

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[2-(2,4-Dichlorophenyl)pentyl]-1H-1,2,4-triazole

Corrado Rizzoli,^a* Elda Marku^b and Lucedio Greci^c

^aDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy, ^bFakulteti i Shkencave të Natyrës, Departamenti i Kimise, Universiteti i Tiranes, Bulevardi "Zogu I", Tirana, Albania, and ^cDipartimento ISAC, Universitá Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy Correspondence e-mail: corrado.rizzoli@unipr.it

Received 25 February 2009; accepted 26 February 2009

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.005 Å; R factor = 0.056; wR factor = 0.127; data-to-parameter ratio = 16.0.

The title compound, $C_{13}H_{15}Cl_2N_3$, also known as penconazole, crystallizes as a racemate. The dihedral angle between the benzene and triazole rings is 24.96 (13)°. In the crystal structure, molecules are linked into chains running parallel to the c axis by intermolecular $C-H \cdots N$ hydrogen-bonding interactions.

Related literature

For the synthesis and toxicity of the title compound, see: Maier et al. (1987); Worthing (1987); Tao et al. (2003). For the crystal structure of a related compound, see: Peeters et al. (1993).

Experimental

Crystal data

C13H15Cl2N3 $M_r = 284.18$ Monoclinic, C2/ca = 25.083 (8) Å b = 10.763 (2) Å c = 11.206 (3) Å $\beta = 105.654 \ (3)^{\circ}$

V = 2913.1 (13) Å³ Z = 8Cu $K\alpha$ radiation $\mu = 3.89 \text{ mm}^-$ T = 297 K $0.23 \times 0.20 \times 0.16 \text{ mm}$

organic compounds

Data collection

Siemens AED diffractometer Absorption correction: empirical (refined from ΔF) (<i>DIFABS</i> ; Walker & Stuart, 1983) $T_{min} = 0.432, T_{max} = 0.538$ 2737 measured reflections	2611 independent reflections 1183 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ 3 standard reflections every 100 reflections intensity decay: 0.01%		
Refinement			
$R[F^2 > 2\sigma(F^2)] = 0.056$	163 parameters		
$wR(F^2) = 0.127$	H-atom parameters constrained		
S = 0.99	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$		
2611 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$		

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C3-H3A\cdots N3^{i}$	0.97	2.52	3.489 (4)	174

Symmetry code: (i) $x, -y + 1, z + \frac{1}{2}$.

Data collection: AED (Belletti et al., 1993); cell refinement: AED; data reduction: AED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL (Keller, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).

Financial support from the Universitá Politecnica delle Marche and the Universitá degli Studi di Parma is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2483).

References

- Belletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany.
- Maier, L., Kunz, W. & Rist, G. (1987). Phosphorus Sulfur Silicon, 33, 41-52. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Peeters, O. M., Schuerman, G. S., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 1958-1961.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tao, C., Yang, F. & Chen, N. (2003). CN Patent No. 1451646.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Worthing, C. R. (1987). The Pesticide Manual, a World Compendium, 8th ed. Farnham, Surrey, England: British Crop Protection Council.

supporting information

Acta Cryst. (2009). E65, o663 [doi:10.1107/S1600536809007120]

1-[2-(2,4-Dichlorophenyl)pentyl]-1H-1,2,4-triazole

Corrado Rizzoli, Elda Marku and Lucedio Greci

S1. Comment

The synthesis of the title compound, **I**, commonly known as penconazole, was described years ago (Maier *et al.*, 1987). Due to its ability to inhibit the development of fungi by interfering with sterol biosynthesis of their cell membranes, this product was introduced as an agriculture systemic fungicide affecting cucurbits, grapes, pome fruits and vegetables. The advantages of this compound is its low toxicity: acute oral dose (LD50) of 2125 mg/kg for rats (Worthing, 1987). More recently, penconazole was prepared by condensation of 2-(2,4-dichlorophenyl)-1-pentanole with 1,2,4-triazole (Tao *et al.*, 2003), but this method also leads to the formation of 1-(1H-1,3,4-triazol-1-yl)-2-(2,4-dichlorophenyl)-pentane (**II**) as a by-product. In repeating this reaction, our purpose was the determination of the crystal structure of the desired compound **I** and the evaluation of the percentage of the by-product **II**.

The title compound (Fig. 1) crystallizes as a racemate. The triazole ring is substantially planar (maximum deviation from planarity 0.006 (3) Å for atom C2) and forms a dihedral angle of 24.96 (13)° with the benzene ring. The N—N (1.351 (3) Å) and C—N (mean value 1.328 (4) Å) bond lengths within the triazole ring are comparable with those observed in 6-[(4-chlorophenyl)(1*H*-1,2,4-triazol-1-yl)methyl]-1-methyl-1*H*-benzotriazole (vorozole; Peeters *et al.*, 1993) and suggest electron delocalization over the ring. In the crystal structure, an intermolecular C—H…N hydrogen bonding interaction (Table 1) link the molecules into chains running parallel to the *c* axis (Fig. 2).

S2. Experimental

The title compound was prepared according to the literature reports (Tao *et al.*, 2003). This method afforded compounds I and II in a 93:3 ratio. The two compounds were separated by chromatography on SiO₂ column eluting with cyclohexane/ethyl acetate (9:1 ν/ν). Crystals of the title compound suitable for X-ray analysis were obtained on slow evaporation of an *n*-pentane solution (m. p. 60–61°C). IR data, ν , cm⁻¹: 3060, 1597, 1448, 760, 746, 700. ¹H-NMR, δ in CDCL₃: 0.87 (t, 3H, –CH2CH3), 1.23 (sextet, 2H, -*CH*2CH3), 2.6–2.8 (m,2*H*, –CH*CH*2CH2CH3), 3.78 (1*H*, quintet, – CH2*CH*CH2-), 4.34 (d, -*CH*2CH<), 7.23 (1*H*, speudo-q, H-5, J=8.3 Hz, J=2.2 Hz), 7.38 (1*H*, d, H-3, J=2.2 Hz), 7.71 (s, 1H, triazolyl-H-3), 7.89 (s,1*H*, triazolyl-H-5). MS, Calcd for C₁₃H₁₅Cl₂N₃, 284.2; Found. *M* (%): 250 (12.72), 248 (36.93), 161 (63.69), 159 (100); no molecular ion peak was observed; the highest peaks are those corresponding to the loss of a chlorine atom. The ¹H-NMR spectrum of compound II shows a singlet at δ = 7.89 corresponding to the two equivalent H atoms of the 1,3,4-triazol-1-yl ring, the other part of the spectrum is strictly similar to that of compound I. Melting points were determined by an electrochemical apparatus and were uncorrected. ¹H-NMR spectra were recorded on a Varian Gemini 200 MHz. IR spectra were recorded in the solid state with a Perkin-Elmer MGX1 spectrophotometer equipped with Spectra Tech. Mass spectra were recorded with a Carlo Erba QMD 1000 mass spectrometer in positive EI mode.

S3. Refinement

All H atoms were positioned geometrically with C—H = 0.93–0.98 Å, and refined using a riding model approximation with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ for methyl H atoms.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing of the title compound viewed approximately along the *b* axis. Intermolecular C—H…N hydrogen bonds are shown as dashed lines.

Figure 3

The structures of (I) and (II).

1-[2-(2,4-Dichlorophenyl)pentyl]-1H-1,2,4-triazole

Crystal data

C₁₃H₁₅Cl₂N₃ $M_r = 284.18$ Monoclinic, C2/c Hall symbol: -C 2yc a = 25.083 (8) Å b = 10.763 (2) Å c = 11.206 (3) Å $\beta = 105.654$ (3)° V = 2913.1 (13) Å³ Z = 8

Data collection

Siemens AED diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\theta/2\theta$ scans Absorption correction: empirical (using intensity measurements) (*DIFABS*; Walker & Stuart, 1983) $T_{\min} = 0.432, T_{\max} = 0.538$ 2737 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.127$ S = 0.992611 reflections 163 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1184 $D_x = 1.296 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 48 reflections $\theta = 18.4-42.5^{\circ}$ $\mu = 3.89 \text{ mm}^{-1}$ T = 297 KBlock, colourless $0.23 \times 0.20 \times 0.16 \text{ mm}$

2611 independent reflections 1183 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ $\theta_{max} = 67.9^{\circ}, \ \theta_{min} = 3.7^{\circ}$ $h = -29 \rightarrow 28$ $k = -2 \rightarrow 12$ $I = -5 \rightarrow 13$ 3 standard reflections every 100 reflections intensity decay: 0.01%

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0456P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.34$ e Å⁻³ $\Delta\rho_{min} = -0.27$ e Å⁻³

Special details

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C11	0.08070 (6)	0.51687 (9)	0.93474 (12)	0.1422 (6)
C12	0.08744 (5)	0.18168 (11)	1.28987 (10)	0.1305 (5)
N1	0.22774 (10)	0.3780 (2)	0.7443 (2)	0.0595 (7)
N2	0.24356 (12)	0.3032 (2)	0.6633 (2)	0.0757 (8)
N3	0.25582 (12)	0.5043 (2)	0.6210 (3)	0.0815 (9)
C1	0.25951 (15)	0.3839 (3)	0.5932 (3)	0.0808 (10)
H1	0.2728	0.3591	0.5270	0.097*
C2	0.23549 (13)	0.4960 (3)	0.7196 (3)	0.0714 (9)
H2	0.2279	0.5634	0.7644	0.086*
C3	0.20829 (13)	0.3285 (3)	0.8460 (3)	0.0638 (8)
H3A	0.2230	0.3790	0.9192	0.077*
H3B	0.2226	0.2449	0.8646	0.077*
C4	0.14554 (13)	0.3253 (3)	0.8180 (3)	0.0666 (8)
H4	0.1313	0.4086	0.7921	0.080*
C5	0.13060 (12)	0.2927 (3)	0.9380 (3)	0.0648 (8)
C6	0.10164 (15)	0.3713 (3)	0.9946 (3)	0.0807 (10)
C7	0.08852 (16)	0.3387 (3)	1.1047 (4)	0.0927 (11)
H7	0.0695	0.3937	1.1424	0.111*
C8	0.10441 (15)	0.2235 (4)	1.1558 (3)	0.0790 (10)
C9	0.13257 (14)	0.1450 (3)	1.1013 (3)	0.0787 (10)
H9	0.1435	0.0680	1.1372	0.094*
C10	0.14543 (13)	0.1774 (3)	0.9930 (3)	0.0724 (9)
H10	0.1643	0.1211	0.9562	0.087*
C11	0.11930 (14)	0.2323 (3)	0.7113 (3)	0.0830 (10)
H11A	0.1315	0.2537	0.6389	0.100*
H11B	0.1326	0.1492	0.7368	0.100*
C12	0.05814 (16)	0.2321 (4)	0.6773 (3)	0.1057 (13)
H12A	0.0450	0.3152	0.6514	0.127*
H12B	0.0460	0.2115	0.7501	0.127*
C13	0.03234 (16)	0.1433 (4)	0.5764 (4)	0.1191 (15)
H131	-0.0072	0.1482	0.5589	0.179*
H132	0.0442	0.0604	0.6020	0.179*
H133	0.0434	0.1640	0.5032	0.179*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.2339 (15)	0.0687 (6)	0.1461 (10)	0.0447 (8)	0.0895 (10)	0.0118 (7)
Cl2	0.1620 (11)	0.1516 (11)	0.0905 (7)	-0.0169 (8)	0.0558 (7)	0.0066 (7)

supporting information

N1	0.0728 (18)	0.0384 (12)	0.0602 (15)	-0.0030 (12)	0.0061 (13)	-0.0050 (12)
N2	0.103 (2)	0.0486 (14)	0.0760 (18)	-0.0110 (15)	0.0248 (16)	-0.0087 (14)
N3	0.101 (2)	0.0588 (17)	0.081 (2)	-0.0131 (15)	0.0183 (18)	0.0088 (15)
C1	0.111 (3)	0.0566 (19)	0.075 (2)	-0.016 (2)	0.026 (2)	-0.0020 (18)
C2	0.084 (3)	0.0447 (17)	0.079 (2)	-0.0054 (16)	0.0105 (19)	-0.0048 (17)
C3	0.076 (2)	0.0485 (16)	0.0612 (19)	-0.0073 (15)	0.0083 (16)	0.0029 (15)
C4	0.072 (2)	0.0545 (18)	0.067 (2)	0.0001 (16)	0.0072 (17)	0.0065 (16)
C5	0.064 (2)	0.0564 (18)	0.066 (2)	-0.0038 (16)	0.0049 (16)	-0.0013 (16)
C6	0.105 (3)	0.057 (2)	0.082 (2)	-0.003 (2)	0.027 (2)	-0.0030 (19)
C7	0.109 (3)	0.079 (3)	0.094 (3)	-0.006 (2)	0.035 (2)	-0.019 (2)
C8	0.086 (3)	0.089 (3)	0.064 (2)	-0.015 (2)	0.0244 (19)	0.002 (2)
C9	0.079 (2)	0.074 (2)	0.079 (2)	-0.0020 (19)	0.014 (2)	0.019 (2)
C10	0.073 (2)	0.066 (2)	0.076 (2)	0.0035 (17)	0.0154 (18)	0.0082 (18)
C11	0.084 (3)	0.094 (3)	0.060 (2)	-0.011 (2)	0.0009 (18)	-0.0074 (19)
C12	0.096 (3)	0.121 (3)	0.091 (3)	-0.026 (3)	0.011 (2)	-0.011 (3)
C13	0.095 (3)	0.140 (4)	0.100 (3)	-0.016 (3)	-0.013 (2)	-0.030 (3)

Geometric parameters (Å, °)

Cl1—C6	1.729 (3)	C5—C10	1.391 (4)
Cl2—C8	1.728 (3)	C6—C7	1.404 (5)
N1-C2	1.326 (3)	C7—C8	1.379 (4)
N1—N2	1.351 (3)	C7—H7	0.9300
N1—C3	1.457 (3)	C8—C9	1.348 (4)
N2-C1	1.304 (4)	C9—C10	1.382 (4)
N3—C2	1.339 (4)	С9—Н9	0.9300
N3—C1	1.342 (4)	C10—H10	0.9300
C1—H1	0.9300	C11—C12	1.478 (4)
С2—Н2	0.9300	C11—H11A	0.9700
C3—C4	1.520 (4)	C11—H11B	0.9700
С3—НЗА	0.9700	C12—C13	1.488 (5)
С3—Н3В	0.9700	C12—H12A	0.9700
C4—C5	1.530 (4)	C12—H12B	0.9700
C4—C11	1.562 (4)	C13—H131	0.9600
C4—H4	0.9800	C13—H132	0.9600
C5—C6	1.377 (4)	С13—Н133	0.9600
C2—N1—N2	110.2 (3)	С8—С7—Н7	120.7
C2—N1—C3	127.8 (3)	С6—С7—Н7	120.7
N2—N1—C3	122.0 (2)	C9—C8—C7	120.2 (3)
C1—N2—N1	101.6 (2)	C9—C8—Cl2	120.9 (3)
C2—N3—C1	101.1 (3)	C7—C8—Cl2	118.9 (3)
N2-C1-N3	116.8 (3)	C8—C9—C10	121.0 (3)
N2-C1-H1	121.6	С8—С9—Н9	119.5
N3—C1—H1	121.6	С10—С9—Н9	119.5
N1-C2-N3	110.2 (3)	C9—C10—C5	121.1 (3)
N1—C2—H2	124.9	C9—C10—H10	119.5
N3—C2—H2	124.9	C5-C10-H10	119.5

N1—C3—C4	113.2 (2)	C12—C11—C4	113.1 (3)
N1—C3—H3A	108.9	C12—C11—H11A	109.0
С4—С3—НЗА	108.9	C4—C11—H11A	109.0
N1—C3—H3B	108.9	C12—C11—H11B	109.0
С4—С3—Н3В	108.9	C4—C11—H11B	109.0
НЗА—СЗ—НЗВ	107.8	H11A—C11—H11B	107.8
C3—C4—C5	108.0 (2)	C11—C12—C13	113.9 (3)
C3—C4—C11	111.8 (3)	C11—C12—H12A	108.8
C5—C4—C11	111.9 (2)	C13—C12—H12A	108.8
C3—C4—H4	108.3	C11—C12—H12B	108.8
C5—C4—H4	108.3	C13—C12—H12B	108.8
C11—C4—H4	108.3	H12A—C12—H12B	107.7
C6—C5—C10	117.1 (3)	C12—C13—H131	109.5
C6—C5—C4	123.3 (3)	C12—C13—H132	109.5
C10—C5—C4	119.6 (3)	H131—C13—H132	109.5
C5—C6—C7	122.0 (3)	C12—C13—H133	109.5
C5—C6—C11	121.4 (3)	H131—C13—H133	109.5
C7—C6—Cl1	116.7 (3)	H132—C13—H133	109.5
C8—C7—C6	118.7 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C3—H3A···N3 ⁱ	0.97	2.52	3.489 (4)	174

Symmetry code: (i) x, -y+1, z+1/2.