

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-[(2-Hydroxy-5-methoxyphenyl)-(3-nitrophenyl)methyl]acetamide

M. NizamMohideen,^a S. Thenmozhi,^b A. SubbiahPandi,^b* N. Panneer Selvam^c and P. T. Perumal^c

^aDepartment of Physics, The New College (Autonomous), Chennai 600 014, India, ^bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and ^cOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India

Correspondence e-mail: a_spandian@yahoo.com

Received 12 March 2009; accepted 16 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.058; wR factor = 0.196; data-to-parameter ratio = 28.3.

In the title compound, $C_{16}H_{16}N_2O_5$, the methoxy group is disordered with site occupancies of 0.20 (3) and 0.80 (3). The dihedral angle between the two aromatic rings is 73.7 (2)°. The crystal structure is characterized by intermolecular N-H···O, O-H···O, C-H···O and C-H··· π hydrogen bonds.

Related literature

For *N*-substituted phenyl acetamides as intermediates in organic synthesis, see: Gowda *et al.* (2007); Ghosh *et al.* (2005). For a related structure, see: NizamMohideen *et al.* (2009). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data $C_{16}H_{16}N_2O_5$ $M_r = 316.31$ Monoclinic, $P2_1/c$ a = 15.3351 (3) Å b = 8.1327 (2) Å

<i>c</i> =	= 14.5308 (3)	Å
β	= 117.387 (1)	•
V	= 1609.10(6)	Å
Z	= 4	
Μ	ο <i>Kα</i> radiatio	n

6121 independent reflections 3900 reflections with $I > 2\sigma(I)$

 $0.32 \times 0.28 \times 0.25 \text{ mm}$

 $R_{\rm int} = 0.032$

 $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: none 23127 measured reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.058 & 1 \text{ restraint} \\ wR(F^2) &= 0.196 & H-\text{atom parameters constrained} \\ S &= 1.03 & \Delta\rho_{\text{max}} = 0.41 \text{ e } \text{ Å}^{-3} \\ 6121 \text{ reflections} & \Delta\rho_{\text{min}} = -0.25 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O5^{i}$	0.82	1.80	2.617 (2)	179
$N1 - H1 \cdots O4^{ii}$	0.86	2.30	3.159 (2)	174
C10−H10···O1 ⁱⁱⁱ	0.93	2.47	3.320 (2)	152
$C12-H12\cdots O2^{iv}$	0.93	2.58	3.397 (2)	147
C14−H14···O4 ⁱⁱ	0.93	2.55	3.470 (2)	169
C8-H8···O5	0.98	2.30	2.714 (2)	105
$C11-H11\cdots Cg1^{iv}$	0.93	2.83	3.680 (2)	153
$C1B - H1B1 \cdots Cg2^{v}$	0.96	2.61	3.531 (2)	160

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) -x, -y + 1, -z; (iii) -x + 1, -y + 1, -z + 1; (iv) x, y - 1, z; (v) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$. Cg1 and Cg2 are the centroids of the C2-C7 and C9-C14 rings, respectively.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data. MNM and ASP thank Dr J. Jothi Kumar, Principal of the Presidency College (Autonomous), Chennai, India, for providing the computer and internet facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2901).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Ghosh, R., Maity, S. & Chakraborty, A. (2005). Synlett, pp. 115-118.
- Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, 03364.
- NizamMohideen, M., SubbiahPandi, A., Panneer Selvam, N. & Perumal, P. T. (2009). Acta Cryst. E65, 0714–0715.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o829 [doi:10.1107/S1600536809009726]

N-[(2-Hydroxy-5-methoxyphenyl)(3-nitrophenyl)methyl]acetamide

M. NizamMohideen, S. Thenmozhi, A. SubbiahPandi, N. Panneer Selvam and P. T. Perumal

S1. Comment

N-(Substituted phenyl) acetamides are well known for their importance as intermediates in organic synthesis (Gowda *et al.*, 2007). Depending on the types of substitution at the α , β and keto-C atoms, and the conformational flexibility of the substituent groups, a variety of β -acetamido ketones offering the possibility of intermolecular interactions can be obtained (Ghosh *et al.*, 2005). The amide linkage [–NHC(O)-] is known to be strong enough to form and maintain protein architectures and has been utilized to create various molecular devices for a spectrum of purposes in organic chemistry. We have synthesized an amide system with an aromatic ring as a terminal group to determine how the rigid ring affects the conformational behavior. As part of our ongoing investigation of acetamide derivatives, the title compound has been prepared and its crystal structure is presented here.

The bond lenghts and angles are comparable with N-[(3-Nitro-phenyl)-(2-hydroxy-napthalen-1-yl)-methyl]-acetamide (NizamMohideen *et al.*, 2009), a structure closely related to the title compound. The nitro group is slighty twisted out of the plane of the benzene ring, as indicated by O4—N2—C13—C14 and O3—N2—C13—C14 torsion angles of -8.6 (3) and 171.0 (2)°, respectively, and comparable with those in the previously reported structure mentioned above.

The dihedral angle between the C2—C7 and C9—C14 benzene rings is 73.7 (2)°. The dihedral angle between the acetamide residue and the benzene rings (C2—C7 and C9—C14) are 70.0 (1) and 37.4 (2)°, respectively.

The intermolecular aggregation of the molecules is determined by combination of N—H···O, C—H···O, O—H···O and C—H··· π hydrogen bonds (Table 1). The crystal structure is characterized by intermolecular bifurcated acceptor hydrogen bonds between the benzene and acetamide groups (Fig. 2). Atom N1 and C14 in the molecule at (*x*, *y*, *z*) act as a hydrogen-bond donor *via* atom H1 and H14 to atom O4 in the molecule at (*-x*, 1 - *y*, *-z*). This intermolecular hydrogen bond links the molecule into dimers with a cyclic $R^2_2(16)$ and $R^2_2(10)$ (Bernstein *et al.*, 1995) ring system, respectively. Atom C10 in the molecule at (*x*, *y*, *z*) acts as a hydrogen-bond donor *via* atom H10 to atom O1 in the molecule at (1 - *x*, 1 - *y*, 1 - *z*). This intermolecular hydrogen bond links the molecule at (*x*, *y*, *z*) acts as a hydrogen-bond donor *via* atom H10 to atom O1 in the crystal structure is further stabilized by C—H··· π interactions involing rings C11—H11···*Cg*1 (*Cg*1 is the centroid of the C2—C7 ring) and C1—H1a···*Cg*2 (where *Cg*2 is the centroid of the C9—C14 ring).

S2. Experimental

A mixture of 3-nitrobenzaldehyde (10 mmol), 4-methoxyphenol (10 mmol) and iodine (0.4 mmol, 4 mol%) were mixed in acetonitrile (5 ml). To that suspension acetyl chloride (2.8 mmol, 0.2 ml) was added and the reaction mixture was stirred at room temperature for 5 h. After the completion of the reaction (as monitored by TLC), saturated sodium thiosulfate solution (5 ml) was added. The precipitated solid was filtered and dried. The dried sample was washed with diethyl ether (2×10 ml) and again dried. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in Ethanol.

S3. Refinement

The C atoms of the methoxy group are disordered over two positions with refined occupancies of 0.20 (3) and 0.80 (3). The corresponding bond distances involving the disordered atoms were restrained to be equal. H atoms were positioned geometrically, with N—H = 0.86, O—H = 0.82 and C—H = 0.93, 0.98 and 0.96 Å aromatic, methylene and methyl H, respectively, and were treated as riding on their parent atoms, with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.2 for all H atoms.

Figure 1

View of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The crystal packing of the title compound showing the $R^2_2(16)$, $R^2_2(10)$ and $R^2_2(16)$ rings. Hydrogen bonding is shown as dashed lines. H atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes: (ii) -x + 1, *y* + 1, -*z* + 1, (iii)-*x*, -*y* + 1, -*z*]]

N-[(2-Hydroxy-5-methoxyphenyl)(3-nitrophenyl)methyl]acetamide

Crystal data	
$C_{16}H_{16}N_{2}O_{5}$ $M_{r} = 316.31$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 15.3351 (3) Å b = 8.1327 (2) Å c = 14.5308 (3) Å $\beta = 117.387$ (1)° V = 1609.10 (6) Å ³ Z = 4	F(000) = 664 $D_x = 1.306 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3900 reflections $\theta = 2.5-25^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K Block, colourless $0.32 \times 0.28 \times 0.25 \text{ mm}$
Data collection	
Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans	23127 measured reflections 6121 independent reflections 3900 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 33.2^\circ, \ \theta_{min} = 2.8^\circ$

$h = -23 \rightarrow 23$	
$k = -12 \rightarrow 11$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.058$	Hydrogen site location: inferred from
$wR(F^2) = 0.196$	neighbouring sites
S = 1.03	H-atom parameters constrained
6121 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1083P)^2 + 0.189P]$
216 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.41 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.25 \ m e \ m \AA^{-3}$

 $l = -22 \rightarrow 22$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1A	0.640 (2)	0.888 (2)	0.458 (2)	0.117 (3)	0.20 (3)
H1A1	0.6596	0.8863	0.4043	0.175*	0.20 (3)
H1A2	0.6970	0.8979	0.5243	0.175*	0.20 (3)
H1A3	0.5974	0.9805	0.4479	0.175*	0.20 (3)
C1B	0.6664 (8)	0.834 (2)	0.4528 (4)	0.117 (3)	0.80 (3)
H1B1	0.6854	0.7851	0.4044	0.175*	0.80 (3)
H1B2	0.7218	0.8351	0.5206	0.175*	0.80 (3)
H1B3	0.6444	0.9445	0.4316	0.175*	0.80 (3)
C2	0.50275 (11)	0.7283 (2)	0.36557 (11)	0.0484 (4)	
C3	0.48701 (12)	0.7903 (2)	0.27035 (12)	0.0532 (4)	
H3	0.5369	0.8465	0.2643	0.064*	
C4	0.39705 (12)	0.7686 (2)	0.18441 (11)	0.0477 (4)	
H4	0.3870	0.8102	0.1207	0.057*	
C5	0.32155 (9)	0.68542 (15)	0.19185 (9)	0.0332 (3)	
C6	0.33683 (9)	0.62281 (13)	0.28794 (8)	0.0278 (2)	
C7	0.42728 (10)	0.64540 (17)	0.37363 (9)	0.0372 (3)	
H7	0.4377	0.6044	0.4376	0.045*	
C8	0.25554 (8)	0.53368 (14)	0.29997 (8)	0.0279 (2)	
H8	0.2826	0.5052	0.3735	0.034*	
C9	0.22779 (9)	0.37267 (14)	0.24099 (9)	0.0310(2)	
C10	0.28657 (13)	0.23670 (18)	0.28828 (12)	0.0516 (4)	
H10	0.3393	0.2477	0.3541	0.062*	

C11	0.26797 (18)	0.0857 (2)	0.23924 (16)	0.0808 (7)
H11	0.3072	-0.0042	0.2728	0.097*
C12	0.19121 (17)	0.0676 (2)	0.14040 (16)	0.0775 (7)
H12	0.1782	-0.0332	0.1064	0.093*
C13	0.13489 (12)	0.20355 (17)	0.09422 (12)	0.0478 (4)
C14	0.15003 (9)	0.35523 (14)	0.14216 (10)	0.0335 (2)
H14	0.1091	0.4436	0.1090	0.040*
C15	0.16393 (11)	0.7236 (2)	0.35184 (10)	0.0447 (3)
C16	0.07682 (16)	0.8327 (3)	0.32137 (16)	0.0799 (7)
H16A	0.0179	0.7684	0.2885	0.120*
H16B	0.0768	0.9151	0.2740	0.120*
H16C	0.0797	0.8848	0.3820	0.120*
N1	0.17154 (8)	0.64005 (14)	0.27656 (8)	0.0348 (2)
H1	0.1263	0.6493	0.2136	0.042*
N2	0.05722 (11)	0.18961 (17)	-0.01317 (11)	0.0577 (4)
01	0.58945 (9)	0.7410 (2)	0.45516 (10)	0.0795 (5)
O2	0.23072 (7)	0.66466 (13)	0.11020 (7)	0.0423 (2)
H2	0.2299	0.7038	0.0578	0.063*
O3	0.05139 (15)	0.06269 (19)	-0.06005 (12)	0.1014 (7)
O4	0.00217 (11)	0.30376 (18)	-0.05160 (11)	0.0816 (5)
O5	0.22599 (10)	0.7079 (2)	0.44251 (9)	0.0746 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1A	0.050 (3)	0.233 (7)	0.0560 (14)	-0.069 (5)	0.0140 (19)	0.011 (3)
C1B	0.050 (3)	0.233 (7)	0.0560 (14)	-0.069 (5)	0.0140 (19)	0.011 (3)
C2	0.0342 (7)	0.0719 (10)	0.0316 (6)	-0.0132 (6)	0.0086 (6)	0.0049 (6)
C3	0.0426 (8)	0.0758 (11)	0.0417 (8)	-0.0160 (7)	0.0199 (7)	0.0096 (7)
C4	0.0465 (8)	0.0653 (9)	0.0314 (6)	-0.0103 (7)	0.0180 (6)	0.0115 (6)
C5	0.0347 (6)	0.0399 (6)	0.0226 (5)	-0.0013 (5)	0.0111 (5)	0.0041 (4)
C6	0.0304 (5)	0.0314 (5)	0.0214 (4)	0.0003 (4)	0.0118 (4)	0.0018 (4)
C7	0.0344 (6)	0.0493 (7)	0.0238 (5)	-0.0044 (5)	0.0100 (5)	0.0049 (5)
C8	0.0300 (5)	0.0332 (5)	0.0188 (4)	-0.0004 (4)	0.0098 (4)	0.0001 (3)
C9	0.0334 (6)	0.0320 (5)	0.0252 (5)	-0.0019 (4)	0.0116 (5)	0.0010 (4)
C10	0.0575 (9)	0.0393 (7)	0.0350 (7)	0.0069 (6)	0.0017 (7)	0.0016 (5)
C11	0.0947 (16)	0.0388 (8)	0.0589 (11)	0.0212 (9)	-0.0076 (11)	-0.0013 (7)
C12	0.0909 (15)	0.0358 (7)	0.0598 (11)	0.0108 (8)	-0.0046 (10)	-0.0117 (7)
C13	0.0477 (8)	0.0378 (6)	0.0380 (7)	0.0005 (6)	0.0026 (6)	-0.0079 (5)
C14	0.0328 (6)	0.0327 (5)	0.0294 (5)	0.0003 (4)	0.0095 (5)	-0.0018 (4)
C15	0.0397 (7)	0.0641 (9)	0.0296 (6)	0.0056 (6)	0.0154 (6)	-0.0126 (6)
C16	0.0686 (13)	0.1103 (17)	0.0559 (11)	0.0371 (12)	0.0245 (10)	-0.0197 (11)
N1	0.0314 (5)	0.0479 (6)	0.0216 (4)	0.0042 (4)	0.0092 (4)	-0.0058 (4)
N2	0.0559 (8)	0.0492 (7)	0.0434 (7)	0.0002 (6)	0.0016 (6)	-0.0162 (6)
01	0.0415 (7)	0.1398 (13)	0.0397 (6)	-0.0371 (8)	0.0038 (5)	0.0145 (7)
O2	0.0397 (5)	0.0583 (6)	0.0221 (4)	-0.0068 (4)	0.0085 (4)	0.0098 (4)
03	0.1210 (15)	0.0656 (9)	0.0623 (9)	0.0099 (9)	-0.0052 (9)	-0.0328 (7)
O4	0.0698 (9)	0.0699 (8)	0.0517 (7)	0.0233 (7)	-0.0179 (7)	-0.0195 (6)

05	0.0692 (9)	0.1152 (11)	0.0278 (5)	0.0295 (8)	0.0124 (6)	-0.0204 (6)
Geome	etric parameters (Å	, <i>o</i>)				
C1A-	-01	1.416 (4	4)	C9—C14		1.3888 (17)
C1A-	-H1A1	0.9600		C9—C10		1.3920 (18)
C1A-	-H1A2	0.9600		C10-C11		1.382 (2)
C1A-	-H1A3	0.9600		C10—H10		0.9300
C1B—	-01	1.416 (4	1)	C11—C12		1.384 (3)
C1B-	-H1B1	0.9600		C11—H11		0.9300
C1B-	-H1B2	0.9600		C12—C13		1.373 (2)
C1B-	-H1B3	0.9600		С12—Н12		0.9300
C2—C	01	1.3714	(18)	C13—C14		1.3827 (18)
C2—C	23	1.386 (2	2)	C13—N2		1.4685 (19)
C2—C	27	1.390 (2	2)	C14—H14		0.9300
С3—С	24	1.382 (2	2)	C15—O5		1.2264 (18)
C3—H	13	0.9300		C15—O5		1.2264 (18)
C4—C	C5	1.3872	(18)	C15—N1		1.3375 (15)
C4—H	14	0.9300		C15—C16		1.491 (2)
С5—С	02	1.3623	(15)	C16—H16A		0.9600
С5—С	C6	1.4010	(15)	C16—H16B		0.9600
С6—С	27	1.3854	(17)	C16—H16C		0.9600
С6—С	28	1.5199	(16)	N1—H1		0.8600
C7—H	I7	0.9300		N2—O4		1.2052 (19)
C8—N	J1	1.4561	(15)	N2—O3		1.2172 (18)
C8—C	29	1.5149	(16)	O2—H2		0.8200
C8—H	18	0.9800				
01-0	C1A—H1A1	109.5		С11—С10—С9		121.21 (14)
01-0	C1A—H1A2	109.5		C11—C10—H10		119.4
01-0	C1A—H1A3	109.5		С9—С10—Н10		119.4
01-0	C1B—H1B1	109.5		C10-C11-C12		120.34 (15)
01-0	C1B—H1B2	109.5		C10-C11-H11		119.8
H1B1-		109.5		C12—C11—H11		119.8
01-0	C1B—H1B3	109.5		C13—C12—C11		117.69 (14)
H1B1-		109.5		С13—С12—Н12		121.2
H1B2-		109.5		C11—C12—H12		121.2
01-0	С2—С3	124.59	(13)	C12—C13—C14		123.38 (14)
01-0	С2—С7	115.97	(12)	C12—C13—N2		118.51 (13)
С3—С	С2—С7	119.43	(13)	C14—C13—N2		118.06 (12)
C4—C	C3—C2	119.91	(13)	C13—C14—C9		118.51 (12)
C4—C	С3—Н3	120.0		C13—C14—H14		120.7
C2—C	С3—Н3	120.0		C9—C14—H14		120.7
С3—С	C4—C5	120.94	(12)	O5—C15—N1		120.63 (13)
С3—С	C4—H4	119.5		O5—C15—N1		120.63 (13)
С5—С	C4—H4	119.5		O5—C15—C16		121.81 (13)
02—0	C5—C4	123.24	(11)	O5—C15—C16		121.81 (13)
02—0	С5—С6	117.27	(11)	N1—C15—C16		117.56 (13)

supporting information

C4—C5—C6	119.46 (12)	C15—C16—H16A	109.5
C7—C6—C5	119.13 (11)	C15—C16—H16B	109.5
C7—C6—C8	119.67 (9)	H16A—C16—H16B	109.5
C5—C6—C8	121.19 (10)	C15—C16—H16C	109.5
C6—C7—C2	121.12 (11)	H16A—C16—H16C	109.5
С6—С7—Н7	119.4	H16B—C16—H16C	109.5
С2—С7—Н7	119.4	C15—N1—C8	120.75 (11)
N1—C8—C9	113.16 (10)	C15—N1—H1	119.6
N1—C8—C6	111.96 (9)	C8—N1—H1	119.6
C9—C8—C6	112.27 (9)	O4—N2—O3	122.58 (15)
N1—C8—H8	106.3	O4—N2—C13	119.06 (12)
С9—С8—Н8	106.3	O3—N2—C13	118.36 (14)
С6—С8—Н8	106.3	C2—O1—C1B	118.2 (3)
C14—C9—C10	118.84 (11)	C2	111.8 (10)
C14—C9—C8	123.88 (10)	С5—О2—Н2	109.5
C10—C9—C8	117.24 (11)		
O1—C2—C3—C4	179.06 (19)	C9—C10—C11—C12	1.5 (4)
C7—C2—C3—C4	-0.4 (3)	C10-C11-C12-C13	-0.4 (4)
C2—C3—C4—C5	0.2 (3)	C11—C12—C13—C14	-1.3 (4)
C3—C4—C5—O2	178.11 (15)	C11—C12—C13—N2	176.0 (2)
C3—C4—C5—C6	0.1 (2)	C12—C13—C14—C9	1.9 (3)
O2—C5—C6—C7	-178.18 (11)	N2-C13-C14-C9	-175.45 (14)
O2—C5—C6—C8	0.70 (17)	C10-C9-C14-C13	-0.8(2)
C4—C5—C6—C8	178.87 (12)	C8—C9—C14—C13	176.87 (13)
C5—C6—C7—C2	-0.3 (2)	O5-C15-N1-C8	-2.4 (2)
C8—C6—C7—C2	-179.14 (13)	O5—C15—N1—C8	-2.4 (2)
O1—C2—C7—C6	-179.05 (15)	C16-C15-N1-C8	178.72 (17)
C3—C2—C7—C6	0.5 (2)	C9—C8—N1—C15	138.63 (13)
C7—C6—C8—N1	116.41 (12)	C6—C8—N1—C15	-93.27 (14)
C5—C6—C8—N1	-62.46 (13)	C12-C13-N2-O4	173.9 (2)
C7—C6—C8—C9	-115.02 (12)	C14—C13—N2—O4	-8.6 (3)
C5—C6—C8—C9	66.11 (14)	C12—C13—N2—O3	-6.4 (3)
N1-C8-C9-C14	32.10 (15)	C14—C13—N2—O3	171.07 (19)
C6—C8—C9—C14	-95.83 (14)	C3—C2—O1—C1B	4.8 (10)
N1-C8-C9-C10	-150.24 (13)	C7—C2—O1—C1B	-175.7 (9)
C6—C8—C9—C10	81.83 (14)	C3—C2—O1—C1A	32.3 (18)
C14—C9—C10—C11	-0.8 (3)	C7—C2—O1—C1A	-148.2 (18)
C8—C9—C10—C11	-178.63 (19)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	Н…А	$D \cdots A$	D—H···A
0.82	1.80	2.617 (2)	179
0.86	2.30	3.159 (2)	174
0.93	2.47	3.320 (2)	152
0.93	2.58	3.397 (2)	147
0.93	2.55	3.470 (2)	169
	<i>D</i> —H 0.82 0.86 0.93 0.93 0.93	D—H H···A 0.82 1.80 0.86 2.30 0.93 2.47 0.93 2.58 0.93 2.55	D—HH···A D ···A0.821.802.617 (2)0.862.303.159 (2)0.932.473.320 (2)0.932.583.397 (2)0.932.553.470 (2)

supporting information

С8—Н8…О5	0.98	2.30	2.714 (2)	105
C11—H11··· $Cg1^{iv}$	0.93	2.83	3.680 (2)	153
$C1B$ — $H1B1$ ··· $Cg2^{v}$	0.96	2.61	3.531 (2)	160

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) -x+1, y+1/2, -z+1/2.