

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

8-(Biphenyl-2-yl)-7,9-diphenyl-8*H*-cyclopenta[*a*]acenaphthylen-8-ol

Peter G. Jones,^a* Marc Debeaux,^b Henning Hopf,^c Wolfgang Kowalsky^b and Hans-Hermann Johannes^b

^aInstitut für Anorganische und Analytische Chemie, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, ^bLabor für Elektrooptik am Institut für Hochfrequenztechnik, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ^cInstitut für Organische Chemie, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Received 25 March 2009; accepted 26 March 2009

Key indicators: single-crystal X-ray study; T = 103 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.125; data-to-parameter ratio = 21.5.

In the title compound, $C_{39}H_{26}O$, the cyclopenta[*a*]acenaphthylene skeleton displays the expected distortions, with formal sp^2 bond angles as high as C-C-C =142.50 (10)°. The OH group forms intermolecular hydrogen bonds *via* x-axis translation to the centroid (*Cg*) of the pendant phenyl ring of the biphenyl system, with $H \cdots Cg =$ 2.41 Å and $O-H \cdots Cg = 153^\circ$.

Related literature

For related literature, see: Saragi *et al.* (2007); Velusamy *et al.* (2007).

Experimental

Crystal data

 $C_{39}H_{26}O$ $V = 2592.7 (3) Å^3$
 $M_r = 510.60$ Z = 4

 Monoclinic, $P2_1/n$ Mo K\alpha radiation

 a = 7.3837 (4) Å $\mu = 0.08 \text{ mm}^{-1}$

 b = 18.4001 (12) Å T = 103 K

 c = 19.2505 (12) Å $0.35 \times 0.20 \times 0.20 \text{ mm}$
 $\beta = 97.549 (3)^{\circ}$ $0.35 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\rm min} = 0.893, T_{\rm max} = 0.985$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.125$ S = 1.027857 reflections 365 parameters H atoms treated by a mixture of independent and constrained

53233 measured reflections

 $R_{\rm int} = 0.036$

7857 independent reflections

6335 reflections with $I > 2\sigma(I)$

independent and constraint refinement $\Delta \rho_{max} = 0.46 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL97*.

The authors thank the Bundesministerium für Bildung und Forschung (BMBF 01 BD 0687) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2916).

References

- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Saragi, T. P. I., Spehr, T., Siebert, A., Fuhrmann-Lieker, T. & Salbeck, J. (2007). *Chem. Rev.* 107, 1011–1065.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Velusamy, M., Thomas, K. R. J., Chen, C.-H., Lin, J. T., Wen, Y. S., Hsieh, W.-T., Lai, C.-H. & Chou, P.-T. (2007). *Dalton Trans.* pp. 3025–3034.

supporting information

Acta Cryst. (2009). E65, o927 [doi:10.1107/S1600536809011222]

8-(Biphenyl-2-yl)-7,9-diphenyl-8H-cyclopenta[a]acenaphthylen-8-ol

Peter G. Jones, Marc Debeaux, Henning Hopf, Wolfgang Kowalsky and Hans-Hermann Johannes

S1. Comment

The title compound (I) is a derivative of 7,9-diphenyl-8*H*-cyclopenta[*a*]acenaphthylen-8-one, an interesting starting compound for optoelectronic materials (Velusamy *et al.*, 2007). Spiro compounds with orthogonally fixed aromatic moieties are known to form stable molecular glasses, an important prerequisite of materials for optoelectronic applications (Saragi *et al.*, 2007). We have synthesized the title compound by addition of biphenyl-2-yl lithium (III) to the ketone II with a view to generating a corresponding spiro compound, which could combine both attractive electronic properties and amorphous stability, by further cyclocondensation.

The molecule of I is shown in Fig. 1. The cyclopenta[*a*]acenaphthylene skeleton displays the expected distortions, with formally sp^2 angles as high as C7—C6B—C6A 142.50 (10)°. The 15 atoms of this skeleton are reasonably coplanar (r.m.s.d. 0.09 Å) but a better description is of the fused cyclopentadiene (r.m.s.d. 0.030 Å) subtending an interplanar angle of 10.52 (1)° with the ten atoms of the naphthalenoid moiety plus the atoms C6B and C9A (r.m.s.d. 0.037 Å). With the phenyl rings C10–15, C16–21, C22–27 it subtends angles of 33.50 (4), 30.51 (4) and 83.89 (4)° respectively. The biphenyl interplanar angle is 76.93 (4)°.

The OH group does not form intermolecular hydrogen bonds with its counterparts in neighbouring molecules, presumably for steric reasons. Instead, the acceptor is the centroid of ring C28–33, with H01···Cent 2.41 Å, O— H01···Cent 153°, operator x - 1, y, z.

S2. Experimental

2-Bromobiphenyl (900 mg, 3.86 mmol) in dry THF (10 ml) was treated with a 1.6 *M* solution of *n*-butyl lithium in *n*-hexane (2.81 ml, 4.50 mmol) at -80 °C. The mixture was stirred for 1 h at -80 °C and added to a suspension of 7,9-diphenyl-8*H*-cyclopenta[*a*]acenaphthylen-8-one (1.38 g, 3.86 mmol) in dry THF (25 ml). After 4 h of stirring under reflux, a saturated aqueous solution of ammonium chloride (50 ml) was added. Extraction with dichloromethane (3 × 50 ml), drying (MgSO₄) and concentration afforded the crude product, which was purified by flash chromatography on silica gel (CH₂Cl₂/*n*-hexane, 1:1; R_f = 0.32). The title compound was obtained as a yellow microcrystalline solid (597 mg, 30%), mp 244 °C. Elemental analysis: calculated for C₃₉H₂₆O: C 91.73, H 5.13%; found: C 91.79, 5.07%. Spectroscopic analysis: ¹H NMR (400 MHz, CDCl₃) δ = 8.29 (dd, J = 8.1, 1.3, 1 H), 7.75 (d, J = 7.1, 2 H), 7.68–7.62 (m, 6 H), 7.48–7.39 (m, 3 H), 7.37–7.24 (m, 7 H), 6.92 (dd, J = 7.5, 1.4, 1 H), 6.83 (dd, J = 7.9, 1.5, 2 H), 6.47 (dd, J = 7.7, 7.7, 2 H), 6.27–6.21 (m, 1 H), 2.50 p.p.m. (s, 1 H, OH); ¹³C NMR (101 MHz, CDCl₃) δ = 145.2 (*s*), 144.1 (*s*), 141.0 (*s*), 140.5 (*s*), 140.4 (*s*), 137.1 (*s*), 134.4 (*s*), 132.4 (*s*), 131.6 (*s*), 131.4 (*d*), 128.8 (*d*), 128.2 (*d*), 128.1 (*d*), 127.7 (*d*), 127.5 (*d*), 127.4 (*d*), 127.4 (*d*), 127.1 (*d*), 126.0 (*d*), 125.6 (*d*), 125.5 (*d*), 119.2 (*d*), 96.3 p.p.m. (*s*).

S3. Refinement

The hydroxyl hydrogen was identified in a difference synthesis and refined freely. Other hydrogen atoms were included using a riding model with C—H 0.95 Å; U(H) values were fixed at $1.2 \times U_{eq}(C)$ of the parent C atom.

Figure 1

The formula unit of the title compound in the crystal. Ellipsoids represent 50% probability levels. Only the first two atoms of phenyl rings are numbered; other atoms follow in sequence.

Figure 2

Preparation of the title compound.

8-(Biphenyl-2-yl)-7,9-diphenyl-8H-cyclopenta[a]acenaphthylen-8-ol

Crystal data

 $C_{39}H_{26}O$ $M_r = 510.60$ Monoclinic, $P2_1/n$ a = 7.3837 (4) Å b = 18.4001 (12) Å c = 19.2505 (12) Å $\beta = 97.549$ (3)° V = 2592.7 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.893, T_{\max} = 0.985$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.125$ S = 1.027857 reflections 365 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1072 $D_x = 1.308 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9892 reflections $\theta = 2.4-31.4^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 103 KPrism, yellow $0.35 \times 0.20 \times 0.20 \text{ mm}$

53233 measured reflections 7857 independent reflections 6335 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 30.5^\circ, \theta_{min} = 2.4^\circ$ $h = -10 \rightarrow 9$ $k = -26 \rightarrow 26$ $l = -27 \rightarrow 27$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0699P)^2 + 0.9032P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.46$ e Å⁻³ $\Delta\rho_{min} = -0.22$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles: correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 7.3583 (0.0005) x + 0.7119 (0.0054) v - 3.9201 (0.0047) z = 0.2623 (0.0032)* -0.0009 (0.0010) C1 * -0.0525 (0.0012) C2 * -0.0232 (0.0012) C3 * 0.0267 (0.0012) C3A * 0.0072 (0.0012) C4 * -0.0118 (0.0011) C5 * -0.0169 (0.0010) C6 * 0.0149 (0.0009) C6A * 0.0575 (0.0010) C6A1 * -0.0612 (0.0008) C6B * 0.0602 (0.0010) C9B Rms deviation of fitted atoms = 0.03747.3441 (0.0006) x - 1.4269 (0.0094) y - 1.2091 (0.0098) z = 1.2752 (0.0064) Angle to previous plane (with approximate e.s.d.) = 10.52 (0.01)* 0.0010 (0.0006) C6B * -0.0289 (0.0006) C9A * 0.0416 (0.0006) C9 * -0.0370 (0.0006) C8 * 0.0233 (0.0006) C7 Rms deviation of fitted atoms = 0.02995.9686(0.0021) x - 10.0295(0.0075) v + 2.1998(0.0091) z = 1.0584(0.0079)Angle to previous plane (with approximate e.s.d.) = 30.51(0.04)* -0.0149 (0.0007) C16 * 0.0092 (0.0008) C17 * 0.0028 (0.0009) C18 * -0.0090 (0.0009) C19 * 0.0030 (0.0008) C20 * 0.0090 (0.0008) C21 Rms deviation of fitted atoms = 0.00905.7246(0.0022) x - 6.2243(0.0078) y + 8.2177(0.0079) z = 5.2956(0.0036)Angle to previous plane (with approximate e.s.d.) = 21.61(0.05)* 0.0022 (0.0007) C10 * -0.0022 (0.0008) C11 * -0.0003 (0.0008) C12 * 0.0027 (0.0008) C13 * -0.0026 (0.0008) C14 * 0.0002 (0.0008) C15 Rms deviation of fitted atoms = 0.00207.3441 (0.0006) x - 1.4269 (0.0094) y - 1.2091 (0.0098) z = 1.2752 (0.0064) Angle to previous plane (with approximate e.s.d.) = 33.50(0.04)* 0.0010 (0.0006) C6B * -0.0289 (0.0006) C9A * 0.0416 (0.0006) C9 * -0.0370 (0.0006) C8 * 0.0233 (0.0006) C7 Rms deviation of fitted atoms = 0.0299-1.0281 (0.0031) x + 7.1737 (0.0070) y + 17.7236 (0.0033) z = 12.7054 (0.0026)Angle to previous plane (with approximate e.s.d.) = 83.89(0.04)* -0.0019 (0.0007) C22 * 0.0011 (0.0007) C23 * 0.0018 (0.0007) C24 * -0.0038 (0.0007) C25 * 0.0030 (0.0007) C26 * -0.0001 (0.0007) C27 Rms deviation of fitted atoms = 0.00236.5435 (0.0016) x - 8.3888 (0.0073) y - 0.6702 (0.0088) z = 2.5647 (0.0063)Angle to previous plane (with approximate e.s.d.) = 76.93 (0.04) * -0.0148 (0.0007) C28 * 0.0087 (0.0007) C29 * 0.0045 (0.0008) C30 * -0.0117 (0.0008) C31 * 0.0055 (0.0008) C32 * 0.0078 (0.0008) C33 Rms deviation of fitted atoms = 0.0095**Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 ,

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	1 • . •	• • • •	. 1. 1		221
Fractional atomic coordinates	and isotropic or	eauwalent isotron	e displacement	narameters L	A-1
1 racional alonne coorainales	and ison opic of	equivalent isotrop	e aispiacemeni	pur unicici s (1	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0	0.13493 (10)	0.15448 (4)	0.67183 (4)	0.01423 (15)	
H01	0.053 (3)	0.1864 (10)	0.6540 (9)	0.036 (5)*	
C1	0.24115 (17)	0.31692 (6)	0.44354 (6)	0.0200 (2)	
H1	0.2319	0.2716	0.4197	0.024*	
C2	0.2079 (2)	0.38281 (7)	0.40623 (6)	0.0265 (3)	
H2	0.1741	0.3809	0.3569	0.032*	

C3	0.2226 (2)	0.44958 (7)	0.43856(7)	0.0282 (3)
Н3	0.2022	0.4926	0.4113	0.034*
C3A	0.26827 (18)	0.45465 (6)	0.51240 (6)	0.0211 (2)
C4	0.2812 (2)	0.51906 (6)	0.55328 (7)	0.0267 (3)
H4	0.2648	0.5651	0.5309	0.032*
C5	0.31712 (18)	0.51523 (6)	0.62491 (7)	0.0233 (2)
Н5	0.3255	0.5591	0.6511	0.028*
C6	0.34231 (15)	0.44817 (6)	0.66134 (6)	0.0168 (2)
H6	0.3655	0.4473	0.7111	0.020*
C6A	0.33272 (14)	0.38416 (5)	0.62358 (5)	0.01327 (19)
C6B	0.33853 (14)	0.30597 (5)	0.63970 (5)	0.01192 (18)
C6A1	0.29829 (15)	0.38892 (6)	0.54897 (5)	0.0151 (2)
C7	0.34110 (14)	0.25807 (5)	0.69336 (5)	0.01173 (18)
C8	0.31266 (13)	0.18120 (5)	0.66124 (5)	0.01113 (18)
C9	0.31279 (14)	0.19389 (5)	0.58200 (5)	0.01183 (18)
C9A	0.31558 (14)	0.26635 (5)	0.57176 (5)	0.01246 (18)
C9B	0.28743 (15)	0.31995 (6)	0.51537 (5)	0.01469 (19)
C10	0.31073 (14)	0.13514 (6)	0.53058 (5)	0.01317 (19)
C11	0.40373 (15)	0.14418 (6)	0.47211 (5)	0.0160 (2)
H11	0.4617	0.1892	0.4653	0.019*
C12	0.41254 (16)	0.08846 (7)	0.42400 (6)	0.0201 (2)
H12	0.4764	0.0956	0.3848	0.024*
C13	0.32818 (17)	0.02248 (7)	0.43315 (6)	0.0217 (2)
H13	0.3346	-0.0158	0.4004	0.026*
C14	0.23426 (16)	0.01256 (6)	0.49042 (6)	0.0197 (2)
H14	0.1755	-0.0325	0.4965	0.024*
C15	0.22550 (15)	0.06821 (6)	0.53901 (6)	0.0164 (2)
H15	0.1614	0.0607	0.5781	0.020*
C16	0.34884 (14)	0.27215 (6)	0.76866 (5)	0.01294 (19)
C17	0.26048 (16)	0.22669 (6)	0.81206 (6)	0.0170 (2)
H17	0.1996	0.1842	0.7931	0.020*
C18	0.26098 (17)	0.24311 (7)	0.88270 (6)	0.0218 (2)
H18	0.1990	0.2121	0.9113	0.026*
C19	0.35097 (18)	0.30421 (7)	0.91169 (6)	0.0230 (2)
H19	0.3495	0.3155	0.9598	0.028*
C20	0.44350 (16)	0.34891 (6)	0.86992 (6)	0.0201 (2)
H20	0.5069	0.3905	0.8896	0.024*
C21	0.44323 (15)	0.33267 (6)	0.79935 (6)	0.0158 (2)
H21	0.5082	0.3632	0.7714	0.019*
C22	0.45086 (14)	0.12448 (5)	0.69252 (5)	0.01134 (18)
C23	0.64062 (14)	0.13629 (5)	0.69892 (5)	0.01170 (18)
C24	0.75989 (14)	0.08196 (6)	0.72787 (5)	0.01409 (19)
H24	0.8879	0.0901	0.7323	0.017*
C25	0.69485 (15)	0.01641 (6)	0.75031 (6)	0.0156 (2)
H25	0.7775	-0.0202	0.7694	0.019*
C26	0.50835 (15)	0.00505 (6)	0.74447 (6)	0.0159 (2)
H26	0.4624	-0.0394	0.7602	0.019*
C27	0.38801 (14)	0.05834 (6)	0.71575 (5)	0.01441 (19)

H27	0.2602	0.0496	0.7118	0.017*	
C28	0.72295 (13)	0.20575 (5)	0.67853 (5)	0.01229 (18)	
C29	0.74001 (14)	0.22183 (6)	0.60887 (6)	0.0151 (2)	
H29	0.6963	0.1884	0.5729	0.018*	
C30	0.82100 (15)	0.28686 (6)	0.59174 (6)	0.0185 (2)	
H30	0.8314	0.2978	0.5442	0.022*	
C31	0.88645 (15)	0.33565 (6)	0.64425 (6)	0.0198 (2)	
H31	0.9391	0.3804	0.6326	0.024*	
C32	0.87449 (16)	0.31872 (6)	0.71380 (6)	0.0190 (2)	
H32	0.9217	0.3515	0.7498	0.023*	
C33	0.79400 (15)	0.25429 (6)	0.73091 (6)	0.0153 (2)	
H33	0.7871	0.2430	0.7787	0.018*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0	0.0097 (3)	0.0152 (3)	0.0180 (4)	-0.0002 (3)	0.0025 (3)	0.0021 (3)
C1	0.0290 (6)	0.0174 (5)	0.0134 (5)	0.0004 (4)	0.0021 (4)	0.0017 (4)
C2	0.0419 (8)	0.0229 (6)	0.0145 (5)	0.0025 (5)	0.0021 (5)	0.0054 (4)
C3	0.0460 (8)	0.0190 (6)	0.0194 (6)	0.0038 (5)	0.0039 (5)	0.0081 (4)
C3A	0.0292 (6)	0.0155 (5)	0.0193 (5)	0.0018 (4)	0.0058 (4)	0.0040 (4)
C4	0.0419 (8)	0.0121 (5)	0.0268 (6)	0.0029 (5)	0.0073 (5)	0.0039 (4)
C5	0.0329 (6)	0.0123 (5)	0.0256 (6)	0.0011 (4)	0.0065 (5)	-0.0016 (4)
C6	0.0192 (5)	0.0139 (5)	0.0178 (5)	0.0007 (4)	0.0042 (4)	-0.0016 (4)
C6A	0.0133 (4)	0.0114 (4)	0.0154 (4)	0.0001 (3)	0.0030 (3)	0.0003 (3)
C6B	0.0118 (4)	0.0114 (4)	0.0127 (4)	0.0008 (3)	0.0023 (3)	-0.0009 (3)
C6A1	0.0172 (5)	0.0129 (5)	0.0154 (5)	0.0003 (4)	0.0032 (4)	0.0016 (4)
C7	0.0108 (4)	0.0119 (4)	0.0125 (4)	0.0011 (3)	0.0018 (3)	-0.0011 (3)
C8	0.0107 (4)	0.0112 (4)	0.0117 (4)	0.0001 (3)	0.0022 (3)	0.0000 (3)
C9	0.0116 (4)	0.0127 (4)	0.0110 (4)	0.0003 (3)	0.0010 (3)	-0.0005 (3)
C9A	0.0133 (4)	0.0123 (4)	0.0120 (4)	0.0001 (3)	0.0024 (3)	-0.0004 (3)
C9B	0.0173 (5)	0.0129 (4)	0.0141 (5)	0.0002 (4)	0.0029 (4)	0.0013 (4)
C10	0.0134 (4)	0.0131 (4)	0.0122 (4)	0.0014 (3)	-0.0013 (3)	-0.0015 (3)
C11	0.0173 (5)	0.0162 (5)	0.0141 (4)	0.0014 (4)	0.0011 (4)	-0.0015 (4)
C12	0.0226 (5)	0.0234 (6)	0.0139 (5)	0.0043 (4)	0.0015 (4)	-0.0040 (4)
C13	0.0257 (6)	0.0197 (5)	0.0182 (5)	0.0051 (4)	-0.0031 (4)	-0.0073 (4)
C14	0.0222 (5)	0.0138 (5)	0.0215 (5)	-0.0002 (4)	-0.0036 (4)	-0.0039 (4)
C15	0.0172 (5)	0.0153 (5)	0.0160 (5)	-0.0009 (4)	-0.0002 (4)	-0.0013 (4)
C16	0.0130 (4)	0.0132 (4)	0.0127 (4)	0.0033 (3)	0.0020 (3)	-0.0003 (3)
C17	0.0202 (5)	0.0164 (5)	0.0145 (5)	-0.0002 (4)	0.0031 (4)	0.0011 (4)
C18	0.0265 (6)	0.0255 (6)	0.0146 (5)	-0.0008 (5)	0.0067 (4)	0.0016 (4)
C19	0.0272 (6)	0.0286 (6)	0.0135 (5)	0.0018 (5)	0.0044 (4)	-0.0039 (4)
C20	0.0215 (5)	0.0213 (5)	0.0169 (5)	-0.0004 (4)	0.0007 (4)	-0.0058 (4)
C21	0.0163 (5)	0.0161 (5)	0.0149 (5)	0.0001 (4)	0.0019 (4)	-0.0018 (4)
C22	0.0127 (4)	0.0109 (4)	0.0106 (4)	0.0008 (3)	0.0019 (3)	-0.0006 (3)
C23	0.0134 (4)	0.0114 (4)	0.0105 (4)	0.0001 (3)	0.0022 (3)	-0.0010 (3)
C24	0.0129 (4)	0.0148 (5)	0.0144 (4)	0.0010 (4)	0.0011 (3)	-0.0010 (4)
C25	0.0181 (5)	0.0136 (5)	0.0151 (5)	0.0039 (4)	0.0021 (4)	0.0010 (4)

supporting information

C26	0.0195 (5)	0.0112 (4)	0.0178 (5)	0.0007 (4)	0.0051 (4)	0.0020 (4)
C27	0.0138 (5)	0.0133 (4)	0.0165 (5)	-0.0010 (4)	0.0035 (4)	0.0008 (4)
C28	0.0096 (4)	0.0118 (4)	0.0157 (4)	0.0008 (3)	0.0021 (3)	0.0008 (3)
C29	0.0133 (5)	0.0169 (5)	0.0147 (5)	-0.0003 (4)	0.0011 (4)	0.0003 (4)
C30	0.0160 (5)	0.0204 (5)	0.0197 (5)	-0.0007 (4)	0.0038 (4)	0.0054 (4)
C31	0.0154 (5)	0.0153 (5)	0.0291 (6)	-0.0018 (4)	0.0042 (4)	0.0037 (4)
C32	0.0172 (5)	0.0149 (5)	0.0249 (5)	-0.0022 (4)	0.0025 (4)	-0.0035 (4)
C33	0.0148 (5)	0.0147 (5)	0.0163 (5)	-0.0005 (4)	0.0021 (4)	-0.0014 (4)

Geometric parameters (Å, °)

O—C8	1.4408 (12)	C14—C15	1.3940 (15)
O—H01	0.879 (19)	C14—H14	0.9500
C1—C9B	1.3813 (15)	C15—H15	0.9500
C1—C2	1.4140 (16)	C16—C17	1.4024 (15)
C1—H1	0.9500	C16—C21	1.4024 (15)
C2—C3	1.3750 (18)	C17—C18	1.3925 (15)
С2—Н2	0.9500	С17—Н17	0.9500
C3—C3A	1.4201 (17)	C18—C19	1.3855 (18)
С3—Н3	0.9500	C18—H18	0.9500
C3A—C6A1	1.4023 (15)	C19—C20	1.3908 (17)
C3A—C4	1.4188 (17)	С19—Н19	0.9500
C4—C5	1.3714 (18)	C20—C21	1.3907 (15)
C4—H4	0.9500	C20—H20	0.9500
C5—C6	1.4194 (16)	C21—H21	0.9500
С5—Н5	0.9500	C22—C27	1.3967 (14)
C6—C6A	1.3810 (14)	C22—C23	1.4073 (14)
С6—Н6	0.9500	C23—C24	1.3988 (14)
C6A-C6A1	1.4280 (14)	C23—C28	1.4898 (14)
C6A—C6B	1.4711 (14)	C24—C25	1.3879 (15)
C6B—C7	1.3561 (14)	C24—H24	0.9500
C6B—C9A	1.4876 (14)	C25—C26	1.3827 (15)
C6A1—C9B	1.4219 (14)	С25—Н25	0.9500
C7—C16	1.4663 (14)	C26—C27	1.3885 (14)
С7—С8	1.5470 (14)	C26—H26	0.9500
C8—C22	1.5269 (14)	С27—Н27	0.9500
С8—С9	1.5433 (14)	C28—C29	1.3950 (14)
С9—С9А	1.3485 (14)	C28—C33	1.3967 (14)
C9—C10	1.4644 (14)	C29—C30	1.3964 (15)
C9A—C9B	1.4611 (14)	С29—Н29	0.9500
C10—C15	1.4021 (15)	C30—C31	1.3903 (17)
C10-C11	1.4032 (15)	С30—Н30	0.9500
C11—C12	1.3889 (15)	C31—C32	1.3886 (17)
С11—Н11	0.9500	С31—Н31	0.9500
C12—C13	1.3862 (18)	C32—C33	1.3852 (15)
С12—Н12	0.9500	С32—Н32	0.9500
C13—C14	1.3896 (18)	С33—Н33	0.9500
С13—Н13	0.9500		

C8—O—H01	107.9 (12)	C13—C14—C15	120.52 (11)
C9B—C1—C2	118.52 (11)	C13—C14—H14	119.7
C9B—C1—H1	120.7	C15—C14—H14	119.7
C2—C1—H1	120.7	C14—C15—C10	120.43 (10)
C3—C2—C1	122.55 (11)	C14—C15—H15	119.8
С3—С2—Н2	118.7	C10—C15—H15	119.8
C1—C2—H2	118.7	C17—C16—C21	117.85 (10)
C2—C3—C3A	120.40 (11)	C17—C16—C7	121.52 (9)
С2—С3—Н3	119.8	C21—C16—C7	120.63 (9)
СЗА—СЗ—НЗ	119.8	C18—C17—C16	120.70 (10)
C6A1—C3A—C4	116.57 (10)	C18—C17—H17	119.7
C6A1—C3A—C3	116.54 (11)	С16—С17—Н17	119.7
C4—C3A—C3	126.86 (11)	C19—C18—C17	120.60 (11)
C5—C4—C3A	120.32 (11)	C19—C18—H18	119.7
C5—C4—H4	119.8	C17—C18—H18	119.7
C3A—C4—H4	119.8	C18—C19—C20	119.54 (10)
C4—C5—C6	122.47 (11)	C18—C19—H19	120.2
C4—C5—H5	118.8	C20—C19—H19	120.2
C6—C5—H5	118.8	C21—C20—C19	119.99 (11)
C6A—C6—C5	119.14 (10)	C21—C20—H20	120.0
С6А—С6—Н6	120.4	С19—С20—Н20	120.0
С5—С6—Н6	120.4	C20—C21—C16	121.26 (10)
C6—C6A—C6A1	117.85 (9)	C20—C21—H21	119.4
C6—C6A—C6B	136.45 (10)	C16—C21—H21	119.4
C6A1—C6A—C6B	105.59 (9)	C27—C22—C23	118.39 (9)
C7—C6B—C6A	142.50 (10)	C27—C22—C8	119.27 (9)
C7—C6B—C9A	109.86 (9)	C23—C22—C8	122.35 (9)
C6A—C6B—C9A	107.27 (8)	C24—C23—C22	119.47 (9)
C3A—C6A1—C9B	123.07 (10)	C24—C23—C28	117.43 (9)
C3A—C6A1—C6A	123.60 (10)	C22—C23—C28	123.06 (9)
C9B—C6A1—C6A	113.25 (9)	C25—C24—C23	121.30 (10)
C6B—C7—C16	129.27 (9)	C25—C24—H24	119.3
C6B—C7—C8	107.59 (8)	C23—C24—H24	119.3
C16—C7—C8	122.84 (9)	C26—C25—C24	119.20 (10)
0	106.55 (8)	С26—С25—Н25	120.4
0	108.08 (8)	С24—С25—Н25	120.4
C22—C8—C9	113.96 (8)	C25—C26—C27	120.26 (10)
0	109.50 (8)	C25—C26—H26	119.9
C22—C8—C7	114.75 (8)	С27—С26—Н26	119.9
C9—C8—C7	103.83 (8)	C26—C27—C22	121.38 (10)
C9A—C9—C10	129.05 (9)	С26—С27—Н27	119.3
C9A—C9—C8	107.22 (8)	C22—C27—H27	119.3
C10 - C9 - C8	123.72 (9)	$C_{29} = C_{28} = C_{33}$	119.05 (10)
C_{2}	140.59 (10)	$C_{29} = C_{28} = C_{23}$	121.78 (9)
	110.99 (9)	$C_{23} = C_{28} = C_{23}$	119.08 (9)
$C_{A} = C_{A} = C_{A}$	108.13 (9)	C_{29} C_{29} C_{20} U_{20}	120.29 (10)
CI-C9B-C6A1	118.89 (10)	C28—C29—H29	119.9

C6A1—C9B—C9A105.69 (9)C31—C30—C29120.0C15—C10—C11118.12 (9)C31—C30—H30120.0C15—C10—C9122.35 (9)C29—C30—H30120.0C11—C10—C9119.47 (9)C32—C31—C30119.7C12—C11—C10121.20 (10)C32—C31—H31120.1C12—C11—H11119.4C30—C31—H31120.1C10—C11—H11119.4C33—C32—C31120.3C13—C12—C11120.04 (11)C33—C32—H32119.8	02 (10))) 75 (10)
C15—C10—C11118.12 (9)C31—C30—H30120.0C15—C10—C9122.35 (9)C29—C30—H30120.0C11—C10—C9119.47 (9)C32—C31—C30119.7C12—C11—C10121.20 (10)C32—C31—H31120.1C12—C11—H11119.4C30—C31—H31120.1C10—C11—H11119.4C33—C32—C31120.3C13—C12—C11120.04 (11)C33—C32—H32119.8)) 75 (10)
C15—C10—C9122.35 (9)C29—C30—H30120.0C11—C10—C9119.47 (9)C32—C31—C30119.7C12—C11—C10121.20 (10)C32—C31—H31120.1C12—C11—H11119.4C30—C31—H31120.1C10—C11—H11119.4C33—C32—C31120.3C13—C12—C11120.04 (11)C33—C32—H32119.8) 75 (10)
C11—C10—C9119.47 (9)C32—C31—C30119.7C12—C11—C10121.20 (10)C32—C31—H31120.1C12—C11—H11119.4C30—C31—H31120.1C10—C11—H11119.4C33—C32—C31120.3C13—C12—C11120.04 (11)C33—C32—H32119.8	75 (10)
C12—C11—C10121.20 (10)C32—C31—H31120.1C12—C11—H11119.4C30—C31—H31120.1C10—C11—H11119.4C33—C32—C31120.3C13—C12—C11120.04 (11)C33—C32—H32119.8	
C12—C11—H11119.4C30—C31—H31120.1C10—C11—H11119.4C33—C32—C31120.3C13—C12—C11120.04 (11)C33—C32—H32119.8	
C10—C11—H11119.4C33—C32—C31120.3C13—C12—C11120.04 (11)C33—C32—H32119.8	
C13—C12—C11 120.04 (11) C33—C32—H32 119.8	32 (10)
	3
C13—C12—H12 120.0 C31—C32—H32 119.8	3
C11—C12—H12 120.0 C32—C33—C28 120.5	52 (10)
C12—C13—C14 119.69 (10) C32—C33—H33 119.7	1
C12—C13—H13 120.2 C28—C33—H33 119.7	7
C14—C13—H13 120.2 C20 C55 1155 1151	
C9B—C1—C2—C3 1.0 (2) C6B—C9A—C9B—C6A1 1.46	(11)
C1—C2—C3—C3A -1.6 (2) C9A—C9—C10—C15 -149	.29 (11)
C2—C3—C3A—C6A1 0.6 (2) C8—C9—C10—C15 30.91	(15)
C2—C3—C3A—C4 –177.27 (14) C9A—C9—C10—C11 33.63	3 (16)
C6A1—C3A—C4—C5 –1.47 (19) C8—C9—C10—C11 –146	.17 (10)
C3-C3A-C4-C5 176.43 (14) C15-C10-C11-C12 -0.39	9 (16)
C3A—C4—C5—C6 –0.2 (2) C9—C10—C11—C12 176.8	31 (10)
C4—C5—C6—C6A 0.82 (19) C10—C11—C12—C13 0.16	(17)
C5-C6-C6A-C6A1 0.26 (16) C11-C12-C13-C14 0.30 ((17)
C5-C6-C6A-C6B -175.27 (12) C12-C13-C14-C15 -0.52	2 (17)
C6—C6A—C6B—C7 6.8 (2) C13—C14—C15—C10 0.29 ((17)
C6A1—C6A—C6B—C7 –169.06 (14) C11—C10—C15—C14 0.17 ((16)
C6—C6A—C6B—C9A 178.67 (12) C9—C10—C15—C14 -176	.95 (10)
C6A1—C6A—C6B—C9A 2.78 (11) C6B—C7—C16—C17 146.3	37 (11)
C4—C3A—C6A1—C9B 179.06 (11) C8—C7—C16—C17 -26.6	63 (15)
C3—C3A—C6A1—C9B 0.94 (18) C6B—C7—C16—C21 -32.5	59 (16)
C4—C3A—C6A1—C6A 2.63 (18) C8—C7—C16—C21 154.4	40 (10)
C3—C3A—C6A1—C6A –175.49 (11) C21—C16—C17—C18 2.52 ((16)
C6—C6A—C6A1—C3A –2.05 (16) C7—C16—C17—C18 –176	.48 (10)
C6B—C6A—C6A1—C3A 174.75 (11) C16—C17—C18—C19 -0.89	9 (18)
C6—C6A—C6A1—C9B -178.79 (10) C17—C18—C19—C20 -0.83	3 (19)
C6B—C6A—C6A1—C9B –1.99 (12) C18—C19—C20—C21 0.85 ((19)
C6A—C6B—C7—C16 -3.9 (2) C19—C20—C21—C16 0.86 ((18)
C9A—C6B—C7—C16 -175.60 (10) C17—C16—C21—C20 -2.51	l (16)
C6A—C6B—C7—C8 169.94 (13) C7—C16—C21—C20 176.4	49 (10)
C9A—C6B—C7—C8 –1.76 (11) O—C8—C22—C27 7.52	(12)
C6B—C7—C8—O –109.97 (9) C9—C8—C22—C27 –111.	.57 (10)
C16—C7—C8—O 64.36 (12) C7—C8—C22—C27 128.8	39 (10)
	.49 (8)
$C_{0B}-C_{1}-C_{8}-C_{22}$ 130.30 (9) $C_{1}-C_{8}-C_{22}-C_{23}$ -1/2	(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 (12)
C6B—C7—C8—C22 130.30 (9) O—C8—C22—C23 -172 C16—C7—C8—C22 -55.38 (12) C9—C8—C22—C23 68.42 C6B—C7—C8—C9 5.26 (10) C7—C8—C22—C23 -51.1	2 (12) 12 (12)
C6B—C7—C8—C22 130.30 (9) O—C8—C22—C23 -172 C16—C7—C8—C22 -55.38 (12) C9—C8—C22—C23 68.42 C6B—C7—C8—C9 5.26 (10) C7—C8—C22—C23 -51.1 C16—C7—C8—C9 179.59 (9) C27—C22—C23—C24 0.19 (0)	2 (12) 12 (12) (14)

C22—C8—C9—C9A C7—C8—C9—C9A	-132.62(9) -7.08(10)	C27—C22—C23—C28 C8—C22—C23—C28	-177.52(9) 2.49(14)
O-C8-C9-C10	-71.01 (11)	C22-C23-C24-C25	0.17 (15)
C22—C8—C9—C10	47.21 (13)	C28—C23—C24—C25	178.01 (9)
C7—C8—C9—C10	172.76 (9)	C23—C24—C25—C26	-0.63 (16)
С10—С9—С9А—С9В	13.9 (2)	C24—C25—C26—C27	0.73 (16)
C8—C9—C9A—C9B	-166.31 (13)	C25—C26—C27—C22	-0.38 (16)
С10—С9—С9А—С6В	-173.44 (10)	C23—C22—C27—C26	-0.08 (15)
C8—C9—C9A—C6B	6.38 (11)	C8—C22—C27—C26	179.91 (9)
C7—C6B—C9A—C9	-3.06 (12)	C24—C23—C28—C29	102.27 (12)
C6A—C6B—C9A—C9	-177.79 (9)	C22—C23—C28—C29	-79.98 (13)
C7—C6B—C9A—C9B	172.06 (9)	C24—C23—C28—C33	-74.17 (12)
C6A—C6B—C9A—C9B	-2.67 (11)	C22—C23—C28—C33	103.59 (12)
C2-C1-C9B-C6A1	0.52 (17)	C33—C28—C29—C30	-2.35 (15)
C2-C1-C9B-C9A	173.55 (12)	C23—C28—C29—C30	-178.79 (10)
C3A—C6A1—C9B—C1	-1.53 (17)	C28—C29—C30—C31	0.54 (16)
C6A—C6A1—C9B—C1	175.23 (10)	C29—C30—C31—C32	1.38 (17)
C3A—C6A1—C9B—C9A	-176.42 (10)	C30—C31—C32—C33	-1.47 (17)
C6A—C6A1—C9B—C9A	0.34 (12)	C31—C32—C33—C28	-0.37 (17)
C9—C9A—C9B—C1	0.6 (2)	C29—C28—C33—C32	2.27 (16)
C6B—C9A—C9B—C1	-172.20 (12)	C23—C28—C33—C32	178.81 (10)
C9—C9A—C9B—C6A1	174.27 (13)		