Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-(3-Methoxyphenoxy)butyric acid

Julia Heilmann-Brohl, ${ }^{\text {a }}$ Gérard Jaouen ${ }^{\mathrm{a}}$ and Michael Bolte ${ }^{b_{*}}$

${ }^{\text {a }}$ École Nationale Supérieure de Chimie de Paris, Laboratoire Charles Friedel, UMR CNRS 7223, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France, and ${ }^{\mathbf{b}}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
Correspondence e-mail: bolte@chemie.uni-frankfurt.de
Received 5 March 2009; accepted 5 March 2009
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$; R factor $=0.043 ; w R$ factor $=0.120$; data-to-parameter ratio $=20.7$.

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$, an intermediate for the synthesis of a new kind of estrogen receptor modulator, all non-H atoms lie on a common plane (r.m.s. deviation $=$ $0.0472 \AA$). All $\mathrm{C}-\mathrm{C}$ bonds in the side chain are in a trans conformation, and the hydroxyl group is also trans to the methylene chain. In the crystal structure, molecules form centrosymmetric dimers showing a head-to-head arrangement which is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. A weak $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ contact is also present.

Related literature

For the synthesis of 4-(3-methoxy-phenoxy)-butyric acid, see Tandon et al. (1990). For estrogen receptor modulators, see Lloyd et al. (2004). For a similar carboxylic acid, see: Smith et al. (1989).

Experimental

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$
$M_{r}=210.22$
Monoclinic, $P 2_{b} / n$
$a=9.6509$ (6) A
$b=5.3998$ (4) \AA
$c=20.2033(13) \AA$
$\beta=90.822$ (5) $^{\circ}$

$$
\begin{aligned}
& V=1052.74(12) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=173 \mathrm{~K} \\
& 0.32 \times 0.27 \times 0.25 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS-II two-circle
2945 independent reflections 2458 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.057$
Absorption correction: none
15489 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.120$
$S=1.07$
2945 reflections
142 parameters

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.31 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}_{\mathrm{max}} \AA^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O41-H41 $\cdots \mathrm{O} 42^{\mathrm{i}}$	$0.927(18)$	$1.804(19)$	$2.7292(11)$	$175.5(16)$
$\mathrm{C} 17-\mathrm{H} 17 B \cdots \mathrm{O} 42^{\mathrm{ii}}$	0.98	2.48	$3.2477(14)$	135

Symmetry codes: (i) $-x,-y+3,-z+1$; (ii) $x+1, y-1, z$.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X $A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

JHB acknowledges a fellowship from the Postdoc Programme of the German Academic Exchange Service (DAAD).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2557).

References

Lloyd, D. G., Hughes, R. B., Zisterer, D. M., Williams, D. C., Fattorusso, C., Catalanotti, B., Campiani, G. \& Meegan, M. J. (2004). J. Med. Chem. 47, 5612-5615.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl Cryst. 39, 453-457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Smith, G., Shariff, S. M., O'Reilly, E. J. \& Kennard, C. H. L. (1989). Polyhedron, 8, 39-43.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany
Tandon, V. K., Khanna, J. M., Arand, N. \& Chandra, A. (1990). Tetrahedron, 46, 2871-2882.

supporting information

Acta Cryst. (2009). E65, o778 [doi:10.1107/S1600536809008186]

4-(3-Methoxyphenoxy)butyric acid

Julia Heilmann-Brohl, Gérard Jaouen and Michael Bolte

S1. Comment

4-(3-Methoxyphenoxy)butyric acid is an intermediate for the synthesis of a new kind of estrogen receptor modulators (Lloyd et al., 2004). All non-H atoms of the title compound (Fig. 1) lie in a common plane (r.m.s. deviation $0.0472 \AA$). All C-C bonds in the side chain are in a trans conformation, and the hydroxyl group is also trans to the methylene chain. In the crystal, the molecules form centrosymmetric dimers showing a head-to-head arrangement which is stabilized by $\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}$ hydrogen bonds (Fig. 2). In addition to this classical hydrogen bond, there is weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contact (Table 1).

Two comparable structures, 4-(4-chlorophenoxy)butanoic acid and 4-(2,4-dichlorophenoxy)butanoic acid, (Smith et al., 1989) adopt a very similar conformation as the title compound. However, the carboxyl group in these structures is slightly twisted out of the molecular plane. The $\mathrm{HO}-\mathrm{C}(\mathrm{O})-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ torsion angle is 161.6° and 170.1° in 4-(4chlorophenoxy)butanoic acid and 4-(2,4-dichlorophenoxy)butanoic acid, respectively, whereas this torsion angle amounts to 174.73 (9) ${ }^{\circ}$ in the title compound.

S2. Experimental

Synthesis of 4-(3-methoxy-phenoxy)-butyric acid ethyl ester (scheme 2):
$\mathrm{Cs}_{3} \mathrm{CO}_{3}(9.666 \mathrm{mmol}, 3.149 \mathrm{~g})$ was added to a solution of 3-methoxyphenol $(8.055 \mathrm{mmol}, 1.000 \mathrm{~g})$ in acetone $(20 \mathrm{ml})$ and the mixture was stirred for 5 min at r.t.. Ethyl-4-bromobutyrate $(8.055 \mathrm{mmol}, 1.571 \mathrm{~g})$ was added and the reaction mixture was heated under reflux for 28 h . After cooling to r.t. the slurry was poured onto $\mathrm{H}_{2} \mathrm{O} / \mathrm{ice} / \mathrm{HCl}$ and the aqeous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 25 \mathrm{ml})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 25 \mathrm{ml})$, dried over MgSO_{4} and the solvent was removed under reduced pressure to yield the crude product as a slightly yellow oil. The crude product was subjected to a column chromatography (eluent $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$), to obtain the pure product as a slightly yellow oil ($1.486 \mathrm{~g}, 77 \%$). ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=7.165\left(\operatorname{tr}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} H_{4}\right), 6.519-6.447\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} H_{4}\right), 4.146$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 12), 3.987\left(\operatorname{tr}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{8}\right), 3.780\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right), 2.509\left(\operatorname{tr}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H} \mathrm{H}^{10}\right), 2.145-$ $2.055\left(\mathrm{~m}, 2 \mathrm{H} \mathrm{H}^{9}\right), 1.259\left(\operatorname{tr}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}^{13}\right)$.
Synthesis of 4-(3-methoxy-phenoxy)-butyric acid (scheme 3):
4-(3-methoxy-phenoxy)-butyric acid ethyl ester ($2.938 \mathrm{mmol}, 0.700 \mathrm{~g}$) is dissolved in acetone (10 ml) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ and $1 M \mathrm{NaOH}(20 \mathrm{ml})$ is added. The reaction mixture is stirred at r.t. for 1 h and is then poured into $\mathrm{H}_{2} \mathrm{O} / \mathrm{HCl}(50 \mathrm{ml})$. The aqeous phase is extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 x 25 \mathrm{ml})$, and the combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}(2 x 30$ ml), dried over MgSO_{4} and the solvent is evaporated. The crude product is obtained as light yellow oil from which colourless crystals - suitable for X-Ray analysis - start to grow within 30 min . Purification of the crude product is conducted by column chromatography. The by-products are removed by elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The desired product is then eluted with MeOH . After evaporation of MeOH , the pure product is obtained as an off-white crystalline solid (0.352 g , $58 \%) .{ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=7.171\left(\operatorname{tr}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} H_{4}\right), 6.526-6.447\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} H_{4}\right), 4.010(\operatorname{tr}, J=6.0$
$\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}^{8}\right), 3.787\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right), 2.592\left(\mathrm{tr}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{10}\right), 2.174-2.073\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{9}\right)$, n.o. (COOH).

S3. Refinement

H atoms bonded to C were refined with fixed individual displacement parameters $\left[\mathrm{U}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right.$ or $\mathrm{U}(\mathrm{H})=1.5$ $\left.U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)\right]$ using a riding model with $\mathrm{C}_{\text {aromatic }}-\mathrm{H}=0.95 \AA, \mathrm{C}_{\text {methyl }}-\mathrm{H}=0.98 \AA$, and $\mathrm{C}_{\text {methylene }}-\mathrm{H}=0.99 \AA$. The methyl group was allowed to rotate but not to tip. the hydroxy H atom was freely refined.

Figure 1

Perspective view of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level; H atoms are drawn as small spheres of arbitrary radii.

Figure 2
Packing diagram of the title compound with view onto the $a c$ plane. Hydrogen bonds shown as dashed lines.

Figure 3
The numbering of the ethyl ester of the title compound.

Figure 4
The numbering of the title compound.

4-(3-Methoxyphenoxy)butyric acid

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$

$M_{r}=210.22$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=9.6509$ (6) A
$b=5.3998$ (4) \AA
$c=20.2033(13) \AA$
$\beta=90.822(5)^{\circ}$
$V=1052.74(12) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-II two-circle diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
15489 measured reflections
2945 independent reflections
$F(000)=448$
$D_{\mathrm{x}}=1.326 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 15224 reflections
$\theta=3.7-29.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, colourless
$0.32 \times 0.27 \times 0.25 \mathrm{~mm}$

2458 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=29.6^{\circ}, \theta_{\text {min }}=3.7^{\circ}$
$h=-13 \rightarrow 13$
$k=-7 \rightarrow 7$
$l=-28 \rightarrow 25$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.120$
$S=1.07$
2945 reflections

142 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0677 P)^{2}+0.1161 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.31 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.048 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	0.32321 (7)	0.55314 (15)	0.64594 (4)	0.03035 (19)
C1	0.36009 (11)	0.72446 (18)	0.59488 (5)	0.0263 (2)
H1A	0.3840	0.6344	0.5539	0.032*
H1B	0.4411	0.8248	0.6091	0.032*
C2	0.23475 (10)	0.89015 (19)	0.58265 (5)	0.0265 (2)
H2A	0.2151	0.9860	0.6232	0.032*
H2B	0.1527	0.7866	0.5721	0.032*
C3	0.26116 (11)	1.0679 (2)	0.52546 (5)	0.0286 (2)
H3A	0.3491	1.1572	0.5343	0.034*
Н3 В	0.2727	0.9704	0.4844	0.034*
C4	0.14701 (11)	1.25525 (19)	0.51430 (5)	0.0269 (2)
O41	0.17803 (9)	1.41971 (15)	0.46803 (4)	0.0342 (2)
H41	0.1036 (18)	1.526 (3)	0.4617 (8)	0.056 (5)*
O42	0.03810 (8)	1.25686 (16)	0.54438 (5)	0.0382 (2)
C11	0.42179 (10)	0.38789 (18)	0.66811 (5)	0.0245 (2)
C12	0.55358 (10)	0.36401 (18)	0.64103 (5)	0.0253 (2)
H12	0.5814	0.4682	0.6058	0.030*
C13	0.64437 (10)	0.18317 (18)	0.66685 (5)	0.0243 (2)
C14	0.60524 (11)	0.02991 (19)	0.71884 (5)	0.0263 (2)
H14	0.6668	-0.0927	0.7358	0.032*
C15	0.47284 (10)	0.06066 (19)	0.74563 (5)	0.0278 (2)
H15	0.4454	-0.0420	0.7813	0.033*
C16	0.38130 (11)	0.23721 (19)	0.72120 (5)	0.0270 (2)
H16	0.2923	0.2562	0.7401	0.032*
O13	0.77149 (8)	0.17389 (15)	0.63728 (4)	0.0316 (2)
C17	0.86678 (11)	-0.0111 (2)	0.66159 (5)	0.0334 (3)
H17A	0.8863	0.0179	0.7087	0.050*
H17B	0.9532	-0.0014	0.6369	0.050*
H17C	0.8257	-0.1758	0.6558	0.050*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0250(4)$	$0.0310(4)$	$0.0350(4)$	$0.0067(3)$	$0.0021(3)$	$0.0095(3)$
C1	$0.0255(5)$	$0.0255(5)$	$0.0277(5)$	$0.0032(4)$	$-0.0012(4)$	$0.0029(4)$
C2	$0.0262(5)$	$0.0251(5)$	$0.0281(5)$	$0.0052(4)$	$-0.0032(4)$	$0.0004(4)$
C3	$0.0290(5)$	$0.0275(5)$	$0.0294(5)$	$0.0056(4)$	$-0.0011(4)$	$0.0014(4)$
C4	$0.0291(5)$	$0.0247(5)$	$0.0268(5)$	$0.0022(4)$	$-0.0036(4)$	$0.0007(4)$
O41	$0.0362(4)$	$0.0313(4)$	$0.0351(4)$	$0.0080(3)$	$0.0025(3)$	$0.0096(3)$
O42	$0.0318(4)$	$0.0371(5)$	$0.0458(5)$	$0.0105(3)$	$0.0055(4)$	$0.0148(4)$
C11	$0.0238(4)$	$0.0231(4)$	$0.0266(5)$	$0.0024(3)$	$-0.0027(4)$	$0.0014(4)$
C12	$0.0263(5)$	$0.0255(5)$	$0.0240(4)$	$0.0018(3)$	$-0.0002(3)$	$0.0035(3)$
C13	$0.0237(4)$	$0.0257(4)$	$0.0235(4)$	$0.0021(3)$	$-0.0008(3)$	$-0.0002(4)$
C14	$0.0273(5)$	$0.0250(5)$	$0.0265(5)$	$0.0018(4)$	$-0.0033(4)$	$0.0035(4)$
C15	$0.0280(5)$	$0.0282(5)$	$0.0273(5)$	$-0.0025(4)$	$-0.0011(4)$	$0.0050(4)$
C16	$0.0245(5)$	$0.0286(5)$	$0.0280(5)$	$-0.0010(4)$	$0.0002(4)$	$0.0020(4)$
O13	$0.0266(4)$	$0.0380(4)$	$0.0303(4)$	$0.0100(3)$	$0.0048(3)$	$0.0095(3)$
C17	$0.0301(5)$	$0.0382(6)$	$0.0319(5)$	$0.0128(4)$	$0.0026(4)$	$0.0059(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

O1-C11	1.3747 (11)	C11-C16	1.4061 (14)
$\mathrm{O} 1-\mathrm{C} 1$	1.4343 (12)	C12-C13	1.4072 (13)
$\mathrm{C} 1-\mathrm{C} 2$	1.5219 (13)	C12-H12	0.9500
C1-H1A	0.9900	C13-O13	1.3732 (12)
C1-H1B	0.9900	C13-C14	1.3935 (14)
C2-C3	1.5263 (14)	C14-C15	1.4047 (14)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900	C14-H14	0.9500
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900	C15-C16	1.3858 (14)
C3-C4	1.5103 (14)	C15-H15	0.9500
C3-H3A	0.9900	C16-H16	0.9500
С3-H3B	0.9900	O13-C17	1.4394 (12)
C4-O42	1.2217 (13)	C17-H17A	0.9800
C4-O41	1.3268 (13)	C17-H17B	0.9800
O41-H41	0.927 (18)	C17-H17C	0.9800
C11-C12	1.3977 (13)		
C11-O1-C1	118.38 (8)	O1-C11-C16	115.18 (9)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	106.92 (8)	C12-C11-C16	120.64 (9)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.3	C11-C12-C13	118.96 (9)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.3	C11-C12-H12	120.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.3	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$	120.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.3	$\mathrm{O} 13-\mathrm{C} 13-\mathrm{C} 14$	124.03 (9)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.6	O13-C13-C12	114.80 (8)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	110.58 (8)	C14-C13-C12	121.16 (9)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	C13-C14-C15	118.56 (9)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	C13-C14-H14	120.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	C15-C14-H14	120.7

supporting information

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.1
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$113.88(9)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.8
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	107.7
$\mathrm{O} 42-\mathrm{C} 4-\mathrm{O} 41$	$123.38(9)$
$\mathrm{O} 42-\mathrm{C} 4-\mathrm{C} 3$	$124.16(9)$
$\mathrm{O} 41-\mathrm{C} 4-\mathrm{C} 3$	$112.46(9)$
$\mathrm{C} 4-\mathrm{O} 41-\mathrm{H} 41$	$109.2(11)$
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 12$	$124.18(9)$
$\mathrm{C} 11-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-177.45(8)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-176.12(8)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-174.52(9)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 42$	$-5.13(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 41$	$174.73(9)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 12$	$-4.53(15)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 16$	$175.88(9)$
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-178.30(9)$
$\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$1.27(15)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{O} 13$	$-179.83(9)$

$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 14$	$121.53(9)$
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{H} 15$	119.2
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15$	119.2
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11$	$119.14(9)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{H} 16$	120.4
$\mathrm{C} 11-\mathrm{C} 16-\mathrm{H} 16$	120.4
$\mathrm{C} 13-\mathrm{O} 13-\mathrm{C} 17$	$116.57(8)$
$\mathrm{O} 13-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A}$	109.5
$\mathrm{O} 13-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B}$	109.5
$\mathrm{H} 17 \mathrm{~A}-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B}$	109.5
$\mathrm{O} 13-\mathrm{C} 17-\mathrm{H} 17 \mathrm{C}$	109.5
$\mathrm{H} 17 \mathrm{~A}-\mathrm{C} 17-\mathrm{H} 17 \mathrm{C}$	109.5
$\mathrm{H} 17 \mathrm{~B}-\mathrm{C} 17-\mathrm{H} 17 \mathrm{C}$	109.5
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-0.36(15)$
$\mathrm{O} 13-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$178.91(9)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-0.52(15)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$0.51(16)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11$	$0.38(16)$
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 15$	$178.32(9)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 15$	$-1.28(15)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{O} 13-\mathrm{C} 17$	$1.43(15)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{O} 13-\mathrm{C} 17$	$-179.11(9)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 41 — \mathrm{H} 41 \cdots \mathrm{O} 42^{\mathrm{i}}$	$0.927(18)$	$1.804(19)$	$2.7292(11)$	$175.5(16)$
$\mathrm{C} 17 — \mathrm{H} 17 B^{\cdots} \mathrm{O} 42^{\mathrm{ii}}$	0.98	2.48	$3.2477(14)$	135

Symmetry codes: (i) $-x,-y+3,-z+1$; (ii) $x+1, y-1, z$.

