

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 6-methylsulfanyl-2-phenyl-1Himidazo[1,2-b]pyrazole-7-carboxylate monohydrate

Teng-fei Shao, Gui-long Zhao and Jian-wu Wang*

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China Correspondence e-mail: yugp2005@yahoo.com.cn

Received 23 March 2009; accepted 25 March 2009

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.005 Å; R factor = 0.044; wR factor = 0.094; data-to-parameter ratio = 16.1.

The title compound, C₁₅H₁₅N₃O₂S·H₂O, has been obtained in a search for new imidazo[1,2-b]pyrazole derivatives with better biological activity. The 1H-imidazo[1,2-b]pyrazole plane forms a dihedral angle of $16.90 (3)^{\circ}$ with the benzene ring. π - π interactions are indicated by the short distance of 3.643 (2) Å between the centroids of the benzene and imidazole rings. The crystal structure also involves intermolecular O-H···N hydrogen bonds.

Related literature

For the biological activity of imidazo[1,2-b]pyrazole derivatives, see: Vanotti et al. (1994); Kinnamon et al. (2000); Li et al. (2005). For bond-length data, see: Allen et al., 1987.

V = 1588.9 (3) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.10 \times 0.10 \; \mathrm{mm}$

8763 measured reflections 3326 independent reflections

1877 reflections with $I > 2\sigma(I)$

 $\mu = 0.22 \text{ mm}^{-1}$

T = 273 K

 $R_{\rm int} = 0.051$

Z = 4

Experimental

Crystal data

C15H15N3O2S·H2O $M_r = 319.38$ Orthorhombic, Pna21 a = 19.017 (2) Å b = 5.4854(7) Åc = 15.2314 (18) Å

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.957, \ T_{\max} = 0.978$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of
$wR(F^2) = 0.094$	independent and constrained
S = 0.97	refinement
3326 reflections	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
207 parameters	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$
1 restraint	Absolute structure: Flack (1983),
	1442 Friedel pairs
	Flack parameter: -0.01 (9)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3A\cdots N3^{i}$	0.99 (6)	1.86 (6)	2.809 (4)	160 (5)
Symmetry code: (i) $-x$	$+\frac{1}{2}, y + \frac{1}{2}, z - \frac{1}{2}.$			

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2495).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Kinnamon, K. E., Engle, R. R., Poon, B. T., Ellis, W. Y., McCall, J. W. & Pzimianski, M. T. (2000). Proc. Soc. Exp. Biol. Med. 224, 45-49.

Li, M., Zhao, G. L., Wen, L., Cai, W., Zhang, S. S. & Yang, H. Z. (2005). J. Heterocycl. Chem. 42, 209-214.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Vanotti, E., Fiorentini, F. & Villa, M. (1994). J. Heterocycl. Chem. 31, 737-743.

supporting information

Acta Cryst. (2009). E65, o923 [doi:10.1107/S1600536809010988]

Ethyl 6-methylsulfanyl-2-phenyl-1*H*-imidazo[1,2-*b*]pyrazole-7-carboxylate monohydrate

Teng-fei Shao, Gui-long Zhao and Jian-wu Wang

S1. Comment

Imidazo[1,2-*b*]pyrazole derivatives have been reported to show various biological activities [Vanotti *et al.*, 1994; Kinnamon *et al.*, 2000], in continuation of our research interest in this field [Li *et al.*, 2005], the new title compound has been synthesized in a search for new compounds with better biological activity, and its crystal structure was determined by X-ray diffraction method.

The title compound crystallizes as a monohydrate (Fig. 1), all bond lengths are normal and in a good agreement with those reported previously (Allen *et al.*, 1987). Atoms S1/O1/O2/C12/C13/C14 lie in 1*H*-imidazo[1,2-*b*]pyrazole (C7—C11/N1/N2/N3) plane with maximum least squares plane deviation for C14 0.070 (3) Å. The 1*H*-imidazo[1,2-*b*]pyrazole plane forms dihedral angles of 16.90 (3)° with the benzene ring (C1—C6). π - π stacking interactions (Table 1) are present in the structure. The crystal structure involves intermolecular are O–H…N hydrogen bonds.

S2. Experimental

A suspended solution in 30 ml of acetonitrile containing 5 mmol (1.01 g) of ethyl 5-amino-3-methylthio-1*H*-pyrazole-4carboxylate, 5 mmol (1.00) of α -bromoacetophenone and 10 mmol (1.38 g) of sodium carbonate was refluxed for about 10 h until the starting materials were consumed completely, as indicated by TLC. On cooling, the solid was removed through filtration, and the filtrate was evaporated to afford a residue, which was dissolved in 30 ml of absolute ethanol, followed by the addition of several drops of concentrated hydrochloric acid. The resulting solution was then refluxed for about 3 h, and cooled to room temperature. The solution was then evaporated in vacuo to afford the crude product, which was purified by column chromatography using ethyl acetate/petroleum ether (1:5) to give 0.87 g of pure title compound. Crystals suitable for X-ray diffraction were obtained from slow evaporation of a solution of the title compound in dichloromethane/ethyl acetate/petroleum ether (1/2/1) at room temperature.

S3. Refinement

All H atoms were found on difference maps. The water H atoms were refined freely, giving 0.85 (6) and 0.99 (6)Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C, N)$ and $1.5U_{eq}(C)$ for the methyl H atoms.

Figure 1

View of the title compound, with displacement ellipsoids drawn at the 40% probability level.

Ethyl 6-methylsulfanyl-2-phenyl-1H-imidazo[1,2-b]pyrazole-7-carboxylate monohydrate

Crystal data

C₁₅H₁₅N₃O₂S·H₂O $M_r = 319.38$ Orthorhombic, *Pna2*₁ Hall symbol: P 2c -2n a = 19.017 (2) Å b = 5.4854 (7) Å c = 15.2314 (18) Å V = 1588.9 (3) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.957, T_{\max} = 0.978$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.094$ S = 0.973326 reflections 207 parameters 1 restraint Primary atom site location: structure-invariant direct methods

Acta Cryst. (2009). E65, 0923

F(000) = 672 $D_x = 1.335 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1077 reflections $\theta = 2.5-18.0^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 273 KBlock, colorless $0.20 \times 0.10 \times 0.10 \text{ mm}$

8763 measured reflections 3326 independent reflections 1877 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -24 \rightarrow 17$ $k = -7 \rightarrow 6$ $l = -19 \rightarrow 19$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0345P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.15$ e Å⁻³ $\Delta \rho_{\rm min} = -0.14 \ {\rm e} \ {\rm \AA}^{-3}$

Absolute structure: Flack (1983), 1442 Friedel pairs Absolute structure parameter: -0.01 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic (or equivalent isotro	pic displacement	parameters	$(Å^2)$)
----------------------------------	---------------	----------------------	------------------	------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.09788 (5)	-0.14517 (15)	0.84062 (6)	0.0691 (3)	
01	0.15780 (12)	0.2624 (4)	0.58697 (15)	0.0736 (7)	
O2	0.09476 (11)	-0.0245 (4)	0.65679 (14)	0.0650 (6)	
O3	0.2436 (2)	0.6611 (6)	0.55376 (16)	0.0945 (10)	
H3A	0.275 (3)	0.647 (9)	0.502 (4)	0.16 (2)*	
H3C	0.223 (3)	0.523 (10)	0.551 (3)	0.15 (2)*	
N1	0.25532 (13)	0.5824 (4)	0.73178 (16)	0.0526 (7)	
H1A	0.2568	0.6315	0.6782	0.063*	
N2	0.22812 (12)	0.3832 (5)	0.84912 (16)	0.0525 (6)	
N3	0.19001 (14)	0.2003 (5)	0.88960 (15)	0.0577 (7)	
C1	0.34450 (18)	1.0192 (6)	0.7130 (2)	0.0603 (9)	
H1B	0.3120	0.9869	0.6689	0.072*	
C2	0.3920 (2)	1.2072 (6)	0.7024 (2)	0.0719 (11)	
H2A	0.3909	1.3011	0.6516	0.086*	
C3	0.4406 (2)	1.2562 (7)	0.7662 (3)	0.0738 (10)	
H3B	0.4727	1.3824	0.7588	0.089*	
C4	0.4416 (2)	1.1188 (7)	0.8405 (3)	0.0839 (10)	
H4A	0.4748	1.1508	0.8838	0.101*	
C5	0.39376 (19)	0.9320 (6)	0.8522 (3)	0.0759 (10)	
H5A	0.3947	0.8413	0.9038	0.091*	
C6	0.34440 (16)	0.8779 (6)	0.7882 (2)	0.0512 (8)	
C7	0.29409 (17)	0.6804 (5)	0.8010 (2)	0.0527 (8)	
C8	0.27674 (16)	0.5545 (6)	0.8748 (2)	0.0544 (9)	
H8A	0.2942	0.5792	0.9312	0.065*	
C9	0.21516 (17)	0.3985 (6)	0.76236 (19)	0.0490 (8)	
C10	0.15369 (15)	0.1013 (5)	0.8233 (2)	0.0511 (8)	
C11	0.16699 (17)	0.2151 (5)	0.7410 (2)	0.0502 (8)	
C12	0.14107 (16)	0.1594 (6)	0.6547 (2)	0.0542 (8)	
C13	0.0647 (2)	-0.1008 (7)	0.5744 (2)	0.0850 (12)	
H13A	0.1009	-0.1654	0.5360	0.102*	
H13B	0.0422	0.0358	0.5452	0.102*	
C14	0.0120 (2)	-0.2929 (7)	0.5953 (3)	0.0986 (13)	

supporting information

H14A	-0.0095	-0.3494	0.5421	0.148*
H14B	-0.0235	-0.2265	0.6333	0.148*
H14C	0.0349	-0.4267	0.6242	0.148*
C15	0.1101 (2)	-0.1931 (7)	0.9562 (3)	0.0873 (13)
H15A	0.0816	-0.3276	0.9751	0.131*
H15B	0.0966	-0.0488	0.9876	0.131*
H15C	0.1587	-0.2285	0.9677	0.131*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
S1	0.0711 (6)	0.0678 (5)	0.0682 (6)	-0.0051 (5)	0.0093 (5)	0.0161 (5)
01	0.0939 (19)	0.0829 (16)	0.0440 (12)	-0.0255 (15)	-0.0010 (14)	0.0096 (12)
O2	0.0703 (14)	0.0722 (15)	0.0526 (14)	-0.0146 (14)	-0.0035 (12)	0.0025 (12)
O3	0.131 (3)	0.107 (3)	0.0453 (15)	-0.041 (2)	0.0042 (15)	0.0143 (15)
N1	0.0628 (17)	0.0571 (16)	0.0377 (15)	0.0017 (14)	-0.0024 (13)	0.0054 (14)
N2	0.0642 (17)	0.0573 (16)	0.0359 (15)	0.0048 (13)	-0.0019 (14)	0.0087 (13)
N3	0.0700 (19)	0.0583 (16)	0.0448 (16)	-0.0010 (15)	0.0068 (15)	0.0150 (14)
C1	0.057 (2)	0.067 (2)	0.056 (2)	-0.0041 (19)	-0.0011 (16)	0.0014 (18)
C2	0.082 (3)	0.074 (3)	0.060(2)	-0.006 (2)	0.013 (2)	0.007 (2)
C3	0.070 (2)	0.076 (2)	0.076 (3)	-0.015 (2)	0.010(2)	-0.010 (2)
C4	0.089 (3)	0.088 (3)	0.075 (3)	-0.019 (2)	-0.015 (3)	-0.003 (3)
C5	0.088 (3)	0.077 (2)	0.062 (2)	-0.011 (2)	-0.018 (2)	0.006 (2)
C6	0.054 (2)	0.0534 (18)	0.046 (2)	0.0094 (16)	0.0014 (15)	-0.0006 (15)
C7	0.060 (2)	0.0549 (19)	0.0435 (19)	0.0042 (17)	-0.0012 (17)	0.0009 (17)
C8	0.062 (2)	0.060(2)	0.0403 (18)	0.0040 (18)	-0.0048 (15)	0.0020 (16)
C9	0.0551 (19)	0.056 (2)	0.0365 (18)	0.0079 (17)	0.0028 (15)	0.0095 (16)
C10	0.0534 (19)	0.0508 (18)	0.049 (2)	0.0074 (15)	0.0022 (15)	0.0050 (16)
C11	0.057 (2)	0.054 (2)	0.0405 (17)	0.0023 (17)	0.0057 (16)	0.0049 (16)
C12	0.055 (2)	0.055 (2)	0.053 (2)	0.0005 (17)	0.0055 (17)	0.0062 (18)
C13	0.087 (3)	0.101 (3)	0.066 (3)	-0.026 (2)	-0.005 (2)	-0.011 (2)
C14	0.108 (3)	0.094 (3)	0.095 (3)	-0.043 (3)	0.001 (3)	-0.013 (2)
C15	0.107 (3)	0.089 (3)	0.067 (3)	-0.005 (2)	0.026 (2)	0.027 (2)

Geometric parameters (Å, °)

S1—C10	1.739 (3)	С3—Н3В	0.9300
S1—C15	1.795 (4)	C4—C5	1.382 (4)
O1—C12	1.219 (4)	C4—H4A	0.9300
O2—C12	1.339 (3)	C5—C6	1.385 (4)
O2—C13	1.442 (4)	C5—H5A	0.9300
O3—H3A	0.99 (6)	C6—C7	1.459 (4)
O3—H3C	0.85 (6)	C7—C8	1.359 (4)
N1—C9	1.348 (3)	C8—H8A	0.9300
N1—C7	1.395 (4)	C9—C11	1.399 (4)
N1—H1A	0.8600	C10—C11	1.423 (4)
N2—C9	1.347 (4)	C11—C12	1.436 (4)
N2—C8	1.375 (4)	C13—C14	1.489 (5)

N2—N3	1.383 (3)	C13—H13A	0.9700
N3—C10	1.339 (4)	C13—H13B	0.9700
C1—C2	1.380 (4)	C14—H14A	0.9600
C1—C6	1.383 (4)	C14—H14B	0.9600
C1—H1B	0.9300	C14—H14C	0.9600
C2—C3	1.368 (5)	C15—H15A	0.9600
C2—H2A	0.9300	C15—H15B	0.9600
$C_3 - C_4$	1 360 (5)	C15—H15C	0.9600
	1.500 (5)		0.9000
Cg1···Cg2 ⁱ	3.643 (2)		
C10—S1—C15	100.60 (17)	С7—С8—Н8А	127.0
C12—O2—C13	117.3 (3)	N2—C8—H8A	127.0
H3A—O3—H3C	99 (4)	N2—C9—N1	106.4 (3)
C9—N1—C7	109.0 (3)	N2-C9-C11	107.7 (3)
C9—N1—H1A	125.5	N1-C9-C11	146.0 (3)
C7—N1—H1A	125.5	N3-C10-C11	113.3 (3)
C9—N2—C8	111.1 (3)	N3—C10—S1	121.0 (2)
C9—N2—N3	112.8 (3)	C11—C10—S1	125.7 (2)
C8—N2—N3	136.2 (3)	C9—C11—C10	103.1(3)
C10—N3—N2	103.2 (2)	C9—C11—C12	126.2 (3)
C2—C1—C6	121.1 (3)	C10-C11-C12	130.6 (3)
C2—C1—H1B	119.4	O1—C12—O2	122.7 (3)
С6—С1—Н1В	119.4	O1—C12—C11	125.9 (3)
C3—C2—C1	120.4 (3)	O2—C12—C11	111.4 (3)
C3—C2—H2A	119.8	O2—C13—C14	106.6 (3)
C1—C2—H2A	119.8	O2—C13—H13A	110.4
C4—C3—C2	119.5 (4)	C14—C13—H13A	110.4
C4—C3—H3B	120.3	O2—C13—H13B	110.4
С2—С3—Н3В	120.3	C14—C13—H13B	110.4
C3—C4—C5	120.6 (4)	H13A—C13—H13B	108.6
C3—C4—H4A	119.7	C13—C14—H14A	109.5
С5—С4—Н4А	119.7	C13—C14—H14B	109.5
C4—C5—C6	120.9 (4)	H14A—C14—H14B	109.5
C4—C5—H5A	119.5	C13—C14—H14C	109.5
C6—C5—H5A	119.5	H14A—C14—H14C	109.5
C1—C6—C5	117.5 (3)	H14B—C14—H14C	109.5
C1—C6—C7	121.9 (3)	S1—C15—H15A	109.5
C5—C6—C7	120.6 (3)	S1—C15—H15B	109.5
C8—C7—N1	107.5 (3)	H15A—C15—H15B	109.5
C8—C7—C6	130.3 (3)	S1—C15—H15C	109.5
N1—C7—C6	122.1 (3)	H15A—C15—H15C	109.5
C7—C8—N2	106.0 (3)	H15B—C15—H15C	109.5
C9—N2—N3—C10	0.9 (3)	N3—N2—C9—C11	-1.2 (3)
C8—N2—N3—C10	-178.6 (3)	C7—N1—C9—N2	0.5 (3)
C6—C1—C2—C3	0.6 (5)	C7—N1—C9—C11	-177.5 (4)
C1—C2—C3—C4	-0.3 (5)	N2-N3-C10-C11	-0.2(3)

C2—C3—C4—C5	-0.5 (6)	N2-N3-C10-S1	178.80 (19)
C3—C4—C5—C6	1.0 (6)	C15—S1—C10—N3	-0.8 (3)
C2-C1-C6-C5	-0.1 (5)	C15—S1—C10—C11	178.0 (3)
C2-C1-C6-C7	179.2 (3)	N2-C9-C11-C10	1.0 (3)
C4—C5—C6—C1	-0.7 (5)	N1-C9-C11-C10	179.0 (4)
C4—C5—C6—C7	179.9 (3)	N2-C9-C11-C12	-177.1 (3)
C9—N1—C7—C8	-0.4 (3)	N1-C9-C11-C12	0.9 (7)
C9—N1—C7—C6	178.0 (2)	N3-C10-C11-C9	-0.5 (3)
C1—C6—C7—C8	-165.9 (3)	S1—C10—C11—C9	-179.5 (2)
C5—C6—C7—C8	13.5 (5)	N3-C10-C11-C12	177.5 (3)
C1C6C7N1	16.2 (4)	S1-C10-C11-C12	-1.4 (5)
C5C6C7N1	-164.4 (3)	C13—O2—C12—O1	0.4 (4)
N1—C7—C8—N2	0.1 (3)	C13—O2—C12—C11	-179.7 (3)
C6—C7—C8—N2	-178.1 (3)	C9-C11-C12-O1	0.8 (5)
C9—N2—C8—C7	0.2 (3)	C10-C11-C12-O1	-176.9 (3)
N3—N2—C8—C7	179.7 (3)	C9-C11-C12-O2	-179.1 (3)
C8—N2—C9—N1	-0.5 (3)	C10-C11-C12-O2	3.2 (4)
N3—N2—C9—N1	179.9 (2)	C12—O2—C13—C14	-176.1 (3)
C8—N2—C9—C11	178.4 (2)		

Symmetry code: (i) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3A…N3 ⁱⁱ	0.99 (6)	1.86 (6)	2.809 (4)	160 (5)

Symmetry code: (ii) -*x*+1/2, *y*+1/2, *z*-1/2.