

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(*E*,*E*)-2-[3,4-Bis(4-methylbenzylidene)-5oxotetrahydrofuran-2-ylidene]propanedinitrile

Abdullah Mohamed Asiri^a and Seik Weng Ng^{b*}

^aChemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 5 March 2009; accepted 9 March 2009

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.119; data-to-parameter ratio = 16.5.

In the title molecule, $C_{23}H_{16}N_2O_2$, the two exocyclic C=C bonds bearing the tolyl groups have an E configuration and the beznene rings are oriented at 22.1 (1) and 24.8 (1) $^{\circ}$ with respect to the mean plane of the atoms of the furan ring.

Related literature

The compound belongs to a class of photochromic fulgicides; for similar structures, see: Asiri et al. (2000); Heller et al. (1994); Liang et al. (2003).

Experimental

Crystal data

$C_{23}H_{16}N_2O_2$	V = 1766.00 (8) Å ³
$M_r = 352.38$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 6.7908 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 22.0814 (5) Å	$T = 123 { m K}$
c = 11.8626 (3) Å	$0.22 \times 0.12 \times 0.08 \text{ mm}$
$\beta = 96.877 \ (2)^{\circ}$	

Data collection

Bruker SMART APEX diffractometer Absorption correction: none 16672 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.119$ S = 1.024051 reflections

4051 independent reflections 2971 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$

246 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank King Abdul Aziz University (grant No. 171/428) and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2785).

References

Asiri, A. M. A., Heller, H. G., Hursthouse, M. B. & Karalulov, A. (2000). Chem. Commun. pp. 799-800.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Heller, H. G., Hughes, D. S., Hursthouse, M. B. & Kon, K. V. S. (1994). Chem. Commun. pp. 2713-2741.

Liang, Y., Dvornikov, A. S. & Rentzepis, P. M. (2003). J. Mater. Chem. 13, 286-290

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, o761 [doi:10.1107/S1600536809008526]

(*E,E*)-2-[3,4-Bis(4-methylbenzylidene)-5-oxotetrahydrofuran-2-yl-idene]propanedinitrile

Abdullah Mohamed Asiri and Seik Weng Ng

S1. Comment

The molecular structure of the title compound is shown in Fig. 1.

S2. Experimental

Diethylamine(0.73 g,10.0 mmol) was added dropwise *E,E*-3,4-bis(4-tolylmethylene) succinic anhydride (1.52 g, 5.0 mmol) and malononitrile (0.33 g, 5.0 mmol) in THF (20 ml) at 273 K. The mixture was kept at this temperature for 6 h. Diethyl ether (15 ml) was added to quench the reaction. The product was dissolved in dichloromethane (20 ml) and cyclized by acetyl chloride (10 ml) at 293 K. The reaction was kept at this temperature for 10 h. The solvent and excess acetyl chloride were removed in vacuum, and the residual was chromatographed on silica gel. Elution by a 3:7 mixture of ethyl acetate and light petroleum give the title compound as an orange compound (1.41 g, 80% yield), m.p. 478–479 K. Crystals were grown with ether/lightpetroleum ether as solvent.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Figure 1

Thermal ellisoid plot (Barbour, 2001) of $C_{23}H_{16}N_2O_2$; probability levels are set at 70% and H-atoms are drawn as spheres of arbitrary radius.

(E,E)-2-[3,4-Bis(4-methylbenzylidene)-5-oxotetrahydrofuran- 2-ylidene]propanedinitrile

Crystal data

C₂₃H₁₆N₂O₂ $M_r = 352.38$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.7908 (2) Å b = 22.0814 (5) Å c = 11.8626 (3) Å $\beta = 96.877$ (2)° V = 1766.00 (8) Å³ Z = 4

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 16672 measured reflections 4051 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.119$ S = 1.02 F(000) = 736 $D_x = 1.325 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2995 reflections $\theta = 2.5-25.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 123 KPrism, orange $0.22 \times 0.12 \times 0.08 \text{ mm}$

2971 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -8 \rightarrow 8$ $k = -28 \rightarrow 28$ $l = -15 \rightarrow 15$

4051 reflections246 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0555P)^2 + 0.4567P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta ho_{ m max} = 0.29 \ { m e} \ { m \AA}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.81235 (17)	0.53159 (5)	0.60804 (9)	0.0311 (3)	
O2	0.8934 (2)	0.56246 (6)	0.78870 (10)	0.0434 (3)	
N1	0.7342 (2)	0.40469 (7)	0.44380 (13)	0.0404 (4)	
N2	0.5427 (3)	0.55698 (7)	0.22059 (13)	0.0419 (4)	
C1	0.8373 (2)	0.57691 (7)	0.69372 (14)	0.0311 (4)	
C2	0.7782 (2)	0.63512 (7)	0.64023 (13)	0.0255 (3)	
C3	0.7583 (2)	0.62428 (7)	0.51673 (13)	0.0239 (3)	
C4	0.7526 (2)	0.55846 (7)	0.50622 (13)	0.0257 (3)	
C5	0.6993 (2)	0.52050 (7)	0.41733 (14)	0.0279 (3)	
C6	0.7187 (2)	0.45625 (7)	0.43229 (14)	0.0309 (4)	
C7	0.6140 (3)	0.54142 (7)	0.30845 (15)	0.0310 (4)	
C8	0.7414 (2)	0.68084 (7)	0.71076 (13)	0.0269 (3)	
H8	0.7747	0.6724	0.7892	0.032*	
C9	0.6596 (2)	0.74052 (7)	0.68603 (12)	0.0242 (3)	
C10	0.5317 (2)	0.75352 (7)	0.58741 (12)	0.0250 (3)	
H10	0.4849	0.7216	0.5374	0.030*	
C11	0.4733 (2)	0.81213 (7)	0.56248 (13)	0.0276 (3)	
H11	0.3863	0.8201	0.4953	0.033*	
C12	0.5393 (2)	0.86024 (7)	0.63392 (14)	0.0306 (4)	
C13	0.6552 (2)	0.84664 (8)	0.73535 (14)	0.0317 (4)	
H13	0.6955	0.8783	0.7873	0.038*	
C14	0.7129 (2)	0.78790 (7)	0.76190 (13)	0.0283 (4)	
H14	0.7897	0.7795	0.8325	0.034*	
C15	0.4873 (3)	0.92448 (8)	0.60006 (17)	0.0445 (5)	
H15A	0.5459	0.9521	0.6595	0.067*	
H15B	0.3428	0.9293	0.5902	0.067*	
H15C	0.5394	0.9339	0.5285	0.067*	
C16	0.7738 (2)	0.66042 (7)	0.42565 (13)	0.0246 (3)	
H16	0.7519	0.6408	0.3540	0.030*	
C17	0.8187 (2)	0.72444 (7)	0.42155 (12)	0.0223 (3)	
C18	0.7433 (2)	0.75755 (7)	0.32513 (12)	0.0252 (3)	
H18	0.6720	0.7372	0.2624	0.030*	
C19	0.7713 (2)	0.81920 (7)	0.32030 (13)	0.0274 (3)	
H19	0.7157	0.8410	0.2551	0.033*	
C20	0.8803 (2)	0.85031 (7)	0.40968 (13)	0.0273 (3)	
C21	0.9648 (2)	0.81676 (7)	0.50266 (13)	0.0261 (3)	
H21	1.0441	0.8367	0.5629	0.031*	
C22	0.9353 (2)	0.75505 (7)	0.50862 (12)	0.0242 (3)	
H22	0.9949	0.7331	0.5727	0.029*	

supporting information

~~~					
C23	0.9098 (3)	0.91778 (8)	0.40462 (16)	0.0382 (4)	
H23A	0.9312	0.9342	0.4819	0.057*	
H23B	0.7918	0.9365	0.3632	0.057*	
H23C	1.0257	0.9266	0.3654	0.057*	

Atomic displacement parameters  $(Å^2)$ 

	$U^{11}$	$U^{22}$	$U^{33}$	$U^{12}$	$U^{13}$	<i>U</i> ²³
01	0.0370 (7)	0.0231 (6)	0.0326 (6)	0.0003 (5)	0.0017 (5)	0.0047 (5)
O2	0.0597 (9)	0.0357 (7)	0.0323 (7)	-0.0004 (6)	-0.0051 (6)	0.0116 (5)
N1	0.0444 (9)	0.0266 (8)	0.0501 (10)	0.0001 (6)	0.0057 (8)	-0.0024 (7)
N2	0.0523 (10)	0.0350 (8)	0.0375 (9)	0.0054 (7)	0.0009 (7)	-0.0061 (7)
C1	0.0314 (9)	0.0286 (9)	0.0327 (9)	-0.0034 (7)	0.0014 (7)	0.0057 (7)
C2	0.0258 (8)	0.0245 (8)	0.0256 (8)	-0.0029 (6)	0.0010 (6)	0.0040 (6)
C3	0.0219 (7)	0.0238 (8)	0.0261 (8)	-0.0003 (6)	0.0034 (6)	-0.0005 (6)
C4	0.0229 (8)	0.0246 (8)	0.0300 (8)	0.0009 (6)	0.0051 (6)	0.0029 (6)
C5	0.0262 (8)	0.0228 (8)	0.0355 (9)	0.0012 (6)	0.0068 (7)	-0.0006 (6)
C6	0.0276 (9)	0.0271 (9)	0.0384 (9)	0.0003 (6)	0.0054 (7)	-0.0031 (7)
C7	0.0345 (9)	0.0215 (8)	0.0378 (10)	0.0016 (6)	0.0076 (8)	-0.0067 (7)
C8	0.0284 (8)	0.0313 (9)	0.0208 (7)	-0.0053 (6)	0.0023 (6)	0.0033 (6)
C9	0.0237 (8)	0.0274 (8)	0.0224 (7)	-0.0032 (6)	0.0066 (6)	-0.0014 (6)
C10	0.0230 (8)	0.0295 (8)	0.0233 (7)	-0.0020 (6)	0.0059 (6)	-0.0060 (6)
C11	0.0229 (8)	0.0338 (9)	0.0262 (8)	0.0029 (6)	0.0038 (6)	-0.0012 (6)
C12	0.0280 (8)	0.0277 (9)	0.0384 (9)	0.0007 (6)	0.0132 (7)	-0.0027 (7)
C13	0.0314 (9)	0.0323 (9)	0.0327 (9)	-0.0066 (7)	0.0094 (7)	-0.0113 (7)
C14	0.0269 (8)	0.0356 (9)	0.0227 (8)	-0.0043 (7)	0.0047 (6)	-0.0046 (6)
C15	0.0500 (12)	0.0306 (10)	0.0552 (12)	0.0064 (8)	0.0152 (10)	-0.0012 (8)
C16	0.0229 (8)	0.0260 (8)	0.0252 (7)	0.0011 (6)	0.0044 (6)	-0.0022 (6)
C17	0.0215 (7)	0.0237 (8)	0.0226 (7)	0.0008 (6)	0.0067 (6)	0.0011 (6)
C18	0.0251 (8)	0.0298 (8)	0.0212 (7)	-0.0005 (6)	0.0046 (6)	0.0005 (6)
C19	0.0287 (8)	0.0284 (8)	0.0255 (8)	0.0030 (6)	0.0047 (6)	0.0071 (6)
C20	0.0254 (8)	0.0256 (8)	0.0323 (8)	-0.0014 (6)	0.0091 (7)	0.0035 (6)
C21	0.0229 (8)	0.0295 (8)	0.0264 (8)	-0.0040 (6)	0.0046 (6)	-0.0012 (6)
C22	0.0225 (8)	0.0269 (8)	0.0233 (7)	0.0000 (6)	0.0033 (6)	0.0035 (6)
C23	0.0431 (10)	0.0278 (9)	0.0436 (10)	-0.0045 (7)	0.0055 (8)	0.0057 (8)

# Geometric parameters (Å, °)

01—C4	1.3631 (19)	C13—C14	1.381 (2)
01—C1	1.422 (2)	C13—H13	0.9500
O2—C1	1.1890 (19)	C14—H14	0.9500
N1—C6	1.150 (2)	C15—H15A	0.9800
N2—C7	1.148 (2)	C15—H15B	0.9800
C1—C2	1.468 (2)	C15—H15C	0.9800
C2—C8	1.353 (2)	C16—C17	1.448 (2)
С2—С3	1.475 (2)	C16—H16	0.9500
C3—C16	1.357 (2)	C17—C22	1.398 (2)
C3—C4	1.459 (2)	C17—C18	1.402 (2)

C4-C5	1 361 (2)	C18-C19	1377(2)
$C_{2}$	1.301(2) 1 428(2)	C18_H18	0.9500
C5-C6	1.420(2) 1.434(2)	C19-C20	1.399(2)
$C_{3}$	1.434(2)	$C_{10} = 0.000$	1.577(2)
	0.0500	C20 C21	1.304(2)
	0.9300	$C_{20}$	1.394(2)
C9	1.399 (2)	$C_{20} = C_{23}$	1.505 (2)
	1.401(2)	C21—C22	1.380 (2)
	1.375 (2)	C21—H21	0.9500
C10—H10	0.9500	C22—H22	0.9500
C11—C12	1.399 (2)	С23—Н23А	0.9800
C11—H11	0.9500	С23—Н23В	0.9800
C12—C13	1.390 (2)	C23—H23C	0.9800
C12—C15	1.505 (2)		
C4—O1—C1	108.93 (12)	C13—C14—C9	120.75 (15)
O2-C1-O1	119.06 (15)	C13—C14—H14	119.6
O2—C1—C2	133.21 (16)	C9—C14—H14	119.6
01	107.71 (13)	C12—C15—H15A	109.5
C8-C2-C1	116.55 (14)	C12—C15—H15B	109.5
C8-C2-C3	137 18 (14)	H15A—C15—H15B	109.5
C1 - C2 - C3	105 97 (13)	C12-C15-H15C	109.5
C16-C3-C4	121 42 (14)	H15A - C15 - H15C	109.5
$C_{16} = C_{3} = C_{2}$	13353(14)	H15B-C15-H15C	109.5
$C_{10} = C_{2}$	103.55(14) 104.18(12)	$C_3  C_{16}  C_{17}$	109.5
$C_{4} = C_{2} = C_{2}$	104.10(12) 116.21(14)	$C_{3} = C_{16} = H_{16}$	129.39 (14)
$C_{5} = C_{4} = C_{1}^{3}$	110.21(14) 132.05(15)	C17 C16 H16	115.2
$C_{3} - C_{4} - C_{3}$	132.93(13) 110.94(12)	$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	113.2 119.02(14)
01 - 04 - 03	110.64(15)	$C_{22} = C_{17} = C_{18}$	118.03(14)
C4 - C5 - C7	122.89 (15)	$C_{22} = C_{17} = C_{16}$	123.37(13)
C4 - C5 - C6	120.09 (15)	C18 - C17 - C16	118.59 (13)
$C/-C_{5}$	116.96 (14)		120.72 (14)
NI-C6-C5	179.72 (18)	C19—C18—H18	119.6
N2—C7—C5	178.35 (18)	С17—С18—Н18	119.6
C2—C8—C9	130.47 (14)	C18—C19—C20	121.15 (14)
C2—C8—H8	114.8	С18—С19—Н19	119.4
С9—С8—Н8	114.8	С20—С19—Н19	119.4
C14—C9—C10	118.09 (14)	C21—C20—C19	117.99 (14)
C14—C9—C8	119.16 (14)	C21—C20—C23	120.89 (15)
C10—C9—C8	122.74 (14)	C19—C20—C23	121.11 (14)
C11—C10—C9	120.42 (14)	C22—C21—C20	121.10 (14)
C11—C10—H10	119.8	C22—C21—H21	119.5
С9—С10—Н10	119.8	C20—C21—H21	119.5
C10-C11-C12	121.42 (15)	C21—C22—C17	120.82 (14)
C10-C11-H11	119.3	C21—C22—H22	119.6
C12—C11—H11	119.3	С17—С22—Н22	119.6
C13—C12—C11	117.88 (15)	C20—C23—H23A	109.5
C13—C12—C15	121.69 (15)	C20—C23—H23B	109.5
C11—C12—C15	120.43 (16)	H23A—C23—H23B	109.5
C14—C13—C12	121.09 (15)	С20—С23—Н23С	109.5

C14—C13—H13	119.5	H23A—C23—H23C	109.5
С12—С13—Н13	119.5	H23B—C23—H23C	109.5
C4—O1—C1—O2	-178.40 (16)	C2-C8-C9-C14	-151.98 (17)
C4—O1—C1—C2	3.07 (17)	C2-C8-C9-C10	26.5 (3)
O2—C1—C2—C8	-15.0 (3)	C14—C9—C10—C11	4.9 (2)
O1—C1—C2—C8	163.23 (14)	C8—C9—C10—C11	-173.64 (14)
O2—C1—C2—C3	170.13 (19)	C9—C10—C11—C12	0.1 (2)
O1—C1—C2—C3	-11.63 (17)	C10-C11-C12-C13	-4.4 (2)
C8—C2—C3—C16	32.8 (3)	C10-C11-C12-C15	174.86 (15)
C1—C2—C3—C16	-153.94 (17)	C11—C12—C13—C14	3.6 (2)
C8—C2—C3—C4	-158.09 (19)	C15-C12-C13-C14	-175.61 (16)
C1—C2—C3—C4	15.13 (16)	C12—C13—C14—C9	1.4 (2)
C1C4C5	-172.45 (14)	C10-C9-C14-C13	-5.6 (2)
C1C4C3	7.04 (16)	C8—C9—C14—C13	172.93 (14)
C16—C3—C4—C5	-23.9 (3)	C4—C3—C16—C17	-167.02 (14)
C2—C3—C4—C5	165.36 (17)	C2-C3-C16-C17	0.5 (3)
C16—C3—C4—O1	156.70 (14)	C3—C16—C17—C22	28.9 (2)
C2-C3-C4-O1	-14.02 (16)	C3—C16—C17—C18	-151.66 (16)
O1—C4—C5—C7	173.23 (14)	C22-C17-C18-C19	-4.7 (2)
C3—C4—C5—C7	-6.1 (3)	C16—C17—C18—C19	175.85 (14)
O1—C4—C5—C6	-3.6 (2)	C17—C18—C19—C20	1.8 (2)
C3—C4—C5—C6	177.04 (15)	C18—C19—C20—C21	1.8 (2)
C4—C5—C6—N1	-164 (100)	C18—C19—C20—C23	-179.62 (15)
C7—C5—C6—N1	19 (40)	C19—C20—C21—C22	-2.6 (2)
C4—C5—C7—N2	-147 (6)	C23—C20—C21—C22	178.83 (15)
C6—C5—C7—N2	30 (7)	C20—C21—C22—C17	-0.3 (2)
C1—C2—C8—C9	-171.89 (15)	C18—C17—C22—C21	3.9 (2)
C3—C2—C8—C9	0.8 (3)	C16—C17—C22—C21	-176.66 (14)