0012 (14)
C11	0.0457 (17)	0.057 (2)	0.0503 (18)	-0.0076 (16)	0.0087 (14)	0.0028 (15)
C12	0.0392 (16)	0.059 (2)	0.060 (2)	-0.0053 (16)	0.0118 (14)	-0.0015 (17)
C13	0.0466 (16)	0.0351 (16)	0.0503 (17)	-0.0012 (13)	0.0116 (13)	-0.0015 (13)
C14	0.0369 (15)	0.0408 (17)	0.0514 (18)	0.0015 (13)	0.0093 (13)	-0.0015 (13)
C15	0.0449 (17)	0.063 (2)	0.058 (2)	0.0042 (17)	0.0160 (15)	0.0022 (17)
C16	0.0548 (19)	0.053 (2)	0.052 (2)	-0.0003 (16)	0.0198 (15)	0.0009 (16)
C17	0.0532 (18)	0.0382 (17)	0.0520 (18)	-0.0007 (14)	0.0071 (15)	-0.0029 (14)
C18	0.0388 (15)	0.0405 (17)	0.0544 (19)	-0.0043 (13)	0.0078 (14)	-0.0005 (14)
C19	0.0439 (17)	0.0424 (18)	0.062 (2)	0.0007 (15)	0.0053 (14)	-0.0021 (15)
C20	0.0451 (17)	0.053 (2)	0.061 (2)	-0.0043 (16)	0.0036 (14)	0.0053 (16)
C21	0.057 (2)	0.065 (2)	0.0516 (18)	-0.0027 (18)	0.0019 (15)	0.0040 (17)
C22	0.069 (2)	0.054 (2)	0.055 (2)	-0.0101 (18)	0.0092 (17)	-0.0098 (17)
C23	0.075 (3)	0.063 (3)	0.075 (3)	0.014 (2)	-0.010 (2)	0.003 (2)
C24	0.072 (3)	0.071 (3)	0.081 (3)	-0.019 (2)	-0.011 (2)	0.002 (2)
C25	0.074 (2)	0.0439 (19)	0.065 (2)	-0.0057 (19)	-0.0016 (17)	0.0081 (17)
C26	0.072 (2)	0.057 (2)	0.058 (2)	0.025 (2)	0.0082 (17)	-0.0017 (18)
C27	0.0536 (19)	0.0434 (19)	0.066 (2)	-0.0041 (15)	-0.0010 (16)	0.0010 (16)
C28	0.064 (2)	0.0377 (18)	0.062 (2)	0.0028 (16)	0.0095 (16)	-0.0004 (16)
C29	0.078 (3)	0.066 (3)	0.070 (2)	0.029 (2)	0.002 (2)	-0.006 (2)
C30	0.075 (3)	0.067 (3)	0.075 (2)	0.012 (2)	-0.003 (2)	0.011 (2)

Geometric parameters (Å, °)

O1—C28	1.351 (4)	C15—C16	1.534 (5)
O1—C13	1.502 (4)	C15—H15A	0.970
O2—C28	1.216 (5)	C15—H15B	0.970
O3—C3	1.421 (4)	C16—C17	1.537 (5)
O3—H3A	0.820	C16—H16A	0.970
C1—C2	1.536 (5)	C16—H16B	0.970
C1—C10	1.547 (4)	C17—C28	1.511 (5)
C1—H1A	0.970	C17—C22	1.520 (5)
C1—H1B	0.970	C17—C18	1.536 (4)
C2—C3	1.506 (5)	C18—C19	1.542 (5)
C2—H2A	0.970	C18—H18A	0.980
C2—H2B	0.970	C19—C29	1.525 (5)
C3—C4	1.537 (5)	C19—C20	1.555 (5)
C3—H3B	0.980	C19—H19A	0.980
C4—C23	1.533 (5)	C20—C30	1.525 (6)
C4—C24	1.537 (5)	C20—C21	1.527 (5)
C4—C5	1.568 (5)	C20—H20A	0.980
C5—C6	1.532 (4)	C21—C22	1.527 (6)
C5—C10	1.556 (4)	C21—H21A	0.970
С5—Н5А	0.980	C21—H21B	0.970
C6—C7	1.528 (5)	C22—H22A	0.970
С6—Н6А	0.970	C22—H22B	0.970
C6—H6B	0.970	C23—H23A	0.960
C7—C8	1.545 (5)	C23—H23B	0.960
С7—Н7А	0.970	C23—H23C	0.960
C7—H7B	0.970	C24—H24A	0.960
C8—C9	1.559 (4)	C24—H24B	0.960
C8—C26	1.562 (5)	C24—H24C	0.960
C8—C14	1.614 (4)	C25—H25A	0.960
C9—C11	1.541 (4)	C25—H25B	0.960
C9—C10	1.569 (4)	C25—H25C	0.960
С9—Н9А	0.980	C26—H26A	0.960
C10—C25	1.558 (5)	C26—H26B	0.960
C11—C12	1.522 (5)	C26—H26C	0.960
C11—H11A	0.970	C27—H27A	0.960
C11—H11B	0.970	С27—Н27В	0.960
C12—C13	1.510 (4)	C27—H27C	0.960
C12—H12A	0.970	C29—H29A	0.960
C12—H12B	0.970	C29—H29B	0.960
C13—C14	1.563 (4)	C29—H29C	0.960
C13—C18	1.573 (4)	C30—H30A	0.960
C14—C27	1.549 (5)	C30—H30B	0.960
C14—C15	1.552 (4)	С30—Н30С	0.960
C28—O1—C13	109.7 (2)	C14—C15—H15B	108.6
С3—О3—НЗА	109.5	H15A—C15—H15B	107.5

G2 G1 G10	110 7 (2)	016 016 017	112((2))
C_2 — C_1 — C_{10}	112.7 (3)	C15-C16-C17	113.6 (3)
C2—C1—HIA	109.0	C15—C16—H16A	108.8
Clo—Cl—HIA	109.0	C17—C16—H16A	108.8
C2—C1—H1B	109.0	C15—C16—H16B	108.8
C10—C1—H1B	109.0	C17—C16—H16B	108.8
H1A—C1—H1B	107.8	H16A—C16—H16B	107.7
C3—C2—C1	112.8 (3)	C28—C17—C22	114.3 (3)
C3—C2—H2A	109.0	C28—C17—C18	98.5 (3)
C1—C2—H2A	109.0	C22—C17—C18	112.6 (3)
C3—C2—H2B	109.0	C28—C17—C16	107.9 (3)
C1—C2—H2B	109.0	C22—C17—C16	113.0 (3)
H2A—C2—H2B	107.8	C18—C17—C16	109.5 (3)
O3—C3—C2	111.3 (3)	C17—C18—C19	113.2 (3)
O3—C3—C4	108.7 (3)	C17—C18—C13	99.6 (2)
C2—C3—C4	113.9 (3)	C19—C18—C13	128.1 (3)
O3—C3—H3B	107.6	C17—C18—H18A	104.6
С2—С3—Н3В	107.6	C19—C18—H18A	104.6
С4—С3—Н3В	107.6	C13—C18—H18A	104.6
C23—C4—C24	107.6 (3)	C29—C19—C18	112.5 (3)
C23—C4—C3	111.2 (3)	C29—C19—C20	110.6 (3)
C24—C4—C3	107.0 (3)	C18—C19—C20	108.1 (3)
C23—C4—C5	113.5 (3)	С29—С19—Н19А	108.5
C24—C4—C5	109.5 (3)	С18—С19—Н19А	108.5
C3—C4—C5	107.9 (3)	С20—С19—Н19А	108.5
C6—C5—C10	110.2 (3)	C30—C20—C21	109.6 (3)
C6—C5—C4	113.9 (3)	C30—C20—C19	112.0 (3)
C10—C5—C4	118.4 (3)	C21—C20—C19	111.5 (3)
C6—C5—H5A	104.2	C30—C20—H20A	107.9
C10—C5—H5A	104.2	C21—C20—H20A	107.9
C4—C5—H5A	104.2	C19—C20—H20A	107.9
C7-C6-C5	110.7(3)	C_{20} C_{21} C_{22}	113 3 (3)
C7—C6—H6A	109 5	C_{20} C_{21} H_{21A}	108.9
C5-C6-H6A	109.5	$C_{22} = C_{21} = H_{21A}$	108.9
C7—C6—H6B	109.5	C_{20} C_{21} H_{21R}	108.9
C5-C6-H6B	109.5	$C_{20} = C_{21} = H_{21B}$	108.9
Н6АС6Н6В	108.1	$H_{21} = C_{21} = H_{21} B$	107.7
C6-C7-C8	114.2 (3)	C_{17} C_{22} C_{21} C_{21} C_{22} C_{21}	107.7 110.0(3)
C6 C7 H7A	108 7	C17 - C22 - C21	100.7
C° C^{-} H^{-}	108.7	$C_{1} = C_{22} = H_{22A}$	109.7
C_{6} C_{7} H_{7} H_{7}	108.7	$C_{21} = C_{22} = H_{22R}$	109.7
$C_0 - C_1 - H_1 B$	108.7	C1/-C22-H22B	109.7
	108.7		109.7
H/A - C / - H/B	107.0	H22A - C22 - H22B	108.2
$C_{1} = C_{2} = C_{2}$	106.9(3)	C4 = C22 = H22D	109.5
$C_{1} = C_{2}$	100.2 (3)	$U_4 - U_2 J - H_2 J B$	109.5
C9—C8—C26	110.9 (3)	$H_{23}A - C_{23} - H_{23}B$	109.5
C/—C8—C14	109.7 (3)	C4—C23—H23C	109.5
C9—C8—C14	108.8 (2)	H23A—C23—H23C	109.5
C26—C8—C14	112.2 (3)	H23B—C23—H23C	109.5

С11—С9—С8	109.3 (3)	C4—C24—H24A	109.5
C11—C9—C10	114.6 (3)	C4—C24—H24B	109.5
C8—C9—C10	117.0 (2)	H24A—C24—H24B	109.5
С11—С9—Н9А	104.9	C4—C24—H24C	109.5
С8—С9—Н9А	104.9	H24A—C24—H24C	109.5
С10—С9—Н9А	104.9	H24B—C24—H24C	109.5
C1—C10—C5	106.7 (3)	C10—C25—H25A	109.5
C1—C10—C25	107.4 (3)	C10—C25—H25B	109.5
C5—C10—C25	114.3 (3)	H25A—C25—H25B	109.5
C1—C10—C9	108.2 (3)	C10—C25—H25C	109.5
C5—C10—C9	107.1 (2)	H25A—C25—H25C	109.5
C25—C10—C9	112.7 (3)	H25B—C25—H25C	109.5
C12—C11—C9	111.4 (3)	C8—C26—H26A	109.5
C12-C11-H11A	109.3	C8—C26—H26B	109.5
C9—C11—H11A	109.3	H26A—C26—H26B	109.5
C12—C11—H11B	109.3	C8—C26—H26C	109.5
C9—C11—H11B	109.3	H26A—C26—H26C	109.5
H11A—C11—H11B	108.0	H26B—C26—H26C	109.5
C13—C12—C11	114.7 (3)	C14—C27—H27A	109.5
C13—C12—H12A	108.6	C14—C27—H27B	109.5
C11—C12—H12A	108.6	H27A—C27—H27B	109.5
C13—C12—H12B	108.6	C14—C27—H27C	109.5
C11—C12—H12B	108.6	H27A—C27—H27C	109.5
H12A—C12—H12B	107.6	H27B—C27—H27C	109.5
O1—C13—C12	104.9 (3)	O2—C28—O1	120.0 (3)
O1—C13—C14	106.9 (2)	O2—C28—C17	130.0 (3)
C12—C13—C14	113.2 (3)	O1—C28—C17	110.0 (3)
O1—C13—C18	97.8 (2)	С19—С29—Н29А	109.5
C12-C13-C18	115.0 (3)	C19—C29—H29B	109.5
C14—C13—C18	116.7 (2)	H29A—C29—H29B	109.5
C27—C14—C15	107.5 (3)	С19—С29—Н29С	109.5
C27—C14—C13	107.8 (3)	H29A—C29—H29C	109.5
C15—C14—C13	108.3 (3)	H29B—C29—H29C	109.5
C27—C14—C8	111.0 (3)	С20—С30—Н30А	109.5
C15—C14—C8	110.5 (3)	С20—С30—Н30В	109.5
C13—C14—C8	111.5 (2)	H30A-C30-H30B	109.5
C16—C15—C14	114.9 (3)	С20—С30—Н30С	109.5
C16—C15—H15A	108.6	H30A—C30—H30C	109.5
C14—C15—H15A	108.6	H30B-C30-H30C	109.5
C16—C15—H15B	108.6		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3 <i>A</i> ···O2 ⁱ	0.82	2.24	3.059 (4)	176

Symmetry code: (i) -x, y+1/2, -z+2.