Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Methyl-2-propionamidobutanoic acid

Bohari M. Yamin and Eliyanti A. Othman*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia
Correspondence e-mail: eliyanti84@yahoo.com

Received 21 January 2009; accepted 26 February 2009
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.059 ; w R$ factor $=0.167$; data-to-parameter ratio $=16.1$.

The reaction of propionyl isothiocyanate with valine was found to give the title compound, $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3}$, instead of the expected thiourea product. The whole molecule is non-planar and the carbonyl group is cis to the methylbutanoic acid group across the $\mathrm{C}-\mathrm{N}$ bond. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds build up a two-dimensional network developing parallel to (100).

Related literature

For the crystal structure of N-propionylthiourea, see: Yamin \& Othman (2008). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

[^0]\[

$$
\begin{aligned}
& V=1017.2(5) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& 0.49 \times 0.33 \times 0.18 \mathrm{~mm}
\end{aligned}
$$
\]

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.959, T_{\text {max }}=0.984$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.167 \quad$ independent and constrained
$S=1.04$ refinement
1887 reflections
117 parameters
2 restraints

5313 measured reflections 1887 independent reflections 1262 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$
$\Delta \rho_{\max }=0.24 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{D} \cdots \mathrm{O} 1^{\text {i }}$	0.855 (18)	2.125 (18)	2.978 (3)	176.6 (16)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{C} \cdots \mathrm{O} 3^{\text {ii }}$	0.82 (2)	1.78 (2)	2.598 (3)	176 (2)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97, PARST (Nardelli, 1995) and PLATON.

The authors thank the Ministry of Higher Education of Malaysia for a research grant (UKM-GUP-NBT-08-27-110) and a graduate assistentship (UKM-OUP-NBT-27-144) to EAO. They also thank Universiti Kebangsaan Malaysia for the facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2429).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Yamin, B. M. \& Othman, E. A. (2008). Acta Cryst. E64, o313.

supporting information

Acta Cryst. (2009). E65, o662 [doi:10.1107/S1600536809007119]

3-Methyl-2-propionamidobutanoic acid

Bohari M. Yamin and Eliyanti A. Othman

S1. Comment

The carbonoyl isothiocyanate is a well known intermediate for the synthesis of carbonoylthiourea deriatives. However, some carbonoyl isothiocyanates such as propionyl isothiocyanate was reactive enough to give N-propionylthiourea (Yamin \& Othman, 2008) after sitrring for about 1 h . In the present study, the reaction of propionyl isothiocyanate with valine did not give the expected thiourea derivative but instead the 3-methyl-2-propionamidobutanoic acid (I), thus indicating a nucleophilic substitution of the isothiocyanato group by the amino group of the amino acid.
The molecule adopts cis configuration with respect to the position of the 3-methylbutanoic acid group relative to the carbonyl O 3 atom across the $\mathrm{C} 3-\mathrm{N} 1$ bond. The bond lengths and angles are within normal ranges (Allen et al., 1987). The acetamide $[\mathrm{O} 3 / \mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4(\mathrm{~A})]$ and acetate $[\mathrm{O} 1 / \mathrm{O} 2 / \mathrm{C} 4 / \mathrm{C} 8(\mathrm{~B})]$ fragments are essentially planar with maximum deviation of 0.011 (2) \AA for atom N1. The compound has a stereogenic center at C4 but the space group is centrosymmetric so the molecule exists as a racemate (R / S).
$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds build up a two dimensional network with a corrugated iron shape developping parallel to the $\left(\begin{array}{ll}1 & 0\end{array}\right)$ plane.

S2. Experimental

A solution of propionylisothiocyanate $(1.15 \mathrm{~g}, 0.01 \mathrm{~mol})$ in 30 ml acetone was added into a flask containing 30 ml acetone solution of valine $(1.17 \mathrm{~g}, 0.01 \mathrm{~mol})$. The mixture was refluxed for 5 h . The solution was filtered and left to evaporate at room temperature. The colourless solid were obtained after one day of evaporation(yield 85%, m.p 475.1476.3 K)

S3. Refinement

H atoms attached to carbon atoms were positioned geometrically and treated as riding on their parent atoms with $\mathrm{C}-\mathrm{H}=$ $0.96-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=x U_{\mathrm{eq}}(\mathrm{C})$ where $x=1.5$ for CH_{3} group and 1.2 for CH_{2} and CH groups. The hydrogen atoms attached to nitrogen and oxygen atoms were located from Fourier difference map and refined isotropically,

Figure 1

The nolecular structure of (I) with the atom-labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. The enantiomer represented has S configuration.

Figure 2

Partial packing view of I showing the H bonds network. Hydrogen bonds are shown as dashed lines. [Symmetry codes:
(i) $-x+1,-y,-z$; (ii) $x,-y+1 / 2, z-1 / 2]$

3-Methyl-2-propionamidobutanoic acid

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3}$
$M_{r}=173.21$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.477$ (3) \AA
$b=8.633(2) \AA$
$c=12.766$ (3) \AA
$\beta=103.123(6)^{\circ}$
$V=1017.2(5) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 83.66 pixels mm^{-1} ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.959, T_{\text {max }}=0.984$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.167$
$S=1.04$
1887 reflections
117 parameters
2 restraints
Primary atom site location: structure-invariant
direct methods

$$
\begin{aligned}
& F(000)=376 \\
& D_{\mathrm{x}}=1.131 \mathrm{Mg} \mathrm{~m} \\
& \text { Melting point: } 475.5 \mathrm{~K} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1183 \text { reflections } \\
& \theta=2.2-25.5^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.49 \times 0.33 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

5313 measured reflections
1887 independent reflections
1262 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-10 \rightarrow 11$
$k=-10 \rightarrow 10$
$l=-15 \rightarrow 8$

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0815 P)^{2}+0.2058 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.24$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.58011(17)$	$0.1690(2)$	$-0.01032(13)$	$0.0706(6)$
O2	$0.80400(19)$	$0.2599(2)$	$0.01281(15)$	$0.0808(6)$
H2C	$0.775(3)$	$0.309(3)$	$-0.0430(16)$	$0.115(12)^{*}$

O3	$0.7243(2)$	$0.0786(2)$	$0.33764(14)$	$0.0835(6)$
N1	$0.6507(2)$	$-0.0073(2)$	$0.17012(15)$	$0.0523(5)$
H1D	$0.5834(18)$	$-0.050(2)$	$0.1230(15)$	$0.058(7)^{*}$
C1	$0.3968(4)$	$0.0265(4)$	$0.3214(3)$	$0.1079(12)$
H1A	0.3188	-0.0340	0.3366	0.162^{*}
H1B	0.3602	0.0928	0.2610	0.162^{*}
H1C	0.4390	0.0884	0.3830	0.162^{*}
C2	$0.5071(3)$	$-0.0769(3)$	$0.2963(2)$	$0.0776(8)$
H2A	0.4623	-0.1411	0.2354	0.093^{*}
H2B	0.5414	-0.1449	0.3572	0.093^{*}
C3	$0.6357(3)$	$0.0049(3)$	$0.27028(19)$	$0.0573(6)$
C4	$0.7670(2)$	$0.0664(3)$	$0.13158(16)$	$0.0509(6)$
H4A	0.8199	0.1331	0.1894	0.061^{*}
C5	$0.8765(3)$	$-0.0509(3)$	$0.1042(2)$	$0.0684(7)$
H5A	0.9512	0.0083	0.0797	0.082^{*}
C6	$0.9513(3)$	$-0.1423(4)$	$0.2037(3)$	$0.1062(11)$
H6A	1.0190	-0.2138	0.1847	0.159^{*}
H6B	0.8802	-0.1983	0.2313	0.159^{*}
H6C	1.0020	-0.0721	0.2576	0.159^{*}
C7	$0.8066(3)$	$-0.1595(4)$	$0.0136(3)$	$0.0905(9)$
H7A	0.8782	-0.2296	-0.0012	0.136^{*}
H7B	0.7664	-0.1002	-0.0498	0.136^{*}
H7C	0.7309	-0.2173	0.0345	0.136^{*}
C8	$0.7047(2)$	$0.1683(2)$	$0.03739(16)$	
				$0.0517(6)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0574(11)$	$0.0732(12)$	$0.0697(11)$	$-0.0047(8)$	$-0.0100(8)$	$0.0117(8)$
O2	$0.0616(11)$	$0.1039(14)$	$0.0740(13)$	$-0.0103(10)$	$0.0094(9)$	$0.0375(11)$
O3	$0.1026(15)$	$0.0943(14)$	$0.0564(11)$	$-0.0129(11)$	$0.0237(10)$	$-0.0233(10)$
N1	$0.0491(11)$	$0.0648(12)$	$0.0422(10)$	$-0.0072(9)$	$0.0087(8)$	$-0.0021(9)$
C1	$0.088(2)$	$0.088(2)$	$0.162(4)$	$-0.0066(18)$	$0.057(2)$	$0.001(2)$
C2	$0.097(2)$	$0.0680(17)$	$0.0806(18)$	$0.0026(15)$	$0.0463(16)$	$0.0076(13)$
C3	$0.0682(15)$	$0.0526(13)$	$0.0538(14)$	$0.0077(12)$	$0.0194(12)$	$-0.0015(11)$
C4	$0.0442(12)$	$0.0609(13)$	$0.0444(12)$	$-0.0073(10)$	$0.0035(9)$	$0.0038(10)$
C5	$0.0495(13)$	$0.0817(17)$	$0.0755(17)$	$0.0093(12)$	$0.0172(12)$	$0.0186(14)$
C6	$0.082(2)$	$0.123(3)$	$0.110(2)$	$0.036(2)$	$0.0132(17)$	$0.040(2)$
C7	$0.091(2)$	$0.087(2)$	$0.101(2)$	$0.0129(17)$	$0.0370(17)$	$-0.0154(17)$
C8	$0.0533(13)$	$0.0564(13)$	$0.0438(12)$	$-0.0049(11)$	$0.0077(10)$	$-0.0016(10)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 8$	$1.200(2)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
$\mathrm{O} 2-\mathrm{C} 8$	$1.320(3)$	$\mathrm{C} 4-\mathrm{C} 8$	$1.499(3)$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{C}$	$0.821(10)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.546(3)$
$\mathrm{O} 3-\mathrm{C} 3$	$1.233(3)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9800
$\mathrm{~N} 1-\mathrm{C} 3$	$1.322(3)$	$\mathrm{C} 5-\mathrm{C} 7$	$1.519(4)$

N1-C4	1.453 (3)		C5-C6		1.526 (4)
N1-H1D	0.855 (10)		C5-H5A		0.9800
$\mathrm{C} 1-\mathrm{C} 2$	1.464 (4)		C6-H6A		0.9600
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9600		C6-H6B		0.9600
C1-H1B	0.9600		C6-H6C		0.9600
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9600		C7-H7A		0.9600
C2-C3	1.509 (3)		C7-H7B		0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700		C7-H7C		0.9600
C8-O2-H2C	114 (2)		C8-C4-H4A		107.5
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	123.30 (19)		C5-C4-H4A		107.5
C3-N1-H1D	119.2 (16)		C7-C5-C6		110.8 (3)
C4-N1-H1D	117.0 (16)		C7-C5-C4		112.18 (19)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5		C6-C5-C4		111.1 (2)
C2-C1-H1B	109.5		C7-C5-H5A		107.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5		C6-C5-H5A		107.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5		C4-C5-H5A		107.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5		C5-C6-H6A		109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5		C5-C6-H6B		109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	114.5 (2)		H6A-C6-H6B		109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.6		C5-C6-H6C		109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.6		H6A-C6-H6C		109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.6		H6B-C6-H6C		109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.6		C5-C7-H7A		109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.6		C5-C7-H7B		109.5
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{N} 1$	120.7 (2)		H7A-C7- 77 B		109.5
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	122.9 (2)		C5-C7- H 7 C		109.5
N1-C3-C2	116.4 (2)		H7A-C7- H 7 C		109.5
N1-C4-C8	109.76 (17)		H7B-C7-H7C		109.5
N1-C4-C5	112.93 (19)		$\mathrm{O} 1-\mathrm{C} 8-\mathrm{O} 2$		123.3 (2)
C8-C4-C5	111.44 (18)		$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 4$		125.0 (2)
N1-C4-H4A	107.5		$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 4$		111.72 (19)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{O} 3$	-1.7 (3)		C8-C4-C5-C7		-61.5 (3)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	179.0 (2)		N1-C4-C5-C6		-62.0 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	68.0 (4)		C8-C4-C5-C6		173.9 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	-112.7 (3)		N1-C4-C8-O1		-11.6 (3)
C3-N1-C4-C8	-123.5 (2)		C5-C4-C8-O1		114.2 (3)
C3-N1-C4-C5	111.5 (2)		$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 8-\mathrm{O} 2$		167.87 (19)
N1-C4-C5-C7	62.6 (3)		$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 8-\mathrm{O} 2$		-66.3 (2)
Hydrogen-bond geometry ($\mathrm{A}^{\prime},{ }^{\circ}$)					
$D-\mathrm{H} \cdots A$		D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 D \cdots \mathrm{O}{ }^{1}$		0.86 (2)	2.13 (2)	2.978 (3)	177 (2)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{C} \cdots{ }^{\text {O }}{ }^{\text {ii }}$		0.82 (2)	1.78 (2)	2.598 (3)	176 (2)

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x,-y+1 / 2, z-1 / 2$.

[^0]: $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3}$
 $M_{r}=173.21$
 Monoclinic, $P 2_{1} / c$
 $a=9.477$ (3) \AA
 $b=8.633$ (2) \AA
 $c=12.766$ (3) \AA
 $\beta=103.123(6)^{\circ}$

