metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Di-*u*-iodido-bis{[dicvclohexvl(phenvl)phosphine- κP](pyridine- κN)silver(I)}

Bernard Omondi and Reinout Meijboom*

Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa Correspondence e-mail: rmeijboom@uj.ac.za

Received 23 March 2009; accepted 25 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.031; wR factor = 0.073; data-to-parameter ratio = 23.5.

The title compound, $[Ag_2I_2(C_5H_5N)_2(C_{18}H_{27}P)_2]$, contains centrosymmetric dinuclear species in which each Ag atom is surrounded by a phosphine ligand, a weakly coordinating pyridine ligand and two iodide anions in a distorted tetrahedral coordination. The two iodide anions bridge the Ag atoms, which are separated by a distance of 3.1008 (6) Å. The Ag-P distance is 2.4436 (8) Å, Ag-N is 2.386 (3)Å and the Ag-I distances are 2.8186 (4) and 2.9449 (5) Å.

Related literature

For a review of the chemistry of silver(I) complexes, see: Meijboom *et al.* (2009). For the coordination chemistry of AgXsalts $(X^- = F^-, Cl^-, Br^-, I^-, BF_4^-, PF_6^-, NO_3^- etc)$ with group 15 donor ligands, with the main focus on tertiary phosphines and in their context as potential antitumor agents, see: Berners-Price et al. (1998); Liu et al. (2008). For tertiary phosphine silver(I) complexes of mixed-base species, see: Engelhardt et al. (1989); Gotsis et al. (1989); Meijboom & Muller (2006). The unsymmetrical core (Ag-I-Ag'-I') may be attributed to the partial separation of dimer into monomer of such complexes, see: Bowmaker et al. (1996); Meijboom & Muller (2006). For the solution behaviour of $[L_n AgX]$ complexes, see: Muetterties & Alegranti (1972).

Experimental

Crystal data	
$[Ag_2I_2(C_5H_5N)_2(C_{18}H_{27}P)_2]$ $M_r = 1176.47$ Trializia P_1^T	a = 9.5970 (12) Å b = 9.9816 (13) Å a = 14.1427 (18) Å
Inclinic, P1	c = 14.1457(18) A

Data collection

Bruker SMART CCD area-detector	7951 measured reflections
diffractometer	5723 independent reflections
Absorption correction: multi-scan	4310 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2004)	$R_{\rm int} = 0.014$
$T_{\min} = 0.562, T_{\max} = 0.828$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	244 parameters
$wR(F^2) = 0.073$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
5723 reflections	$\Delta \rho_{\rm min} = -0.81 \text{ e } \text{\AA}^{-3}$

Mo $K\alpha$ radiation

 $0.3 \times 0.22 \times 0.09 \text{ mm}$

 $\mu = 2.18 \text{ mm}^{-1}$

T = 293 K

Table 1

Comparison of geometric parameters (Å, °) for selected $[XAg(py)(P_3)_2]$ (X = Cl, Br or I) entities.

Χ	Ag-X	Ag - X	Ag···Ag	Ag-N	Ag-P	X - Ag - X	Ag-I-Ag
\mathbf{I}^{a}	2.8186 (4)	2.9449 (5)	3.1008 (6)	2.386 (3)	2.4436 (8)	114.947 (10)	65.053 (10)
\mathbf{I}^{b}	2.8402 (12)	2.8644 (8)	3.1130 (18)	2.392 (3)	2.4489 (12)	113.84 (4)	66.16 (4)
\mathbf{I}^{c}	2.814	2.875	3.343	2.422	2.440	108.02	71.98
Br^{c}	2.701	2.733	3.499	2.391	2.415	99.85	80.15
Cl^{c}	2.614	2.618	3.507	2.402	2.400	95.82	84.18

Notes: (a) This work; (b) Meijboom & Muller (2006); (c) Gotsis et al. (1989), extracted from the Cambridge Structural Database (Allen (2002), CSD CODES are VEFRUT for X = I, VEFRON for X = Br and VEFRIH for X = Cl.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the South African National Research Foundation and the University of Johannesburg is gratefully acknowledged. The University of the Witwatersrand (Professor D. Levendis and Professor D. G. Billing) is thanked for use of its diffractometer. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2494).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Berners-Price, S. J., Bowen, R. J., Harvey, P. J., Healy, P. C. & Koutsantonis, G. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1743-1750.
- Bowmaker, G. A., Effendy, Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2459-2465.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). SMART, SADABS and SAINT. Bruker AXS Inc., Mdison, Wisconsin, USA.
- Engelhardt, L. M., Healy, P. C., Kildea, J. D. & White, A. H. (1989). Aust. J. Chem. 42, 907-912.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Gotsis, S., Engelhardt, L. M., Healy, P. C., Kildea, J. D. & White, A. H. (1989). Aust. J. Chem. 42, 923–931.
- Liu, J. J., Galetis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem. 102, 303–310.
- Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325–342.
- Meijboom, R. & Muller, A. (2006). Acta Cryst. E62, m3191-m3193.
- Muetterties, E. L. & Alegranti, C. W. (1972). J. Am. Chem. Soc. 94, 6386–6391. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2009). E65, m462-m463 [doi:10.1107/S160053680901099X]

Di-μ-iodido-bis{[dicyclohexyl(phenyl)phosphine-κP](pyridine-κN)silver(I)}

Bernard Omondi and Reinout Meijboom

S1. Comment

The chemistry of silver(I) complexes has been reviewed recently with regards to the coordination chemistry, the design of coordination networks and polymers containing nitrogen-donor ligands and to the chemistry of silver scorpionates and carboxylates (Meijboom *et al.*, 2009). Our interest has been on the coordination chemistry of AgX salts ($X = F^-$, Cl⁻, Br⁻, I⁻, BF₄⁻, PF₆⁻, NO₃⁻ *etc.*) with Group 15 donor ligands with the main focus on tertiary phosphines and in their context as potential antitumor agents (Berners-Price *et al.*, 1998; Liu *et al.*, 2008).

Tertiary phosphine silver(I) complexes of mixed-base species have been reported but are not very common (Meijboom *et al.*, 2009). Examples of these complexes include $[XAg(py)(PPh_3)_2]$ (X = Cl or Br) (Engelhardt *et al.*, 1989), $[XAg(py)PPh_3]_2.C_5H_3N$ (X = Cl, Br or I) (Gotsis *et al.*, 1989) and $[IAg(py)(P-p-tol-Ph_3)]_2$ (Meijboom & Muller, 2006). The preparation of $[IAg(py)(Pcy_2Ph)]_2$ (I) is similar to those reported and involves heating together stoichiometric mixtures of silver(I)iodide and dicyclohexylphenylphosphine in pyridine solution.

As pointed out earlier by Meijboom & Muller (2006), the resulting complex comprises of a 1:1:1 μ , μ' -diiodo-bridged dimer. The Ag atoms of this centrosymmetric title compound are coordinated to a phosphine ligand, a pyridine ligand and two iodide anions in a distorted tetrahedral manner. The bond angles around the Ag atoms are listed in Table 1. The Ag— P, Ag—N and Ag—I bond distances are typical of similar complexes. However the difference in the Ag—I and Ag—I' bond distances [2.8186 (4) and 2.9449 (5) Å] which results in an unsymmetrical core (Ag—I—Ag'-I') of the complex has been attributed to the partial separation of dimer into monomer of such complexes (Bowmaker *et al.*, 1996; Meijboom & Muller, 2006).

In comparison (see Table 2), the same Ag—X bond distance seems larger in (I) as compared to those in [XAg(py) (PPh₃)]₂.C₅H₅N (X = Cl, Br or I) (Gotsis *et al.*, 1989) and [IAg(py)(P-(*p*-tol)₃)]₂ (Meijboom and Muller, 2006) which are only slightly different. The bond angles in the core (Ag—X—Ag' and X—Ag—X') are similar in (I), [IAg(py)(P-(*p*-tol)₃)]₂ and [XAg(py)(PPh₃)]₂.C₅H₅N (X = I). In these structures the Ag—X—Ag' is much smaller than X—Ag—X'. The situation is slightly different for [XAg(py)(PPh₃)]₂.C₅H₅N (X = Cl or Br) in which the two angles are closer to 90°. Similarly the Ag—Ag bond distances are shorter in (I) and [IAg(py)(P-(*p*-tol)₃)]₂ but increases in [XAg(py) (PPh₃)]₂.C₅H₅N (X = Cl, Br or I). Ag—P and Ag—N bond distances are comparable in all five structures listed in Table 2.

Despite the number of structural reports of $[L_nAgX]$ complexes, their solution behaviour, initiated by Muetterties & Alegranti (1972), has always shown that the coordinating ligands were labile in all complexes studied. Rapid ligand-exchange reactions have been reported for all ³¹P NMR spectroscopic investigations of ionic Ag^I monodentate phosphine complexes, thus making NMR spectroscopy of limited use for these types of complexes.

S2. Experimental

Silver iodide (0.130 g, 0.43 mmol) and dicyclohexylphenylphosphine (1.009 g, 0.86 mmol) were suspended in pyridine (5 ml). The mixture was heated to give a clear solution. Colourless crystals of the title compound suitable for X-ray

crystallography were obtained by slow evaporation.

S3. Refinement

All hydrogen atoms were positioned geometrically, with C—H = 0.97 Å, and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. For the C atoms, the first digit indicates the ring number and the second digit indicates the position of the atom in the ring. Primed atoms are generated by the symmetry code (1 - x, 1 - y, 1 - z).

Di-µ-iodido-bis{[dicyclohexyl(phenyl)phosphine-*k*P](pyridine-*k*N)silver(I)}

Z = 1
F(000) = 584
$D_{\rm x} = 1.609 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 8087 reflections
$\theta = 1.5 - 28^{\circ}$
$\mu = 2.18 \text{ mm}^{-1}$
T = 293 K
Plate, colourless
$0.3 \times 0.22 \times 0.09 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	5723 independent reflections
diffractometer	4310 reflections with $I > 2\sigma(I)$
ω scans	$R_{int} = 0.014$
Absorption correction: multi-scan	$\theta_{max} = 28^\circ, \theta_{min} = 1.5^\circ$
(<i>SADABS</i> ; Bruker, 2004)	$h = -12 \rightarrow 12$
$T_{\min} = 0.562, T_{\max} = 0.828$	$k = -11 \rightarrow 13$
7951 measured reflections	$l = -14 \rightarrow 18$
Refinement	
Refinement on F^2	0 restraints
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.031$	$w = 1/[\sigma^2(F_o^2) + (0.0363P)^2]$
$wR(F^2) = 0.073$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{max} = 0.002$
5723 reflections	$\Delta\rho_{max} = 0.50$ e Å ⁻³
244 parameters	$\Delta\rho_{min} = -0.81$ e Å ⁻³
Special details	

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	v	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ag	0.64528 (3)	0.51283 (3)	0.579194 (16)	0.04387 (8)	
I	0.67657 (2)	0.67819 (2)	0.418646 (15)	0.04704 (8)	
Р	0.75790 (9)	0.61782 (8)	0.74849 (5)	0.03498 (17)	
Ν	0.7116 (3)	0.3242 (3)	0.5233 (2)	0.0496 (7)	
C11	0.8282 (4)	0.4979 (3)	0.8258 (2)	0.0420 (7)	
H11	0.8702	0.545	0.8926	0.05*	
C12	0.6951 (4)	0.3510 (4)	0.8252 (3)	0.0545 (9)	
H12A	0.6467	0.3071	0.7587	0.065*	
H12B	0.6171	0.366	0.8525	0.065*	
C13	0.7541 (6)	0.2473 (5)	0.8845 (3)	0.0758 (12)	
H13A	0.792	0.2863	0.9524	0.091*	
H13B	0.6687	0.1531	0.8799	0.091*	
C14	0.8837 (6)	0.2275 (5)	0.8483 (3)	0.0793 (13)	
H14A	0.9225	0.1663	0.8897	0.095*	
H14B	0.8427	0.1782	0.7828	0.095*	
C15	1.0152 (5)	0.3712 (5)	0.8482 (3)	0.0745 (12)	
H15A	1.0921	0.3552	0.8204	0.089*	
H15B	1.0647	0.415	0.9147	0.089*	
C16	0.9582 (4)	0.4757 (4)	0.7898 (3)	0.0535 (9)	
H16A	0.9202	0.4372	0.7218	0.064*	
H16B	1.0446	0.5692	0.7948	0.064*	
C21	0.6083 (4)	0.6419 (3)	0.8017 (2)	0.0403 (7)	
H21	0.5195	0.5473	0.7889	0.048*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C22	0.5502 (4)	0.7498 (4)	0.7480 (2)	0.0523 (8)
H22A	0.5176	0.7192	0.6787	0.063*
H22B	0.6344	0.8457	0.7585	0.063*
C23	0.4137 (5)	0.7582 (5)	0.7837 (3)	0.0680 (11)
H23A	0.3842	0.8322	0.752	0.082*
H23B	0.3253	0.6653	0.7659	0.082*
C24	0.4547 (5)	0.7946 (5)	0.8927 (3)	0.0713 (11)
H24A	0.5336	0.8932	0.9096	0.086*
H24B	0.3633	0.7912	0.9132	0.086*
C25	0.5139 (5)	0.6903 (5)	0.9458 (3)	0.0643 (10)
H25A	0.4306	0.5939	0.9355	0.077*
H25B	0.5458	0.7213	1.015	0.077*
C26	0.6511 (4)	0.6823 (4)	0.9116 (2)	0.0512 (8)
H26A	0.6819	0.6099	0.9447	0.061*
H26B	0.7386	0.776	0.9282	0.061*
C31	0.9209 (3)	0.7958 (3)	0.7758 (2)	0.0386 (7)
C32	0.9355 (4)	0.8901 (4)	0.7032 (2)	0.0473 (8)
H32	0.8637	0.8606	0.6435	0.057*
C33	1.0555 (5)	1.0272 (4)	0.7185 (3)	0.0628 (10)
H33	1.0619	1.0899	0.6698	0.075*
C34	1.1638 (5)	1.0704 (4)	0.8043 (4)	0.0713 (12)
H34	1.2464	1.1611	0.8134	0.086*
C35	1.1515 (5)	0.9803 (4)	0.8779 (3)	0.0714 (12)
H35	1.2242	1.011	0.9374	0.086*
C36	1.0303 (4)	0.8434 (4)	0.8631 (3)	0.0583 (9)
H36	1.0227	0.7828	0.913	0.07*
C41	0.6644 (5)	0.1923 (4)	0.5544 (3)	0.0605 (10)
H41	0.592	0.1694	0.5925	0.073*
C42	0.7168 (5)	0.0881 (4)	0.5333 (3)	0.0694 (11)
H42	0.6801	-0.0032	0.5562	0.083*
C43	0.8250 (5)	0.1217 (5)	0.4776 (3)	0.0759 (12)
H43	0.8629	0.0536	0.462	0.091*
C44	0.8749 (5)	0.2560 (5)	0.4461 (3)	0.0742 (12)
H44	0.9491	0.2818	0.4092	0.089*
C45	0.8155 (4)	0.3540 (4)	0.4688 (3)	0.0577 (9)
H45	0.8491	0.445	0.4453	0.069*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag	0.05080 (15)	0.04133 (14)	0.03791 (14)	0.01641 (11)	0.01097 (11)	0.00158 (10)
Ι	0.04314 (13)	0.04213 (13)	0.04845 (13)	0.00716 (9)	0.01405 (9)	0.01362 (9)
Р	0.0372 (4)	0.0322 (4)	0.0333 (4)	0.0111 (3)	0.0089 (3)	0.0039 (3)
N	0.0534 (17)	0.0422 (16)	0.0540 (17)	0.0210 (13)	0.0105 (13)	-0.0023 (13)
C11	0.0486 (18)	0.0421 (18)	0.0354 (16)	0.0202 (15)	0.0056 (13)	0.0075 (13)
C12	0.069 (2)	0.044 (2)	0.058 (2)	0.0240 (18)	0.0271 (18)	0.0196 (16)
C13	0.113 (4)	0.055 (2)	0.077 (3)	0.043 (3)	0.039 (3)	0.033 (2)
C14	0.116 (4)	0.065 (3)	0.083 (3)	0.061 (3)	0.029 (3)	0.025 (2)
		× ,	× /	· /		

C15	0.087 (3)	0.082 (3)	0.073 (3)	0.059 (3)	0.008 (2)	0.010(2)
C16	0.049 (2)	0.056 (2)	0.060(2)	0.0265 (18)	0.0120 (16)	0.0077 (17)
C21	0.0408 (16)	0.0372 (17)	0.0412 (17)	0.0113 (14)	0.0144 (13)	0.0015 (13)
C22	0.058 (2)	0.061 (2)	0.048 (2)	0.0319 (18)	0.0179 (16)	0.0101 (16)
C23	0.061 (2)	0.089 (3)	0.069 (3)	0.045 (2)	0.018 (2)	0.012 (2)
C24	0.072 (3)	0.083 (3)	0.077 (3)	0.041 (2)	0.036 (2)	0.006 (2)
C25	0.070 (3)	0.074 (3)	0.052 (2)	0.023 (2)	0.0297 (19)	0.0040 (19)
C26	0.060(2)	0.058 (2)	0.0408 (18)	0.0264 (18)	0.0168 (16)	0.0084 (16)
C31	0.0359 (16)	0.0343 (16)	0.0443 (17)	0.0119 (13)	0.0106 (13)	0.0023 (13)
C32	0.0523 (19)	0.0419 (18)	0.0453 (18)	0.0133 (15)	0.0170 (15)	0.0050 (14)
C33	0.065 (2)	0.044 (2)	0.071 (3)	0.0054 (18)	0.029 (2)	0.0085 (18)
C34	0.051 (2)	0.041 (2)	0.107 (4)	0.0028 (17)	0.019 (2)	-0.005 (2)
C35	0.058 (2)	0.049 (2)	0.081 (3)	0.0091 (19)	-0.014 (2)	-0.013 (2)
C36	0.057 (2)	0.049 (2)	0.055 (2)	0.0164 (18)	-0.0032 (17)	0.0035 (17)
C41	0.066 (2)	0.050 (2)	0.069 (2)	0.0227 (19)	0.023 (2)	0.0046 (18)
C42	0.083 (3)	0.046 (2)	0.080 (3)	0.030(2)	0.013 (2)	0.003 (2)
C43	0.080 (3)	0.068 (3)	0.094 (3)	0.050 (3)	0.012 (3)	-0.009(2)
C44	0.066 (3)	0.071 (3)	0.097 (3)	0.035 (2)	0.029 (2)	-0.003 (2)
C45	0.053 (2)	0.052 (2)	0.069 (2)	0.0200 (18)	0.0172 (18)	0.0013 (18)

Geometric parameters (Å, °)

Ag—N	2.386 (3)	C22—H22B	0.97
Ag—P	2.4436 (8)	C23—C24	1.510 (5)
Ag—I	2.8186 (4)	C23—H23A	0.97
Ag—I ⁱ	2.9449 (5)	С23—Н23В	0.97
Ag—Ag ⁱ	3.1008 (6)	C24—C25	1.503 (5)
I—Ag ⁱ	2.9449 (4)	C24—H24A	0.97
P—C31	1.827 (3)	C24—H24B	0.97
P—C11	1.847 (3)	C25—C26	1.525 (5)
P—C21	1.847 (3)	C25—H25A	0.97
NC41	1.329 (4)	С25—Н25В	0.97
NC45	1.334 (4)	C26—H26A	0.97
C11—C12	1.527 (5)	C26—H26B	0.97
C11—C16	1.532 (4)	C31—C36	1.379 (4)
C11—H11	0.98	C31—C32	1.391 (4)
C12—C13	1.536 (5)	C32—C33	1.384 (5)
C12—H12A	0.97	С32—Н32	0.93
C12—H12B	0.97	C33—C34	1.358 (6)
C13—C14	1.521 (6)	С33—Н33	0.93
С13—Н13А	0.97	C34—C35	1.376 (6)
С13—Н13В	0.97	C34—H34	0.93
C14—C15	1.501 (6)	C35—C36	1.389 (5)
C14—H14A	0.97	С35—Н35	0.93
C14—H14B	0.97	С36—Н36	0.93
C15—C16	1.526 (5)	C41—C42	1.374 (5)
C15—H15A	0.97	C41—H41	0.93
C15—H15B	0.97	C42—C43	1.378 (6)

C16—H16A	0.97	C42—H42	0.93
C16—H16B	0.97	C43—C44	1.353 (6)
C21—C26	1.528 (4)	C43—H43	0.93
C21—C22	1.530 (4)	C44—C45	1.376 (5)
C21—H21	0.98	C44—H44	0.93
C22—C23	1.532 (5)	C45—H45	0.93
C22—H22A	0.97		
N—Ag—P	118.15 (7)	C21—C22—H22A	109.4
N—Ag—I	98.31 (7)	C23—C22—H22A	109.4
P—Ag—I	123.82 (2)	C21—C22—H22B	109.4
N—Ag—I ⁱ	95.85 (7)	С23—С22—Н22В	109.4
P—Ag—I ⁱ	102.83 (2)	H22A—C22—H22B	108
I—Ag—I ⁱ	114.947 (10)	C24—C23—C22	111.6 (3)
N—Ag—Ag ⁱ	103.19 (7)	С24—С23—Н23А	109.3
P—Ag—Ag ⁱ	135.80 (2)	С22—С23—Н23А	109.3
I—Ag—Ag ⁱ	59.443 (10)	C24—C23—H23B	109.3
I ⁱ —Ag—Ag ⁱ	55.505 (11)	С22—С23—Н23В	109.3
Ag—I—Ag ⁱ	65.053 (10)	H23A—C23—H23B	108
C31—P—C11	104.16 (14)	C25—C24—C23	111.7 (3)
C31—P—C21	104.32 (14)	C25—C24—H24A	109.3
C11—P—C21	105.76 (14)	C23—C24—H24A	109.3
C31—P—Ag	119.07 (10)	C25—C24—H24B	109.3
C11—P—Ag	112.57 (10)	C23—C24—H24B	109.3
C21—P—Ag	109.89 (10)	H24A—C24—H24B	107.9
C41—N—C45	116.9 (3)	C24—C25—C26	111.9 (3)
C41—N—Ag	122.4 (2)	C24—C25—H25A	109.2
C45—N—Ag	120.1 (2)	C26—C25—H25A	109.2
C12—C11—C16	110.3 (3)	С24—С25—Н25В	109.2
C12—C11—P	110.5 (2)	C26—C25—H25B	109.2
C16—C11—P	109.9 (2)	H25A—C25—H25B	107.9
C12—C11—H11	108.7	C25—C26—C21	110.9 (3)
C16—C11—H11	108.7	С25—С26—Н26А	109.5
Р—С11—Н11	108.7	C21—C26—H26A	109.5
C11—C12—C13	110.9 (3)	C25—C26—H26B	109.5
C11—C12—H12A	109.5	C21—C26—H26B	109.5
C13—C12—H12A	109.5	H26A—C26—H26B	108.1
C11—C12—H12B	109.5	C36—C31—C32	117.7 (3)
C13—C12—H12B	109.5	C36—C31—P	124.7 (3)
H12A—C12—H12B	108	C32—C31—P	117.6 (2)
C14—C13—C12	111.5 (3)	C33—C32—C31	121.0 (3)
C14—C13—H13A	109.3	С33—С32—Н32	119.5
C12—C13—H13A	109.3	C31—C32—H32	119.5
C14—C13—H13B	109.3	C34—C33—C32	120.2 (4)
C12—C13—H13B	109.3	С34—С33—Н33	119.9
H13A—C13—H13B	108	С32—С33—Н33	119.9
C15—C14—C13	111.6 (4)	C33—C34—C35	120.1 (3)
C15—C14—H14A	109.3	C33—C34—H34	119.9

C13—C14—H14A	109.3	С35—С34—Н34	119.9
C15—C14—H14B	109.3	C34—C35—C36	119.7 (4)
C13—C14—H14B	109.3	С34—С35—Н35	120.1
H14A—C14—H14B	108	С36—С35—Н35	120.1
C14—C15—C16	111.4 (4)	C31—C36—C35	121.2 (4)
C14—C15—H15A	109.4	С31—С36—Н36	119.4
C16—C15—H15A	109.4	С35—С36—Н36	119.4
C14—C15—H15B	109.4	N-C41-C42	123.5 (4)
C16—C15—H15B	109.4	N-C41-H41	118.2
H15A—C15—H15B	108	C42—C41—H41	118.2
C15—C16—C11	112.1 (3)	C41 - C42 - C43	118.6 (4)
C15—C16—H16A	109.2	C41 - C42 - H42	120.7
C_{11} C_{16} H_{16A}	109.2	C43 - C42 - H42	120.7
C15—C16—H16B	109.2	C44 - C43 - C42	120.7 118 5 (4)
C_{11} C_{16} H_{16B}	109.2	C44 - C43 - H43	120.8
H_{164} C_{16} H_{16B}	107.9	C_{42} C_{43} H_{43}	120.8
C_{26} C_{21} C_{22}	110.5 (3)	$C_{42} = C_{43} = \Pi_{43}$	120.0 110.7(4)
$C_{20} = C_{21} = C_{22}$	110.3(3) 116.8(2)	$C_{43} = C_{44} = C_{43}$	119.7 (4)
$C_{20} = C_{21} = 1$	110.0(2)	$C_{45} = C_{44} = H_{44}$	120.2
$C_{22} = C_{21} = 1$	110.4 (2)	N C45 C44	120.2 122.8(4)
$C_{20} = C_{21} = H_{21}$	106.2	N = C45 = U44	122.8 (4)
C_{22} C_{21} H_{21}	106.2	N - C43 - H43	118.0
$P = C_{21} = T_{21}$	100.2	С44—С43—П43	118.0
$C_{21} = C_{22} = C_{23}$	111.1 (3)		
$N - \Delta \sigma - I - \Delta \sigma^{i}$	100.46(7)	$C31_P_C21_C26$	-612(3)
N—Ag—I—Ag ⁱ P—A σ —I—A σ^i	100.46(7) -127.34(3)	C31—P—C21—C26	-61.2(3)
$N - Ag - I - Ag^{i}$ $P - Ag - I - Ag^{i}$ $I^{i} - Ag - I - Ag^{i}$	100.46 (7) -127.34 (3)	C31—P—C21—C26 C11—P—C21—C26 Ag=P—C21—C26	-61.2 (3) 48.3 (3) 170 1 (2)
$N - Ag - I - Ag^{i}$ $P - Ag - I - Ag^{i}$ $I^{i} - Ag - I - Ag^{i}$ $N - Ag - P - C31$	100.46 (7) -127.34 (3) 0 102.47 (14)	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22	-61.2 (3) 48.3 (3) 170.1 (2) 66.0 (3)
$N - Ag - I - Ag^{i}$ $P - Ag - I - Ag^{i}$ $I^{i} - Ag - I - Ag^{i}$ $N - Ag - P - C31$ $I - Ag - P - C31$	100.46 (7) -127.34 (3) 0 102.47 (14) -21.28 (12)	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22	-61.2 (3) 48.3 (3) 170.1 (2) 66.0 (3) 175 6 (2)
$N - Ag - I - Ag^{i}$ $P - Ag - I - Ag^{i}$ $I^{i} - Ag - I - Ag^{i}$ $N - Ag - P - C31$ $I - Ag - P - C31$ $I^{i} - Ag - P - C31$	100.46 (7) -127.34 (3) 0 102.47 (14) -21.28 (12) -153.61 (11)	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag=P=C21-C22	-61.2 (3) 48.3 (3) 170.1 (2) 66.0 (3) 175.6 (2) -62.7 (2)
$N - Ag - I - Ag^{i}$ $P - Ag - I - Ag^{i}$ $I^{i} - Ag - I - Ag^{i}$ $N - Ag - P - C31$ $I - Ag - P - C31$ $I^{i} - Ag - P - C31$ $Ag^{i} - Ag - P - C31$	100.46 (7) -127.34 (3) 0 102.47 (14) -21.28 (12) -153.61 (11) -100.40 (12)	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22	-61.2 (3) 48.3 (3) 170.1 (2) 66.0 (3) 175.6 (2) -62.7 (2) -55.6 (4)
$N - Ag - I - Ag^{i}$ $P - Ag - I - Ag^{i}$ $I^{i} - Ag - I - Ag^{i}$ $N - Ag - P - C31$ $I - Ag - P - C31$ $I^{i} - Ag - P - C31$ $Ag^{i} - Ag - P - C31$ $N - Ag - P - C31$	100.46 (7) -127.34 (3) 0 102.47 (14) -21.28 (12) -153.61 (11) -100.40 (12) -19.81 (14)	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23	-61.2 (3) 48.3 (3) 170.1 (2) 66.0 (3) 175.6 (2) -62.7 (2) -55.6 (4) 173.7 (3)
$N-Ag-I-Ag^{i} P-Ag-I-Ag^{i} I^{i}-Ag-I-Ag^{i} N-Ag-P-C31 I-Ag-P-C31 I^{i}-Ag-P-C31 Ag^{i}-Ag-P-C31 N-Ag-P-C11 I-Ag-P-C11 I-Ag-P$	$100.46 (7) \\ -127.34 (3) \\ 0 \\ 102.47 (14) \\ -21.28 (12) \\ -153.61 (11) \\ -100.40 (12) \\ -19.81 (14) \\ -143.57 (11) $	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23	-61.2 (3) 48.3 (3) 170.1 (2) 66.0 (3) 175.6 (2) -62.7 (2) -55.6 (4) 173.7 (3) 54.9 (5)
$N-Ag-I-Ag^{i} P-Ag-I-Ag^{i} I^{i}-Ag-I-Ag^{i} N-Ag-P-C31 I-Ag-P-C31 I^{i}-Ag-P-C31 Ag^{i}-Ag-P-C31 Ag^{i}-Ag-P-C11 I-Ag-P-C11 I^{i}-Ag-P-C11 I^{i}$	100.46 (7) -127.34 (3) 0 102.47 (14) -21.28 (12) -153.61 (11) -100.40 (12) -19.81 (14) -143.57 (11) 84.11 (11)	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23—C24	-61.2 (3) 48.3 (3) 170.1 (2) 66.0 (3) 175.6 (2) -62.7 (2) -55.6 (4) 173.7 (3) 54.9 (5) -54.4 (5)
$N-Ag-I-Ag^{i} P-Ag-I-Ag^{i} I^{i}-Ag-I-Ag^{i} N-Ag-P-C31 I-Ag-P-C31 I^{i}-Ag-P-C31 Ag^{i}-Ag-P-C31 N-Ag-P-C11 I-Ag-P-C11 I^{i}-Ag-P-C11 I^{i}-Ag-P-C11 Ag^{i}-Ag-P-C11 Ag^{i}-Ag-P-$	$100.46 (7) \\ -127.34 (3) \\ 0 \\ 102.47 (14) \\ -21.28 (12) \\ -153.61 (11) \\ -100.40 (12) \\ -19.81 (14) \\ -143.57 (11) \\ 84.11 (11) \\ 137.32 (11) $	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25	-61.2 (3) 48.3 (3) 170.1 (2) 66.0 (3) 175.6 (2) -62.7 (2) -55.6 (4) 173.7 (3) 54.9 (5) -54.4 (5)
$N-Ag-I-Ag^{i}$ $P-Ag-I-Ag^{i}$ $I^{i}-Ag-I-Ag^{i}$ $N-Ag-P-C31$ $I-Ag-P-C31$ $I^{i}-Ag-P-C31$ $Ag^{i}-Ag-P-C31$ $N-Ag-P-C11$ $I-Ag-P-C11$ $I^{i}-Ag-P-C11$ $I^{i}-Ag-P-C11$ $Ag^{i}-Ag-P-C11$ $Ag^{i}-Ag-P-C11$ $Ag^{i}-Ag-P-C11$ $Ag^{i}-Ag-P-C11$	$100.46 (7) \\ -127.34 (3) \\ 0 \\ 102.47 (14) \\ -21.28 (12) \\ -153.61 (11) \\ -100.40 (12) \\ -19.81 (14) \\ -143.57 (11) \\ 84.11 (11) \\ 137.32 (11) \\ -137.30 (13)$	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26	-61.2 (3) 48.3 (3) 170.1 (2) 66.0 (3) 175.6 (2) -62.7 (2) -55.6 (4) 173.7 (3) 54.9 (5) -54.4 (5) 54.9 (5) -55.8 (4)
$N-Ag-I-Ag^{i}$ $P-Ag-I-Ag^{i}$ $I^{i}-Ag-I-Ag^{i}$ $N-Ag-P-C31$ $I-Ag-P-C31$ $I^{i}-Ag-P-C31$ $Ag^{i}-Ag-P-C31$ $N-Ag-P-C11$ $I-Ag-P-C11$ $I^{i}-Ag-P-C11$ $I^{i}-Ag-P-C11$ $I^{i}-Ag-P-C11$ $I^{i}-Ag-P-C11$ $I = Ag - P - C11$	$100.46 (7) \\ -127.34 (3) \\ 0 \\ 102.47 (14) \\ -21.28 (12) \\ -153.61 (11) \\ -100.40 (12) \\ -19.81 (14) \\ -143.57 (11) \\ 84.11 (11) \\ 137.32 (11) \\ -137.39 (13) \\ 08.85 (11) $	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26—C21 C22—C21—C26—C21 C22—C21—C26—C25	$\begin{array}{c} -61.2 (3) \\ 48.3 (3) \\ 170.1 (2) \\ 66.0 (3) \\ 175.6 (2) \\ -62.7 (2) \\ -55.6 (4) \\ 173.7 (3) \\ 54.9 (5) \\ -54.4 (5) \\ 54.9 (5) \\ -55.8 (4) \\ 55.9 (4) \end{array}$
$N-Ag-I-Ag^{i}$ $P-Ag-I-Ag^{i}$ $I^{i}-Ag-I-Ag^{i}$ $N-Ag-P-C31$ $I-Ag-P-C31$ $I^{i}-Ag-P-C31$ $Ag^{i}-Ag-P-C31$ $N-Ag-P-C11$ $I-Ag-P-C11$ $I^{i}-Ag-P-C11$ $I^{i}-Ag-P-C11$ $I^{i}-Ag-P-C11$ $I-Ag-P-C11$ $I-Ag-P-C11$ $I-Ag-P-C21$ $I-Ag-P-C21$ $I-Ag-P-C21$	$100.46 (7) \\ -127.34 (3) \\ 0 \\ 102.47 (14) \\ -21.28 (12) \\ -153.61 (11) \\ -100.40 (12) \\ -19.81 (14) \\ -143.57 (11) \\ 84.11 (11) \\ 137.32 (11) \\ -137.39 (13) \\ 98.85 (11) \\ -32.48 (11) $	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26—C21 C22—C21—C26—C25 P—C21—C26—C25	-61.2 (3) 48.3 (3) 170.1 (2) 66.0 (3) 175.6 (2) -62.7 (2) -55.6 (4) 173.7 (3) 54.9 (5) -54.4 (5) 54.9 (5) -55.8 (4) 55.9 (4) -126.9 (2)
$N-Ag-I-Ag^{i}$ $P-Ag-I-Ag^{i}$ $I^{i}-Ag-I-Ag^{i}$ $N-Ag-P-C31$ $I-Ag-P-C31$ $I^{i}-Ag-P-C31$ $Ag^{i}-Ag-P-C31$ $N-Ag-P-C11$ $I-Ag-P-C11$ $I^{i}-Ag-P-C11$ $I^{i}-Ag-P-C11$ $N-Ag-P-C11$ $N-Ag-P-C21$ $I-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$	$100.46 (7) \\ -127.34 (3) \\ 0 \\ 102.47 (14) \\ -21.28 (12) \\ -153.61 (11) \\ -100.40 (12) \\ -19.81 (14) \\ -143.57 (11) \\ 84.11 (11) \\ 137.32 (11) \\ -137.39 (13) \\ 98.85 (11) \\ -33.48 (11) \\ 10.72 (11) \\ $	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26—C21 C22—C21—C26—C25 P—C21—C26—C25 P—C21—C26—C25	-61.2 (3) 48.3 (3) 170.1 (2) 66.0 (3) 175.6 (2) -62.7 (2) -55.6 (4) 173.7 (3) 54.9 (5) -54.4 (5) 54.9 (5) -55.8 (4) 55.9 (4) -176.9 (2) -28.2 (2)
$N-Ag-I-Ag^{i}$ $P-Ag-I-Ag^{i}$ $I^{i}-Ag-I-Ag^{i}$ $N-Ag-P-C31$ $I-Ag-P-C31$ $I^{i}-Ag-P-C31$ $Ag^{i}-Ag-P-C31$ $N-Ag-P-C11$ $I-Ag-P-C11$ $I^{i}-Ag-P-C11$ $Ag^{i}-Ag-P-C11$ $N-Ag-P-C21$ $I-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $Ag^{i}-Ag-P-C21$ $Ag^{i}-Ag-P-C21$ $Ag^{i}-Ag-P-C21$	$100.46 (7) \\ -127.34 (3) \\ 0 \\ 102.47 (14) \\ -21.28 (12) \\ -153.61 (11) \\ -100.40 (12) \\ -19.81 (14) \\ -143.57 (11) \\ 84.11 (11) \\ 137.32 (11) \\ -137.39 (13) \\ 98.85 (11) \\ -33.48 (11) \\ 19.73 (11) \\ 68.4 (2) \\ $	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26—C21 C22—C21—C26—C25 P—C21—C26—C25 C11—P—C31—C36 C21—R—C31—C36	$\begin{array}{c} -61.2 (3) \\ 48.3 (3) \\ 170.1 (2) \\ 66.0 (3) \\ 175.6 (2) \\ -62.7 (2) \\ -55.6 (4) \\ 173.7 (3) \\ 54.9 (5) \\ -54.4 (5) \\ 54.9 (5) \\ -55.8 (4) \\ 55.9 (4) \\ -176.9 (2) \\ -28.3 (3) \\ 82.4 (3) \end{array}$
$N-Ag-I-Ag^{i}$ $P-Ag-I-Ag^{i}$ $I^{i}-Ag-I-Ag^{i}$ $N-Ag-P-C31$ $I-Ag-P-C31$ $I^{i}-Ag-P-C31$ $N-Ag-P-C11$ $I-Ag-P-C11$ $I-Ag-P-C11$ $I^{i}-Ag-P-C11$ $I^{i}-Ag-P-C21$ $I-Ag-P-C21$ $I-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C2$ $I^{i}-A$	$100.46 (7) \\ -127.34 (3) \\ 0 \\ 102.47 (14) \\ -21.28 (12) \\ -153.61 (11) \\ -100.40 (12) \\ -19.81 (14) \\ -143.57 (11) \\ 84.11 (11) \\ 137.32 (11) \\ -137.39 (13) \\ 98.85 (11) \\ -33.48 (11) \\ 19.73 (11) \\ 68.4 (3) \\ 155.0 (2) \\ $	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26—C21 C22—C21—C26—C25 P—C21—C26—C25 C11—P—C31—C36 C21—P—C31—C36 C21—P—C31—C36	-61.2 (3) 48.3 (3) 170.1 (2) 66.0 (3) 175.6 (2) -62.7 (2) -55.6 (4) 173.7 (3) 54.9 (5) -54.4 (5) 54.9 (5) -55.8 (4) 55.9 (4) -176.9 (2) -28.3 (3) 82.4 (3) 154.7 (2)
$N-Ag-I-Ag^{i}$ $P-Ag-I-Ag^{i}$ $I^{i}-Ag-I-Ag^{i}$ $N-Ag-P-C31$ $I-Ag-P-C31$ $I^{i}-Ag-P-C31$ $Ag^{i}-Ag-P-C31$ $N-Ag-P-C11$ $I-Ag-P-C11$ $I^{i}-Ag-P-C11$ $Ag^{i}-Ag-P-C11$ $I-Ag-P-C21$ $I-Ag-P-P-C21$ $I-Ag-P-P-C21$ $I-Ag-P-P-C21$ $I-Ag-P-P-C21$ $I-Ag-P-P-C21$ $I-Ag-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-$	$100.46 (7) \\ -127.34 (3) \\ 0 \\ 102.47 (14) \\ -21.28 (12) \\ -153.61 (11) \\ -100.40 (12) \\ -19.81 (14) \\ -143.57 (11) \\ 84.11 (11) \\ 137.32 (11) \\ -137.39 (13) \\ 98.85 (11) \\ -33.48 (11) \\ 19.73 (11) \\ 68.4 (3) \\ -155.9 (3) \\ -39.6 (3) \\ $	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26—C21 C22—C21—C26—C25 P—C21—C26—C25 P—C21—C26—C25 C11—P—C31—C36 Ag—P—C31—C36 Ag—P—C31—C36	$\begin{array}{c} -61.2 (3) \\ 48.3 (3) \\ 170.1 (2) \\ 66.0 (3) \\ 175.6 (2) \\ -62.7 (2) \\ -55.6 (4) \\ 173.7 (3) \\ 54.9 (5) \\ -54.4 (5) \\ 54.9 (5) \\ -55.8 (4) \\ 55.9 (4) \\ -176.9 (2) \\ -28.3 (3) \\ 82.4 (3) \\ -154.7 (3) \\ 151.8 (2) \end{array}$
$N-Ag-I-Ag^{i}$ $P-Ag-I-Ag^{i}$ $I^{i}-Ag-I-Ag^{i}$ $N-Ag-P-C31$ $I-Ag-P-C31$ $I^{i}-Ag-P-C31$ $Ag^{i}-Ag-P-C31$ $N-Ag-P-C11$ $I-Ag-P-C11$ $I^{i}-Ag-P-C11$ $Ag^{i}-Ag-P-C21$ $I-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $P-Ag-P-C21$ $P-Ag-N-C41$ $I-Ag-N-C41$ $I^{i}-Ag-N-C41$ $I^{i}-Ag-N-C41$ $I^{i}-Ag-N-C41$	$100.46 (7) \\ -127.34 (3) \\ 0 \\ 102.47 (14) \\ -21.28 (12) \\ -153.61 (11) \\ -100.40 (12) \\ -19.81 (14) \\ -143.57 (11) \\ 84.11 (11) \\ 137.32 (11) \\ -137.39 (13) \\ 98.85 (11) \\ -33.48 (11) \\ 19.73 (11) \\ 68.4 (3) \\ -155.9 (3) \\ -39.6 (3) \\ -95.5 (3$	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26—C21 C22—C21—C26—C25 P—C21—C26—C25 C11—P—C31—C36 C21—P—C31—C36 Ag—P—C31—C36 C11—P—C31—C32 C21—C32	$\begin{array}{c} -61.2 (3) \\ 48.3 (3) \\ 170.1 (2) \\ 66.0 (3) \\ 175.6 (2) \\ -62.7 (2) \\ -55.6 (4) \\ 173.7 (3) \\ 54.9 (5) \\ -54.4 (5) \\ 54.9 (5) \\ -55.8 (4) \\ 55.9 (4) \\ -176.9 (2) \\ -28.3 (3) \\ 82.4 (3) \\ -154.7 (3) \\ 151.8 (2) \\ -07.5 (2) \end{array}$
$N-Ag-I-Ag^{i}$ $P-Ag-I-Ag^{i}$ $I^{i}-Ag-I-Ag^{i}$ $N-Ag-P-C31$ $I-Ag-P-C31$ $I^{i}-Ag-P-C31$ $Ag^{i}-Ag-P-C31$ $N-Ag-P-C11$ $I-Ag-P-C11$ $I^{i}-Ag-P-C11$ $Ag^{i}-Ag-P-C21$ $I-Ag-P-C21$ $I-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I-Ag-P-C21$ $I-Ag-P-C2$ $I-Ag-P-C21$ $I-Ag-P-C2$ $I-Ag-P-P-C21$ $I-Ag-P-P-C21$ $I-Ag-$	$100.46 (7) \\ -127.34 (3) \\ 0 \\ 102.47 (14) \\ -21.28 (12) \\ -153.61 (11) \\ -100.40 (12) \\ -19.81 (14) \\ -143.57 (11) \\ 84.11 (11) \\ 137.32 (11) \\ -137.39 (13) \\ 98.85 (11) \\ -33.48 (11) \\ 19.73 (11) \\ 68.4 (3) \\ -155.9 (3) \\ -39.6 (3) \\ -95.5 (3) \\ 102.6 (2) \\ $	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26—C21 C22—C21—C26—C25 P—C21—C26—C25 C11—P—C31—C36 C21—P—C31—C36 C11—P—C31—C32 C21—P—C31—C32 C21—P—C31—C32	$\begin{array}{c} -61.2 (3) \\ 48.3 (3) \\ 170.1 (2) \\ 66.0 (3) \\ 175.6 (2) \\ -62.7 (2) \\ -55.6 (4) \\ 173.7 (3) \\ 54.9 (5) \\ -54.4 (5) \\ 54.9 (5) \\ -55.8 (4) \\ 55.9 (4) \\ -176.9 (2) \\ -28.3 (3) \\ 82.4 (3) \\ -154.7 (3) \\ 151.8 (2) \\ -97.5 (3) \\ 25.4 (2) \end{array}$
$N-Ag-I-Ag^{i}$ $P-Ag-I-Ag^{i}$ $I^{i}-Ag-I-Ag^{i}$ $N-Ag-P-C31$ $I-Ag-P-C31$ $I^{i}-Ag-P-C31$ $N-Ag-P-C11$ $I-Ag-P-C11$ $I^{i}-Ag-P-C11$ $I^{i}-Ag-P-C11$ $I^{i}-Ag-P-C21$ $I-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C2$	$100.46 (7) \\ -127.34 (3) \\ 0 \\ 102.47 (14) \\ -21.28 (12) \\ -153.61 (11) \\ -100.40 (12) \\ -19.81 (14) \\ -143.57 (11) \\ 84.11 (11) \\ 137.32 (11) \\ -137.39 (13) \\ 98.85 (11) \\ -33.48 (11) \\ 19.73 (11) \\ 68.4 (3) \\ -155.9 (3) \\ -39.6 (3) \\ -95.5 (3) \\ -102.6 (3) \\ 22.1 (2) \\ $	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26—C21 C22—C21—C26—C25 P—C21—C26—C25 C11—P—C31—C36 C21—P—C31—C36 C11—P—C31—C32 C21—P—C31—C32 Ag—P—C31—C32 Ag—P—C31—C32	$\begin{array}{c} -61.2 (3) \\ 48.3 (3) \\ 170.1 (2) \\ 66.0 (3) \\ 175.6 (2) \\ -62.7 (2) \\ -55.6 (4) \\ 173.7 (3) \\ 54.9 (5) \\ -55.8 (4) \\ 55.9 (4) \\ -176.9 (2) \\ -28.3 (3) \\ 82.4 (3) \\ -154.7 (3) \\ 151.8 (2) \\ -97.5 (3) \\ 25.4 (3) \\ 0.2 (5) \end{array}$
$N-Ag-I-Ag^{i}$ $P-Ag-I-Ag^{i}$ $I^{i}-Ag-I-Ag^{i}$ $N-Ag-P-C31$ $I-Ag-P-C31$ $I^{i}-Ag-P-C31$ $Ag^{i}-Ag-P-C31$ $N-Ag-P-C11$ $I-Ag-P-C11$ $I^{i}-Ag-P-C11$ $I^{i}-Ag-P-C21$ $I-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-N-C41$ $I^{i}-Ag-N-C41$ $I^{i}-Ag-N-C41$ $P-Ag-N-C45$ $I-Ag-N-C45$ $I^{i}-Ag-N-C45$ $I^{i}-Ag-N-C45$	$\begin{array}{c} 100.46\ (7)\\ -127.34\ (3)\\ 0\\ 102.47\ (14)\\ -21.28\ (12)\\ -153.61\ (11)\\ -100.40\ (12)\\ -19.81\ (14)\\ -143.57\ (11)\\ 84.11\ (11)\\ 137.32\ (11)\\ -137.39\ (13)\\ 98.85\ (11)\\ -33.48\ (11)\\ 19.73\ (11)\\ 68.4\ (3)\\ -155.9\ (3)\\ -39.6\ (3)\\ -95.5\ (3)\\ -102.6\ (3)\\ 33.1\ (3)\\ \end{array}$	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26—C21 C22—C21—C26—C25 P—C21—C26—C25 C11—P—C31—C36 C21—P—C31—C36 C11—P—C31—C36 C11—P—C31—C32 C21—P—C31—C32 Ag—P—C31—C32 Ag—P—C31—C32 Ag—P—C31—C32 C36—C31—C32—C33	$\begin{array}{c} -61.2 (3) \\ 48.3 (3) \\ 170.1 (2) \\ 66.0 (3) \\ 175.6 (2) \\ -62.7 (2) \\ -55.6 (4) \\ 173.7 (3) \\ 54.9 (5) \\ -54.4 (5) \\ 54.9 (5) \\ -55.8 (4) \\ 55.9 (4) \\ -176.9 (2) \\ -28.3 (3) \\ 82.4 (3) \\ -154.7 (3) \\ 151.8 (2) \\ -97.5 (3) \\ 25.4 (3) \\ -0.3 (5) \\ \end{array}$
$N-Ag-I-Ag^{i}$ $P-Ag-I-Ag^{i}$ $I^{i}-Ag-I-Ag^{i}$ $N-Ag-P-C31$ $I-Ag-P-C31$ $I^{i}-Ag-P-C31$ $Ag^{i}-Ag-P-C31$ $N-Ag-P-C11$ $I-Ag-P-C11$ $I^{i}-Ag-P-C11$ $Ag^{i}-Ag-P-C21$ $I-Ag-P-C21$ $I-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I-Ag-P-C21$ $I-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I^{i}-Ag-N-C41$ $I-Ag-N-C41$ $I^{i}-Ag-N-C41$ $I^{i}-Ag-N-C41$ $I^{i}-Ag-N-C45$ $I-Ag-N-C45$ $I^{i}-Ag-N-C45$ $I^{i}-Ag-N-C45$ $I^{i}-Ag-N-C45$	$100.46 (7) \\ -127.34 (3) \\ 0 \\ 102.47 (14) \\ -21.28 (12) \\ -153.61 (11) \\ -100.40 (12) \\ -19.81 (14) \\ -143.57 (11) \\ 84.11 (11) \\ 137.32 (11) \\ -137.39 (13) \\ 98.85 (11) \\ -33.48 (11) \\ 19.73 (11) \\ 68.4 (3) \\ -155.9 (3) \\ -39.6 (3) \\ -95.5 (3) \\ -102.6 (3) \\ 33.1 (3) \\ 149.5 (3) \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -61.2 (3) \\ 48.3 (3) \\ 170.1 (2) \\ 66.0 (3) \\ 175.6 (2) \\ -62.7 (2) \\ -55.6 (4) \\ 173.7 (3) \\ 54.9 (5) \\ -54.4 (5) \\ 54.9 (5) \\ -55.8 (4) \\ 55.9 (4) \\ -176.9 (2) \\ -28.3 (3) \\ 82.4 (3) \\ -154.7 (3) \\ 151.8 (2) \\ -97.5 (3) \\ 25.4 (3) \\ -0.3 (5) \\ 179.6 (3) \\ 19.6 (3) \end{array}$
$N-Ag-I-Ag^{i}$ $P-Ag-I-Ag^{i}$ $I^{i}-Ag-I-Ag^{i}$ $N-Ag-P-C31$ $I-Ag-P-C31$ $I^{i}-Ag-P-C31$ $Ag^{i}-Ag-P-C31$ $N-Ag-P-C11$ $I-Ag-P-C11$ $I^{i}-Ag-P-C11$ $Ag^{i}-Ag-P-C21$ $I-Ag-P-C21$ $I-Ag-P-C21$ $I^{i}-Ag-P-C21$ $I-Ag-P-C21$ $I-Ag-P-P-C21$ $I-Ag-P-P-C21$ $I-Ag-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-$	$100.46 (7) \\ -127.34 (3) \\ 0 \\ 102.47 (14) \\ -21.28 (12) \\ -153.61 (11) \\ -100.40 (12) \\ -19.81 (14) \\ -143.57 (11) \\ 84.11 (11) \\ 137.32 (11) \\ -137.39 (13) \\ 98.85 (11) \\ -33.48 (11) \\ 19.73 (11) \\ 68.4 (3) \\ -155.9 (3) \\ -39.6 (3) \\ -95.5 (3) \\ -102.6 (3) \\ 33.1 (3) \\ 149.5 (3) \\ 93.6 (3) \\ -150 (2) \\ $	C31—P—C21—C26 C11—P—C21—C26 Ag—P—C21—C26 C31—P—C21—C22 C11—P—C21—C22 Ag—P—C21—C22 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26—C21 C22—C21—C26—C25 P—C21—C26—C25 C11—P—C31—C36 C21—P—C31—C36 C11—P—C31—C36 C11—P—C31—C32 C21—P—C31—C32 C36—C31—C32—C33 P—C31—C32—C33 C31—C32—C33—C34	$\begin{array}{c} -61.2 (3) \\ 48.3 (3) \\ 170.1 (2) \\ 66.0 (3) \\ 175.6 (2) \\ -62.7 (2) \\ -55.6 (4) \\ 173.7 (3) \\ 54.9 (5) \\ -54.4 (5) \\ 54.9 (5) \\ -55.8 (4) \\ 55.9 (4) \\ -176.9 (2) \\ -28.3 (3) \\ 82.4 (3) \\ -154.7 (3) \\ 151.8 (2) \\ -97.5 (3) \\ 25.4 (3) \\ -0.3 (5) \\ 179.6 (3) \\ 1.8 (6) \\ 25.6 (6) \end{array}$

C21—P—C11—C12	60.2 (3)	C33—C34—C35—C36	1.7 (6)
Ag—P—C11—C12	-59.8 (2)	C32—C31—C36—C35	-0.5 (5)
C31—P—C11—C16	-68.2 (3)	P-C31-C36-C35	179.6 (3)
C21—P—C11—C16	-177.8 (2)	C34—C35—C36—C31	-0.2 (6)
Ag—P—C11—C16	62.2 (2)	C45—N—C41—C42	-0.1 (6)
C16-C11-C12-C13	55.0 (4)	Ag—N—C41—C42	-171.3 (3)
P-C11-C12-C13	176.8 (2)	N-C41-C42-C43	0.5 (6)
C11—C12—C13—C14	-55.7 (5)	C41—C42—C43—C44	0.0 (7)
C12—C13—C14—C15	55.5 (5)	C42—C43—C44—C45	-1.0 (7)
C13—C14—C15—C16	-54.9 (5)	C41—N—C45—C44	-1.0 (6)
C14—C15—C16—C11	55.2 (4)	Ag—N—C45—C44	170.5 (3)
C12-C11-C16-C15	-55.1 (4)	C43—C44—C45—N	1.5 (7)
P-C11-C16-C15	-177.2 (3)		

Symmetry code: (i) -x+1, -y+1, -z+1.