metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

{ μ -1,3-Bis[(3,5-dimethylpyrazol-1-yl)methyl]benzene- $\kappa^2 N^2$: N^2 }di- μ -chloridobis[chloridopalladium(II)] toluene solvate

Bernard Omondi,* Asheena Budhai and James Darkwa

Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa Correspondence e-mail: bernardowaga@gmail.com

Received 17 March 2009; accepted 23 March 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; R factor = 0.042; wR factor = 0.098; data-to-parameter ratio = 22.3.

In the title complex, $[Pd_2Cl_4(C_{18}H_{22}N_4)]\cdot C_7H_8$, each of the two four-coordinated Pd^{II} atoms is in a slightly distorted squareplanar geometry, defined by one N atom from the ligand, two bridging Cl atoms and one terminal Cl atom. Intermolecular $C-H\cdots\pi$ interactions between the pyrazole ring H atom and the toluene ring stabilize the crystal structure.

Related literature

For general background to poly(pyrazol-1-yl-methyl)benzene ligands and their palladium complexes, see: Hartshorn & Steel (1995, 1997, 1998); Motsoane *et al.* (2007); Yen *et al.* (2006). For related structures, see: Guzei *et al.* (2003).

Experimental

Crystal data

 $[\text{Pd}_2\text{Cl}_4(\text{C}_{18}\text{H}_{22}\text{N}_4)] \cdot \text{C}_7\text{H}_8 \\ M_r = 741.13 \\ \text{Monoclinic, } P2_1/n \\ a = 10.4572 \ (10) \text{ Å} \\ b = 25.376 \ (2) \text{ Å} \\ c = 12.0782 \ (12) \text{ Å} \\ \beta = 112.395 \ (4)^\circ$

Data collection

Bruker SMART APEX CCD diffractometer

 $V = 2963.4 (5) \text{ Å}^3$ Z = 4Mo K\alpha radiation $\mu = 1.60 \text{ mm}^{-1}$ T = 298 K $0.50 \times 0.12 \times 0.06 \text{ mm}$

Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{min} = 0.503, T_{max} = 0.910$ 22587 measured reflections 7158 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	10 restraints
$vR(F^2) = 0.098$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.53 \text{ e} \text{ \AA}^{-3}$
'158 reflections	$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$
321 parameters	

Table 1

Selected bond lengths (A	1)
--------------------------	---	---

N2-Pd1	2.005 (3)	Cl3-Pd2	2.3421 (11)
N4-Pd2	2.002 (3)	Cl3-Pd1	2.3502 (10)
Cl1-Pd1	2.2647 (11)	Cl4-Pd2	2.3092 (11)
Cl2-Pd2	2.2774 (12)	Cl4-Pd1	2.3135 (12)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C16-H16\cdots Cg1^{i}$	0.93	2.93	3.802 (6)	157
Symmetry code: (i) $x +$	$-\frac{1}{2}, -y + \frac{3}{2}, z - $	$\frac{1}{2}$. Cg1 is the ce	ntroid of the C20-	C25 ring.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We thank the University of Johannesburg and the National Research Foundation (South Africa) for financial support for this project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2189).

References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2001). *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Guzei, I. A., Li, K., Bikzhanova, G. A., Darkwa, J. & Mapolie, S. F. (2003). *Dalton Trans.* pp. 715–717.
- Hartshorn, C. M. & Steel, P. J. (1995). J. Aust. Chem. 48, 1587-1591.
- Hartshorn, C. M. & Steel, P. J. (1997). Chem. Commun. pp. 541-542.
- Hartshorn, C. M. & Steel, P. J. (1998). Organometallics, 17, 3487-3496.
- Motsoane, N. M., Guzei, I. A. & Darkwa, J. (2007). Z. Naturforsch. Teil B, 62, 323–330.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yen, S. K., Koh, L. L., Hahn, F. E., Huynh, H. V. & Hor, T. S. A. (2006). Organometallics, 25, 5112–5118.

4777 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.045$

supporting information

Acta Cryst. (2009). E65, m446 [doi:10.1107/S1600536809010629]

{ μ -1,3-Bis[(3,5-dimethylpyrazol-1-yl)methyl]benzene- $\kappa^2 N^2$: N^2 '}di- μ -chlorido-bis-[chloridopalladium(II)] toluene solvate

Bernard Omondi, Asheena Budhai and James Darkwa

S1. Comment

The title compound is of interest as part of a study of poly(pyrazol-1-yl-methyl)benzene palladium complexes as catalyst precursors for olefin oligomerization and polymerization. In a recent report (Motsoane *et al.*, 2007), coordination of Pd atom was shown to vary depending on the position of the pyrazol-1-yl-methyl group on the benzene linker. Poly(pyrazol-1-yl-methyl)benzene ligands can coordinate to Pd atoms through two independent pyrazolyl units (Motsoane *et al.*, 2007) or as a chelate ligand to a dinuclear unit with two bridging halides between the Pd atoms in a Pd_2X_4 (X = Cl) fashion (Yen *et al.*, 2006). This potential of poly(pyrazol-1-yl-methyl)benzene ligands exhibiting a variety of coordination modes was first reported in 1995 (Hartshorn & Steel, 1995). For the palladium complexes, two bonding modes have been reported. The first is a cage structure with six $PdCl_2$ units and four 1,3,5-tris(pyrazol-1-yl-methyl)-2,4,6-triethylbenzene ligands, with coordination through the pyrazole N atoms (Hartshorn & Steel, 1997), and the second involves C—H activation, where coordination is through a pyrazole N atom as well as through the activated C atom (Hartshorn & Steel, 1998).

The title compound (Fig. 1) crystallizes from a mixture of chloroform and toluene and contains a dinuclear Pd complex molecule and a solvent toluene molecule in the asymmetric unit. The two Pd^{II} atoms are bridged by two Cl atoms. There are examples of similar structures in the literature, where the metal centers are bridged by halogen atoms (Cl or Br) (Guzei *et al.*, 2003; Motsoane *et al.*, 2007). Each of the Pd atoms has a distorted square-planar geometry (Table 1). The two square planes defined by the atoms around the Pd centers, N2, Cl1, Cl3, Cl4 for Pd1 and N4, Cl2, Cl3,Cl4 for Pd2, have a dihedral angle of 39.59 (1)° and atomic deviations from the planes of 0.018 and 0.011 Å, respectively. This dihedral angle results in a close contact between the two Pd centers [3.2116 (5) Å] and is probably due to steric bulk of the whole complex. The terminal as well as bridging Pd—Cl distances average 2.310 Å, which is close to the same distances of similar structues from the CSD (Guzei *et al.*, 2003; Motsoane *et al.*, 2007). The Pd—N bond distances [2.005 (3) and 2.002 (3) Å] are shorter than the corresponding distances from the CSD (2.1 (1) Å), as calculated by Guzei *et al.* (2003).

In the crystal structure, the dinuclear complex molecule is connected to the toluene molecule through a C—H $\cdots\pi$ interaction, with an H16 $\cdots\pi$ distance of 2.93 Å (Fig. 2).

S2. Experimental

To a solution of $PdCl_2(NCMe)_2$ (0.44 g, 1.70 mmol) in CH_2Cl_2 (25 mL) was added 1,3-bis[(3,5-dimethylpyrazole-1-yl)methyl]benzene (0.50 g, 1.70 mmol). The resultant solution was stired overnight, and after removal of solvent, a dark orange solid was obtained. Recrystallization was done in a mixture of $CHCl_3$ and toluene, giving needle-shaped crystals.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (CH₂) and 0.96 (CH₃) Å and with U_{iso} (H) = 1.2(or 1.5 for methyl) U_{eq} (C).

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms and toluene molecule have been omitted for clarity.

Figure 2

Packing diagram of the title compound, showing the intermolecular C—H $\cdot\cdot\cdot\pi$ interactions (dashed lines) linking the Pd complex and the toluene solvent molecule. [Symmetry code: (i) 1/2+x, 3/2-y, -1/2+z.]

$\{\mu$ -1,3-Bis[(3,5-dimethylpyrazol-1-yl)methyl]benzene- $\kappa^2 N^2$: N^2 }di- μ - chlorido-bis[chloridopalladium(II)] toluene solvate

Crystal data	
$[Pd_2Cl_4(C_{18}H_{22}N_4)] \cdot C_7H_8$	Hall symbol: -P 2yn
$M_r = 741.13$	a = 10.4572 (10) Å
Monoclinic, $P2_1/n$	<i>b</i> = 25.376 (2) Å

c = 12.0782 (12) Å $\beta = 112.395 (4)^{\circ}$ $V = 2963.4 (5) \text{ Å}^{3}$ Z = 4 F(000) = 1472 $D_{\rm x} = 1.661 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Bruker SMART APEX CCD	
diffractometer	
Radiation source: fine-focus sealed tube	
Graphite monochromator	
φ and ω scans	
Absorption correction: multi-scan	
(SADABS; Bruker, 2001)	
$T_{\min} = 0.503, \ T_{\max} = 0.910$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.098$ S = 1.027158 reflections 321 parameters Cell parameters from 22587 reflections $\theta = 2.0-28.0^{\circ}$ $\mu = 1.60 \text{ mm}^{-1}$ T = 298 KNeedle, brown $0.50 \times 0.12 \times 0.06 \text{ mm}$

22587 measured reflections 7158 independent reflections 4777 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ $\theta_{max} = 28.0^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -13 \rightarrow 13$ $k = -24 \rightarrow 33$ $l = -10 \rightarrow 15$

10 restraints H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0445P)^2 + 1.0406P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.012$ $\Delta\rho_{max} = 0.53 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.58 \text{ e } \text{Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.1871 (7)	0.8038 (2)	0.2496 (6)	0.099 (2)
H1A	0.1059	0.8010	0.1775	0.149*
H1B	0.1931	0.7738	0.2996	0.149*
H1C	0.2676	0.8052	0.2297	0.149*
C2	0.1790 (5)	0.85270 (18)	0.3147 (5)	0.0595 (13)
C3	0.1918 (5)	0.8599 (2)	0.4306 (5)	0.0695 (14)
Н3	0.2075	0.8337	0.4882	0.083*
C4	0.1771 (4)	0.9140 (2)	0.4470 (4)	0.0571 (11)
C5	0.1804 (7)	0.9431 (2)	0.5530 (5)	0.0889 (18)
H5A	0.1983	0.9797	0.5444	0.133*
H5B	0.2522	0.9291	0.6231	0.133*
H5C	0.0928	0.9396	0.5609	0.133*
C6	0.1524 (4)	0.91608 (18)	0.1445 (4)	0.0514 (11)
H6A	0.0709	0.9376	0.1051	0.062*
H6B	0.1445	0.8848	0.0963	0.062*
C7	0.2807 (4)	0.94690 (18)	0.1525 (4)	0.0471 (11)
C8	0.4127 (5)	0.9274 (2)	0.2212 (5)	0.0604 (13)
H8	0.4225	0.8955	0.2615	0.073*
С9	0.5274 (5)	0.9558 (2)	0.2283 (5)	0.0695 (15)
Н9	0.6151	0.9428	0.2727	0.083*
C10	0.5141 (4)	1.0033 (2)	0.1707 (5)	0.0576 (13)
H10	0.5928	1.0220	0.1764	0.069*

C11	0.3838 (4)	1.02362 (17)	0.1036 (4)	0.0450 (10)
C12	0.2680 (4)	0.99412 (17)	0.0948 (4)	0.0433 (10)
H12	0.1803	1.0068	0.0488	0.052*
C13	0.3681 (4)	1.07703 (17)	0.0446 (4)	0.0494 (11)
H13A	0.4033	1.0755	-0.0189	0.059*
H13B	0.2709	1.0862	0.0090	0.059*
C14	0.6392 (5)	1.1343 (2)	0.0648 (5)	0.0722 (15)
H14A	0.6685	1.0983	0.0691	0.108*
H14B	0.7187	1.1570	0.0893	0.108*
H14C	0.5796	1.1426	-0.0160	0.108*
C15	0.5632 (4)	1.14228 (18)	0.1452 (4)	0.0493 (11)
C16	0.5951 (4)	1.17376 (19)	0.2460 (4)	0.0579 (13)
H16	0.6714	1.1958	0.2780	0.070*
C17	0.4926 (4)	1.16631 (17)	0.2904 (4)	0.0501 (11)
C18	0.4749 (5)	1.1888 (2)	0.3991 (5)	0.0672 (14)
H18A	0.3803	1.1991	0.3784	0.101*
H18B	0.5339	1.2189	0.4271	0.101*
H18C	0.4993	1.1626	0.4611	0.101*
N1	0.1581 (3)	0.90068 (14)	0.2629 (3)	0.0473 (9)
N2	0.1594 (3)	0.93824 (14)	0.3438 (3)	0.0446 (8)
N3	0.4434 (3)	1.11796 (13)	0.1316 (3)	0.0453 (8)
N4	0.3997 (3)	1.13181 (13)	0.2198 (3)	0.0435 (8)
Cl1	-0.12855 (10)	0.97616 (5)	0.21818 (11)	0.0614 (3)
C12	0.11537 (12)	1.17589 (5)	0.07665 (12)	0.0656 (3)
C13	0.30569 (10)	1.05135 (4)	0.37297 (10)	0.0524 (3)
Cl4	0.00312 (10)	1.09512 (5)	0.23267 (12)	0.0601 (3)
Pd1	0.08672 (3)	1.011252 (13)	0.29434 (3)	0.04228 (10)
Pd2	0.21405 (3)	1.114894 (13)	0.22275 (3)	0.04230 (10)
C19	0.2046 (12)	0.1522 (5)	0.5868 (12)	0.230 (7)
H19A	0.1707	0.1732	0.5154	0.345*
H19B	0.1281	0.1360	0.5992	0.345*
H19C	0.2650	0.1253	0.5785	0.345*
C20	0.2793 (10)	0.1850 (4)	0.6875 (11)	0.136 (3)
C21	0.3754 (11)	0.2193 (4)	0.6843 (11)	0.147 (4)
H21	0.3940	0.2233	0.6154	0.177*
C22	0.4488 (12)	0.2496 (5)	0.7898 (14)	0.165 (5)
H22	0.5158	0.2736	0.7892	0.198*
C23	0.4229 (9)	0.2439 (4)	0.8855 (11)	0.149 (4)
H23	0.4704	0.2636	0.9538	0.179*
C24	0.3204 (9)	0.2070 (4)	0.8840 (9)	0.126 (3)
H24	0.3032	0.2030	0.9536	0.151*
C25	0.2452 (9)	0.1769 (3)	0.7868 (10)	0.129 (3)
H25	0.1775	0.1533	0.7872	0.155*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.134 (6)	0.049 (4)	0.098 (5)	0.006 (3)	0.026 (4)	-0.002 (3)

C2	0.060 (3)	0.039 (3)	0.067 (4)	0.002 (2)	0.011 (2)	0.008 (3)
C3	0.068 (3)	0.058 (2)	0.067 (4)	0.004 (2)	0.009 (3)	0.022 (3)
C4	0.054 (2)	0.063 (2)	0.046 (2)	0.003 (2)	0.010 (2)	0.012 (2)
C5	0.120 (5)	0.093 (5)	0.054 (3)	0.018 (4)	0.033 (3)	0.010 (3)
C6	0.055 (2)	0.049 (3)	0.045 (3)	0.0004 (19)	0.013 (2)	-0.007 (2)
C7	0.046 (2)	0.049 (3)	0.041 (2)	0.0039 (18)	0.0108 (18)	-0.011 (2)
C8	0.060 (3)	0.052 (3)	0.065 (3)	0.009 (2)	0.019 (2)	0.004 (3)
C9	0.047 (2)	0.074 (4)	0.081 (4)	0.016 (2)	0.016 (2)	0.013 (3)
C10	0.044 (2)	0.060 (3)	0.065 (3)	0.003 (2)	0.016 (2)	-0.002 (3)
C11	0.045 (2)	0.049 (3)	0.039 (2)	0.0046 (18)	0.0148 (17)	-0.006 (2)
C12	0.0423 (19)	0.048 (3)	0.033 (2)	0.0029 (17)	0.0066 (16)	-0.006 (2)
C13	0.047 (2)	0.055 (3)	0.046 (3)	-0.0024 (19)	0.0171 (19)	-0.006 (2)
C14	0.055 (3)	0.091 (4)	0.076 (4)	0.001 (3)	0.031 (3)	0.012 (3)
C15	0.041 (2)	0.054 (3)	0.048 (3)	0.0002 (19)	0.0114 (18)	0.008 (2)
C16	0.045 (2)	0.051 (3)	0.065 (3)	-0.0112 (19)	0.006 (2)	0.000 (3)
C17	0.047 (2)	0.041 (3)	0.051 (3)	-0.0023 (18)	0.0063 (19)	-0.001 (2)
C18	0.077 (3)	0.052 (3)	0.059 (3)	-0.009 (2)	0.011 (3)	-0.015 (3)
N1	0.0525 (19)	0.038 (2)	0.047 (2)	-0.0025 (15)	0.0139 (16)	-0.0023 (18)
N2	0.0427 (17)	0.047 (2)	0.040 (2)	-0.0013 (15)	0.0111 (15)	0.0000 (18)
N3	0.0402 (16)	0.043 (2)	0.047 (2)	-0.0019 (14)	0.0114 (15)	0.0005 (17)
N4	0.0421 (16)	0.041 (2)	0.046 (2)	-0.0030 (14)	0.0150 (15)	-0.0042 (17)
Cl1	0.0409 (5)	0.0746 (9)	0.0621 (8)	-0.0089(5)	0.0123 (5)	-0.0036 (6)
Cl2	0.0581 (6)	0.0569 (8)	0.0727 (9)	0.0068 (5)	0.0148 (6)	0.0169 (7)
C13	0.0417 (5)	0.0538 (7)	0.0524 (7)	-0.0020 (4)	0.0074 (4)	0.0048 (5)
Cl4	0.0436 (5)	0.0561 (7)	0.0845 (9)	0.0107 (5)	0.0286 (5)	0.0119 (7)
Pd1	0.03703 (15)	0.0461 (2)	0.04121 (19)	0.00065 (13)	0.01216 (13)	0.00031 (16)
Pd2	0.03750 (15)	0.03964 (19)	0.0467 (2)	0.00144 (12)	0.01255 (13)	-0.00171 (15)
C19	0.199 (12)	0.186 (12)	0.217 (13)	0.093 (10)	-0.019 (10)	-0.040 (11)
C20	0.126 (7)	0.115 (7)	0.167 (9)	0.043 (5)	0.056 (6)	0.040 (7)
C21	0.153 (9)	0.128 (9)	0.208 (11)	0.062 (5)	0.122 (9)	0.070 (7)
C22	0.174 (11)	0.131 (9)	0.249 (14)	0.052 (7)	0.145 (11)	0.050 (8)
C23	0.118 (6)	0.126 (7)	0.220 (11)	0.052 (4)	0.082 (7)	0.070 (8)
C24	0.115 (6)	0.116 (7)	0.167 (8)	0.061 (4)	0.076 (6)	0.075 (6)
C25	0.116 (6)	0.091 (6)	0.187 (9)	0.054 (5)	0.065 (6)	0.068 (6)

Geometric parameters (Å, °)

C1—C2	1.488 (8)	C15—N3	1.349 (5)	
C1—H1A	0.9600	C15—C16	1.387 (6)	
C1—H1B	0.9600	C16—C17	1.381 (7)	
C1—H1C	0.9600	C16—H16	0.9300	
C2—N1	1.348 (6)	C17—N4	1.344 (5)	
С2—С3	1.367 (7)	C17—C18	1.506 (7)	
C3—C4	1.403 (7)	C18—H18A	0.9600	
С3—Н3	0.9300	C18—H18B	0.9600	
C4—N2	1.339 (6)	C18—H18C	0.9600	
C4—C5	1.468 (7)	N1—N2	1.361 (5)	
С5—Н5А	0.9600	N2—Pd1	2.005 (3)	

С5—Н5В	0.9600	N3—N4	1.356 (5)
C5—H5C	0.9600	N4—Pd2	2.002 (3)
C6—N1	1.462 (6)	Cl1—Pd1	2.2647 (11)
C6—C7	1.524 (6)	Cl2—Pd2	2.2774 (12)
C6—H6A	0.9700	Cl3—Pd2	2.3421 (11)
C6—H6B	0 9700	Cl3—Pd1	2 3502 (10)
C7-C12	1 367 (6)	Cl4—Pd2	2,3092 (11)
C7—C8	1 402 (6)	Cl4—Pd1	2.3032(11) 2.3135(12)
C_{8}	1.102(0) 1.375(7)	Pd1—Pd2	32117(5)
C8—H8	0.9300	C19-C20	1435(11)
C_{9}	1 371 (7)	C19 - H19A	0.9600
C9H9	0.9300	C19H19B	0.9600
C_{10} C_{11}	1 303 (6)		0.9000
C10_H10	0.0300	C_{19} C_{19} C_{21}	1.341(13)
C_{10} C_{11} C_{12}	1 202 (6)	$C_{20} = C_{21}$	1.341(13) 1.201(12)
$C_{11} = C_{12}$	1.595 (0)	$C_{20} = C_{23}$	1.391(13) 1.425(15)
C12 $U12$	1.311(0)	$C_{21} = C_{22}$	1.433(13)
C12—H12	0.9300	C21—H21	0.9300
C12IN3	1.474(3)	C22—C23	1.292 (13)
C12 HI3A	0.9700	C22—H22	0.9300
С13—Н13В	0.9700	$C_{23} = C_{24}$	1.418 (12)
	1.484 (/)	C23—H23	0.9300
CI4—HI4A	0.9600	C24—C25	1.370 (12)
CI4—HI4B	0.9600	С24—Н24	0.9300
C14—H14C	0.9600	C25—H25	0.9300
C2—C1—H1A	109.5	C16—C17—C18	131.1 (4)
C2—C1—H1B	109.5	C17—C18—H18A	109.5
H1A—C1—H1B	109.5	C17—C18—H18B	109.5
C2—C1—H1C	109.5	H18A—C18—H18B	109.5
H1A—C1—H1C	109.5	C17—C18—H18C	109.5
H1B—C1—H1C	109.5	H18A—C18—H18C	109.5
N1—C2—C3	106.9 (4)	H18B—C18—H18C	109.5
N1—C2—C1	122.6 (5)	C2—N1—N2	110.1 (4)
C3—C2—C1	130.5 (5)	C2—N1—C6	129.4 (4)
C2—C3—C4	107.6 (5)	N2—N1—C6	120.0 (3)
С2—С3—Н3	126.2	C4—N2—N1	107.8 (4)
С4—С3—Н3	126.2	C4—N2—Pd1	127.2 (3)
N2—C4—C3	107.6 (5)	N1—N2—Pd1	122.3 (3)
N2-C4-C5	122.0 (5)	C15—N3—N4	111.1 (3)
C3—C4—C5	130.5 (5)	C15 - N3 - C13	128.9 (4)
C4—C5—H5A	109.5	N4—N3—C13	119.6 (3)
C4—C5—H5B	109.5	C17—N4—N3	106.8 (3)
H5A—C5—H5B	109.5	C17 - N4 - Pd2	126.8(3)
C4-C5-H5C	109.5	N3—N4—Pd2	125.3(2)
H5A-C5-H5C	109 5	Pd2—Cl3—Pd1	86 39 (3)
H5B-C5-H5C	109.5	Pd2 - Cl4 - Pd1	88 01 (4)
N1-C6-C7	111.6 (3)	N_2 —Pd1—Cl1	87.88 (10)
N1—C6—H6A	109.3	N_2 —Pd1—Cl4	178 57 (11)
	107.0		1,0.07 (11)

С7—С6—Н6А	109.3	Cl1—Pd1—Cl4	92.05 (4)
N1—C6—H6B	109.3	N2—Pd1—Cl3	94.55 (9)
С7—С6—Н6В	109.3	Cl1—Pd1—Cl3	177.47 (5)
H6A—C6—H6B	108.0	Cl4—Pd1—Cl3	85.54 (4)
C12—C7—C8	119.7 (4)	N2—Pd1—Pd2	133.45 (9)
C12—C7—C6	120.3 (4)	Cl1—Pd1—Pd2	131.49 (4)
C8—C7—C6	120.0 (4)	C14—Pd1—Pd2	45.94 (3)
C9—C8—C7	119.3 (5)	C13—Pd1—Pd2	46.70 (3)
C9—C8—H8	120.4	N4— $Pd2$ — $Cl2$	89.80 (10)
C7—C8—H8	120.4	N4—Pd2—Cl4	178.19 (11)
C10—C9—C8	120.9 (4)	C12—Pd2—Cl4	91.61 (4)
C10—C9—H9	119.6	N4—Pd2—Cl3	92.76 (10)
C8—C9—H9	119.6	C12—Pd2—C13	177.44 (4)
C9-C10-C11	120.5 (4)	C14—Pd2—C13	85.82 (4)
C9-C10-H10	119.7	N4—Pd2—Pd1	133.22(10)
C11—C10—H10	119.7	C12—Pd2—Pd1	130.22(10) 130.78(3)
C12 - C11 - C10	118 4 (4)	C12 Pd2 Pd1	46.05 (3)
C12 - C11 - C13	120 8 (4)	C13 - Pd2 - Pd1	46.91 (3)
C10-C11-C13	120.8 (4)	C_{20} C_{19} H_{19A}	109 5
C7-C12-C11	120.3(4)	$C_{20} - C_{10} - H_{10}B$	109.5
C7 - C12 - H12	110 4	H_{194} $(19 - H_{19B})$	109.5
$C_{11} C_{12} H_{12}$	119.4	$\begin{array}{cccc} 111711 \\ 1117111 \\ 1117111 \\ 1117111 \\ 1117111 \\ 1111711 \\ 111711 \\ 111711$	109.5
N3_C13_C11	111.3 (3)	$H_{194} - C_{19} - H_{19C}$	109.5
N3 C13 H13A	100 /	H10R C10 H10C	109.5
C11_C13_H13A	109.4	C_{21} C_{20} C_{19}	109.5 121 7 (13)
N2 C12 H12P	109.4	$C_{21} = C_{20} = C_{13}$	121.7(13) 124.1(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.4	$C_{21} = C_{20} = C_{25}$	124.1(12) 114.2(12)
	109.4	C19 - C20 - C23	114.2(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.0	$C_{20} = C_{21} = C_{22}$	110.4 (12)
C15_C14_H14A	109.5	$C_{20} = C_{21} = H_{21}$	120.8
	109.5	$C_{22} = C_{21} = H_{21}$	120.8
H14A - C14 - H14B	109.5	$C_{23} = C_{22} = C_{21}$	120.7 (13)
C15—C14—H14C	109.5	C23—C22—H22	119.0
H14A—C14—H14C	109.5	C21—C22—H22	119.6
H14B - C14 - H14C	109.5	$C_{22} = C_{23} = C_{24}$	118.5 (13)
N3-C15-C16	105.8 (4)	C22—C23—H23	120.7
N3—C15—C14	124.2 (4)	C24—C23—H23	120.7
C16—C15—C14	130.1 (4)	C25—C24—C23	124.3 (11)
C17—C16—C15	107.4 (4)	С25—С24—Н24	117.9
C17—C16—H16	126.3	C23—C24—H24	117.9
C15—C16—H16	126.3	C24—C25—C20	113.9 (10)
N4—C17—C16	108.9 (4)	С24—С25—Н25	123.0
N4—C17—C18	120.0 (4)	C20—C25—H25	123.0
N1—C2—C3—C4	0.3 (5)	C15—N3—N4—C17	0.9 (5)
C1—C2—C3—C4	179.3 (5)	C13—N3—N4—C17	175.2 (3)
C2—C3—C4—N2	-1.5 (5)	C15—N3—N4—Pd2	169.8 (3)
C2—C3—C4—C5	179.3 (5)	C13—N3—N4—Pd2	-15.8 (5)
N1—C6—C7—C12	-129.2 (4)	C4—N2—Pd1—Cl1	-88.8 (3)

N1—C6—C7—C8	49.6 (6)	N1—N2—Pd1—Cl1	70.3 (3)
C12—C7—C8—C9	-0.7 (7)	C4—N2—Pd1—Cl3	90.5 (3)
C6—C7—C8—C9	-179.5 (5)	N1—N2—Pd1—Cl3	-110.3 (3)
C7—C8—C9—C10	1.0 (8)	C4—N2—Pd1—Pd2	119.8 (3)
C8—C9—C10—C11	0.0 (8)	N1—N2—Pd1—Pd2	-81.1 (3)
C9-C10-C11-C12	-1.2 (7)	Pd2—Cl4—Pd1—Cl1	-152.62 (5)
C9—C10—C11—C13	177.1 (4)	Pd2—Cl4—Pd1—Cl3	28.14 (4)
C8—C7—C12—C11	-0.6 (6)	Pd2—Cl3—Pd1—N2	150.81 (11)
C6-C7-C12-C11	178.2 (4)	Pd2-Cl3-Pd1-Cl4	-27.75 (4)
C10-C11-C12-C7	1.5 (6)	C17—N4—Pd2—Cl2	94.0 (4)
C13—C11—C12—C7	-176.8 (4)	N3—N4—Pd2—Cl2	-72.8 (3)
C12-C11-C13-N3	125.1 (4)	C17—N4—Pd2—Cl3	-86.0 (3)
C10-C11-C13-N3	-53.2 (5)	N3—N4—Pd2—Cl3	107.2 (3)
N3—C15—C16—C17	0.9 (5)	C17—N4—Pd2—Pd1	-112.8 (3)
C14—C15—C16—C17	-178.7 (5)	N3—N4—Pd2—Pd1	80.5 (3)
C15—C16—C17—N4	-0.4 (5)	Pd1—Cl4—Pd2—Cl2	151.71 (5)
C15—C16—C17—C18	178.1 (5)	Pd1—Cl4—Pd2—Cl3	-28.24 (4)
C3—C2—N1—N2	0.9 (5)	Pd1—Cl3—Pd2—N4	-153.33 (10)
C1—C2—N1—N2	-178.2 (5)	Pd1-Cl3-Pd2-Cl4	27.80 (4)
C3—C2—N1—C6	172.8 (4)	N2—Pd1—Pd2—N4	-4.1 (2)
C1—C2—N1—C6	-6.3 (7)	Cl1—Pd1—Pd2—N4	-144.43 (15)
C7—C6—N1—C2	-107.5 (5)	Cl4—Pd1—Pd2—N4	177.72 (15)
C7—C6—N1—N2	63.6 (5)	Cl3—Pd1—Pd2—N4	37.97 (14)
C3—C4—N2—N1	2.0 (5)	N2—Pd1—Pd2—Cl2	139.48 (15)
C5—C4—N2—N1	-178.7 (4)	Cl1—Pd1—Pd2—Cl2	-0.88 (7)
C3—C4—N2—Pd1	163.6 (3)	Cl4—Pd1—Pd2—Cl2	-38.73 (7)
C5—C4—N2—Pd1	-17.1 (6)	Cl3—Pd1—Pd2—Cl2	-178.48 (7)
C2—N1—N2—C4	-1.9 (4)	N2—Pd1—Pd2—Cl4	178.21 (15)
C6—N1—N2—C4	-174.6 (3)	Cl1—Pd1—Pd2—Cl4	37.85 (7)
C2—N1—N2—Pd1	-164.5 (3)	Cl3—Pd1—Pd2—Cl4	-139.75 (6)
C6—N1—N2—Pd1	22.7 (4)	N2—Pd1—Pd2—Cl3	-42.04 (14)
C16—C15—N3—N4	-1.1 (5)	Cl1—Pd1—Pd2—Cl3	177.61 (6)
C14—C15—N3—N4	178.5 (4)	Cl4—Pd1—Pd2—Cl3	139.75 (7)
C16—C15—N3—C13	-174.8 (4)	C19—C20—C21—C22	-178.1 (9)
C14—C15—N3—C13	4.9 (7)	C25—C20—C21—C22	0.3 (14)
C11—C13—N3—C15	105.7 (5)	C20—C21—C22—C23	0.0 (16)
C11—C13—N3—N4	-67.5 (4)	C21—C22—C23—C24	0.1 (15)
C16—C17—N4—N3	-0.3 (5)	C22—C23—C24—C25	-0.6 (13)
C18—C17—N4—N3	-178.9 (4)	C23—C24—C25—C20	0.9 (12)
C16—C17—N4—Pd2	-169.0 (3)	C21—C20—C25—C24	-0.8 (12)
C18—C17—N4—Pd2	12.3 (6)	C19—C20—C25—C24	177.8 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C16—H16··· $Cg1^i$	0.93	2.93	3.802 (6)	157

Symmetry code: (i) x+1/2, -y+3/2, z-1/2.