Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,6-Bis(2-chlorobenzylidene)cyclohexanone

Deyun Liu

Liaocheng Vocational and Technical College, Liaocheng, 252059, People's Republic of China

Correspondence e-mail: lcldy@163.com

Received 10 February 2009; accepted 2 March 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.045; wR factor = 0.124; data-to-parameter ratio = 14.2.

In the title molecule, $C_{20}H_{16}Cl_2O$, the central cyclohexanone ring adopts an envelope conformation. The two aromatic rings form a dihedral angle of 30.0 (1)°. The crystal packing exhibits weak intermolecular $C-H\cdots O$ hydrogen bonds and short $Cl\cdots O$ contacts [3.213 (3) Å].

Related literature

For general background, see: Tanaka & Toda (2000). For a similar crystal structure, see: Brinda *et al.* (2007).

Experimental

Crystal data $C_{20}H_{16}Cl_2O$ $M_r = 343.23$

Orthorhombic, *Pbca* a = 14.4004 (15) Å b = 8.1553 (10) Å c = 28.593 (3) Å $V = 3358.0 (6) \text{ Å}^3$ Z = 8

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.854, T_{max} = 0.937$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.124$ S = 1.062962 reflections

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$

 C20-H20\cdots O1ⁱ
 0.93
 2.51
 3.352 (4)
 151

 Symmetry code: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, z.$ $x = \frac{3}{2}, y - \frac{1}{2}, z.$ $x = \frac{3}{2}, y - \frac{1}{2}, z.$ $x = \frac{3}{2}, y - \frac{1}{2}, z.$

Mo $K\alpha$ radiation $\mu = 0.39 \text{ mm}^{-1}$

 $0.42 \times 0.32 \times 0.17 \text{ mm}$

13876 measured reflections

2962 independent reflections

1762 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 298 K

 $R_{\rm int} = 0.064$

208 parameters

 $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT* (Siemens, 1996); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Foundation of Liaocheng Vocational and Technical College.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2518).

References

- Brinda, Mudakavi, R., Chopra, D., Murthy, M. S. & Row, T. N. G. (2007). Acta Cryst. E63, 04494.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
- Tanaka, T. & Toda, F. (2000). Chem. Rev. 100, 1025-1074.

supporting information

Acta Cryst. (2009). E65, o694 [doi:10.1107/S1600536809007648]

2,6-Bis(2-chlorobenzylidene)cyclohexanone

Deyun Liu

S1. Comment

Development of new solid phase (solvent-free) reactions and transferring solution phase reactions to solid phase are subjects of recent interest in the context of generating libraries of molecules for the discovery of biologically active leads and also for the optimization of potent drug candidates (Tanaka & Toda, 2000).

In this paper, we describe the synthesis of the title compound, (I), starting from the fragrant aldehydes and cyclohexanone in the presence of NaOH under solvent-free conditions. This method can be considered as a general method for the synthesis of benzylidene cyclohexanones.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in 4-methyl-2,6-bis(2-naphthylmethylene) cyclohexan-1-one (Brinda *et al.*, 2007). The central cyclohexanone ring adopts an envelope conformation, the dihedral angles between the rings C8-C13 and C15-C20 is 30.0 (1)°.

The crystal packing exhibits short Cl···O contacts (Table 1) and weak intermolecular C—H···O hydrogen bonds (Table 2).

S2. Experimental

2-Chlorobenzaldehyde (2 mmol) and cyclohexanone (1.0 mmol), NaOH (2.0 mmol) were mixed in 50 ml flash under sovlent-free conditions After stirring 15 min at 293 K, the resulting mixture was washed with water for several times for removing NaOH, and recrystalized from ethanol, and afforded the title compound as a crystalline solid. Elemental analysis: calcd. for $C_{20}H_{26}Cl_2O$: C 69.98, H 4.70%; found: C 69.93, H 4.65%.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.

(I)

Crystal data

 $C_{20}H_{16}Cl_{2}O$ $M_{r} = 343.23$ Orthorhombic, *Pbca* a = 14.4004 (15) Å b = 8.1553 (10) Å c = 28.593 (3) Å $V = 3358.0 (6) \text{ Å}^{3}$ Z = 8 F(000) = 1424

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.854, T_{\max} = 0.937$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.124$ S = 1.062962 reflections 208 parameters 0 restraints Primary atom site location: structure-invariant direct methods $D_{\rm x} = 1.358 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2653 reflections $\theta = 2.8-43.8^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$ T = 298 KNeedle, colourless $0.42 \times 0.32 \times 0.17 \text{ mm}$

13876 measured reflections 2962 independent reflections 1762 reflections with $I > 2\sigma(I)$ $R_{int} = 0.064$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.4^{\circ}$ $h = -14 \rightarrow 17$ $k = -8 \rightarrow 9$ $l = -29 \rightarrow 34$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0353P)^2 + 3.2692P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.24$ e Å⁻³ $\Delta\rho_{min} = -0.32$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

х $U_{\rm iso} * / U_{\rm eq}$ v Ζ C11 1.01278 (6) 1.01596 (12) 0.34622 (3) 0.0568 (3) C12 0.83897 (15) 0.0783(4)0.72695(8)0.07162(3)01 0.86474 (15) 0.7337(3)0.22424 (7) 0.0515(7) C1 0.7861(2)0.7354(4)0.24087 (10) 0.0342(8)C2 0.7724(2)0.7802(4)0.29170 (10) 0.0347 (8) C3 0.6741(2)0.8022(5)0.30951 (11) 0.0472 (9) H3A 0.6726 0.8954 0.3306 0.057* H₃B 0.6567 0.7058 0.3273 0.057* C4 0.6032(2)0.8289(5)0.27104 (11) 0.0455 (9) H4A 0.9334 0.2559 0.055* 0.6145 H4B 0.5413 0.8313 0.2844 0.055* C5 0.6099(2)0.6916 (4) 0.23542 (11) 0.0399(8)0.048* H5A 0.6006 0.5870 0.2509 H5B 0.5615 0.7046 0.2122 0.048* C6 0.7032(2)0.6928(4)0.21178 (10) 0.0335(7)C7 0.8490(2)0.8002 (4) 0.31767 (10) 0.0412 (8) 0.049* H7 0.9051 0.7861 0.3020 C8 0.8563(2)0.8412(5)0.36743 (11) 0.0458(9)C9 0.38404 (11) 0.0485 (9) 0.9282(2)0.9410 (5) 0.9346 (3) 0.0654 (12) C10 0.9856(6) 0.43068 (13) H10 0.9817 1.0555 0.4406 0.078* C11 0.8710(3)0.9260(7) 0.46211 (14) 0.0806(15) H11 0.9550 0.4935 0.097* 0.8753 C12 0.8011 (3) 0.8238(7)0.44739 (14) 0.0836(15)H12 0.7585 0.7832 0.4689 0.100* C13 0.7935(3)0.7809 (6) 0.40090(12)0.0626(12) H13 0.7108 0.3915 0.075* 0.7461 C14 0.7172 (2) 0.6681(4)0.16580(11) 0.0399(8)H14 0.7776 0.6812 0.1549 0.048* C15 0.6467(2)0.6227(4)0.0382(8)0.13110(10)C16 0.6448(2)0.6917 (4) 0.08648 (11) 0.0444(9)C17 0.0561 (10) 0.5785 (3) 0.6500 (5) 0.05364 (12) H17 0.5785 0.7002 0.0244 0.067* C18 0.5126(3)0.5339(5)0.06440(13)0.0610(11) H18 0.4672 0.5062 0.0426 0.073*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C19	0.5141 (3)	0.4588 (5)	0.10758 (13)	0.0588 (11)	
H19	0.4707	0.3781	0.1146	0.071*	
C20	0.5795 (2)	0.5029 (4)	0.14024 (11)	0.0461 (9)	
H20	0.5791	0.4515	0.1693	0.055*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0448 (5)	0.0640 (7)	0.0615 (6)	-0.0018 (5)	-0.0062 (5)	-0.0015 (5)
Cl2	0.1071 (9)	0.0832 (8)	0.0447 (5)	-0.0501 (7)	-0.0081 (6)	0.0118 (5)
01	0.0311 (14)	0.086 (2)	0.0376 (13)	-0.0010 (13)	0.0065 (11)	0.0017 (12)
C1	0.0311 (19)	0.037 (2)	0.0346 (17)	0.0016 (15)	0.0042 (15)	0.0061 (14)
C2	0.0328 (19)	0.038 (2)	0.0338 (17)	-0.0009 (15)	0.0062 (14)	0.0039 (14)
C3	0.038 (2)	0.060 (3)	0.0431 (19)	-0.0041 (18)	0.0083 (16)	-0.0082 (17)
C4	0.0317 (19)	0.051 (2)	0.054 (2)	0.0072 (16)	0.0020 (16)	-0.0050 (18)
C5	0.0316 (19)	0.046 (2)	0.0419 (18)	-0.0017 (16)	0.0002 (15)	0.0013 (16)
C6	0.0296 (18)	0.037 (2)	0.0336 (17)	0.0031 (14)	0.0025 (14)	0.0066 (14)
C7	0.032 (2)	0.054 (2)	0.0376 (18)	0.0038 (16)	0.0037 (15)	0.0027 (16)
C8	0.045 (2)	0.058 (2)	0.0338 (18)	0.0056 (18)	-0.0014 (16)	-0.0029 (17)
C9	0.050(2)	0.055 (3)	0.040 (2)	0.0114 (19)	-0.0070 (17)	-0.0024 (17)
C10	0.068 (3)	0.078 (3)	0.050 (2)	0.011 (2)	-0.011 (2)	-0.014 (2)
C11	0.085 (4)	0.120 (4)	0.036 (2)	0.017 (3)	-0.008 (2)	-0.015 (3)
C12	0.076 (3)	0.134 (5)	0.041 (2)	0.001 (3)	0.010 (2)	0.007 (3)
C13	0.058 (3)	0.091 (3)	0.039 (2)	-0.003 (2)	0.0029 (19)	0.006 (2)
C14	0.0346 (19)	0.045 (2)	0.0405 (19)	-0.0006 (16)	0.0013 (15)	0.0063 (16)
C15	0.0365 (19)	0.044 (2)	0.0337 (17)	0.0016 (16)	0.0025 (15)	-0.0040 (15)
C16	0.058 (2)	0.041 (2)	0.0345 (18)	-0.0080 (18)	0.0020 (16)	-0.0019 (15)
C17	0.077 (3)	0.060 (3)	0.0318 (18)	-0.007 (2)	-0.0099 (19)	-0.0037 (18)
C18	0.062 (3)	0.070 (3)	0.051 (2)	-0.014 (2)	-0.010 (2)	-0.015 (2)
C19	0.054 (2)	0.066 (3)	0.056 (2)	-0.018 (2)	0.004 (2)	-0.009 (2)
C20	0.049 (2)	0.053 (2)	0.0370 (18)	-0.0034 (19)	0.0034 (16)	0.0057 (17)

Geometric parameters (Å, °)

Cl1—C9	1.739 (4)	C9—C10	1.385 (5)
Cl2—C16	1.738 (3)	C10—C11	1.372 (6)
01—C1	1.228 (3)	C10—H10	0.9300
C1—C6	1.496 (4)	C11—C12	1.374 (6)
C1—C2	1.511 (4)	C11—H11	0.9300
С2—С7	1.340 (4)	C12—C13	1.379 (5)
C2—C3	1.514 (4)	C12—H12	0.9300
C3—C4	1.517 (4)	C13—H13	0.9300
С3—НЗА	0.9700	C14—C15	1.467 (4)
С3—Н3В	0.9700	C14—H14	0.9300
C4—C5	1.517 (4)	C15—C16	1.395 (4)
C4—H4A	0.9700	C15—C20	1.400 (4)
C4—H4B	0.9700	C16—C17	1.381 (5)
C5—C6	1.504 (4)	C17—C18	1.376 (5)

C5 115 A	0.0700	C17 1117	0.0200
	0.9700		0.9300
С5—Н5В	0.9700		1.378 (5)
C6-C14	1.345 (4)	C18—H18	0.9300
C7—C8	1.465 (4)	C19—C20	1.374 (5)
С7—Н7	0.9300	С19—Н19	0.9300
C8—C9	1.400 (5)	C20—H20	0.9300
C8—C13	1.405 (5)		
Cl1…O1 ⁱ	3.213 (3)		
$C9-Cl1-O1^{i}$	165.55 (13)	C10—C9—Cl1	117.4 (3)
O1—C1—C6	121.2 (3)	C8—C9—Cl1	120.8 (3)
01—C1—C2	119.7 (3)	C11—C10—C9	119.6 (4)
C6—C1—C2	119.1 (3)	C11—C10—H10	120.2
C7—C2—C1	117.0 (3)	С9—С10—Н10	120.2
C7—C2—C3	124.7 (3)	C10—C11—C12	120.2 (4)
C1—C2—C3	118.3 (3)	C10-C11-H11	119.9
C2—C3—C4	113.7 (3)	C12—C11—H11	119.9
С2—С3—НЗА	108.8	C11—C12—C13	120.5 (4)
С4—С3—Н3А	108.8	C11—C12—H12	119.8
С2—С3—Н3В	108.8	C13—C12—H12	119.8
C4—C3—H3B	108.8	C12—C13—C8	121.1 (4)
НЗА—СЗ—НЗВ	107.7	C12—C13—H13	119.4
C3—C4—C5	109.8 (3)	С8—С13—Н13	119.4
C3—C4—H4A	109.7	C6—C14—C15	126.6 (3)
C5—C4—H4A	109.7	C6—C14—H14	116.7
C3—C4—H4B	109.7	C15—C14—H14	116.7
C5—C4—H4B	109.7	C16—C15—C20	116.0 (3)
H4A—C4—H4B	108.2	C16—C15—C14	122.0 (3)
C6—C5—C4	110.7 (3)	C20—C15—C14	121.9 (3)
C6—C5—H5A	109.5	C17—C16—C15	122.4 (3)
C4—C5—H5A	109.5	C17—C16—Cl2	118.3 (3)
С6—С5—Н5В	109.5	C15—C16—Cl2	119.3 (3)
C4—C5—H5B	109.5	C18—C17—C16	119.6 (3)
H5A—C5—H5B	108.1	C18—C17—H17	120.2
C14—C6—C1	117.4 (3)	C16—C17—H17	120.2
C14—C6—C5	124.9 (3)	C17—C18—C19	119.7 (3)
C1—C6—C5	117.7 (3)	C17—C18—H18	120.2
C2—C7—C8	128.7 (3)	C19—C18—H18	120.2
С2—С7—Н7	115.7	C20-C19-C18	120.2 (4)
С8—С7—Н7	115.7	С20—С19—Н19	119.9
C9—C8—C13	116.6 (3)	C18—C19—H19	119.9
C9—C8—C7	121.0 (3)	C19—C20—C15	122.0 (3)
C13—C8—C7	122.4 (3)	С19—С20—Н20	119.0
C10—C9—C8	121.9 (4)	С15—С20—Н20	119.0

Symmetry code: (i) -x+2, y+1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
С20—Н20…О1 ^{іі}	0.93	2.51	3.352 (4)	151

Symmetry code: (ii) -x+3/2, y-1/2, z.