metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[4-(4-pyridyl)pyridinium] (4-carboxypyridine-2,6-dicarboxylato- $\kappa^3 O^2$,N,O⁶)-(pyridine-2,4,6-tricarboxylato- $\kappa^{3}O^{2}$, N, O⁶) ferrate(III) trihydrate

Li Zhao, You-Ren Dong and Hong-Zhen Xie*

State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Institute of Solid Materials Chemistry, Ningbo University, Zhejiang 315211, People's Republic of China Correspondence e-mail: zhengyueqing@nbu.edu.cn

Received 16 March 2009; accepted 23 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.051; wR factor = 0.138; data-toparameter ratio = 15.1.

In the title salt, $(C_{10}H_9N_2)_2$ [Fe(C₈H₂NO₆)(C₈H₃NO₆)]·3H₂O, the Fe^{III} atom is O,N,O'-chelated by dianionic and trianionic ligands in a slightly distorted octahedral coordination geometry. The cations and ferrate anions are linked into a layered structure; the layers are connected through the uncoordinated water molecules into a hydrogen-bonded three-dimensional supramolecular structure. One of the uncoordinated water molecules is disordered around an inversion centre and was refined with half-occupancy for each position.

Related literature

For the design and synthesis of coordination polymer complexes and their potential applications, see: Kaneko et al. (2007); Li et al. (2008); Lin et al. (2009). For the H₃ptc ligand, see: Ghosh & Bharadwaj (2006); Lin et al. (2007); Syper et al. (1980).

Experimental

Crystal data

$C_{10}H_9N_2)_2[Fe(C_8H_2NO_6)-$	$\beta = 79.82 \ (3)^{\circ}$
$(C_8H_3NO_6)]\cdot 3H_2O$	$\gamma = 76.15 \ (3)^{\circ}$
$I_r = 841.50$	V = 1761.9 (6) Å ³
riclinic, P1	Z = 2
= 10.568 (2) Å	Mo $K\alpha$ radiation
= 12.386 (3) Å	$\mu = 0.51 \text{ mm}^{-1}$
= 14.344 (3) Å	T = 293 K
$x = 77.13 (3)^{\circ}$	$0.35 \times 0.24 \times 0.17 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID	
diffractometer	
Absorption correction: multi-scan	
(ABSCOR; Higashi, 1995)	
$T_{\min} = 0.860, T_{\max} = 0.913$	

Refinement

ł ν

S 7

$R[F^2 > 2\sigma(F^2)] = 0.051$	526 parameters
$vR(F^2) = 0.138$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
934 reflections	$\Delta \rho_{\rm min} = -0.41 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Fe-O6	2.008 (2)	Fe-O12	2.026 (2)
Fe-O7	2.012 (2)	Fe-N2	2.056 (2)
Fe-O1	2.018 (2)	Fe-N1	2.058 (2)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O3−H3···O9 ⁱ	0.82	1.64	2.454 (3)	172
$N3-H3A\cdots N5^{ii}$	0.86	1.93	2.741 (4)	158
$N6-H6A\cdots N4^{iii}$	0.86	1.84	2.694 (4)	170
$O13A - H13A \cdots O7^{iv}$	0.90	1.90	2.766 (4)	161
$O13B - H13B \cdot \cdot \cdot O4$	0.78	2.17	2.821 (4)	142
O14−H14A…O11	0.85	2.16	2.973 (4)	160
$O14-H14B\cdots O5^{v}$	0.85	1.95	2.788 (4)	169
O15−H15A···O10	0.85	1.97	2.801 (3)	166
$O15-H15B\cdots O1^{vi}$	0.85	2.10	2.877 (3)	152
Symmetry codes: (i)	x - 1, y, z	+1; (ii)	-x + 2, -y + 1,	-z + 2; (iii)
-x + 1, -y + 1, -z + 1;	(iv) $-x$,	-y + 1, -z +	2; (v) $x +$	1, y, z; (vi)
-x + 2, -y + 1, -z + 1.				

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick,

2008); molecular graphics: SHELXL97; software used to prepare

material for publication: SHELXTL (Sheldrick, 2008). This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Zhejiang Provincial Natural Science Foundation (grant No. Z203067) and the Ningbo Municipal Natural Science Foundation (grant No.

2006 A610061).

17019 measured reflections 7934 independent reflections

 $R_{\rm int} = 0.040$

5458 reflections with $I > 2\sigma(I)$

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2562).

References

- Ghosh, S. K. & Bharadwaj, P. K. (2006). Inorg. Chim. Acta, 359, 1685–1689.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Kaneko, W., Ohba, M. & Kitagawa, S. (2007). J. Am. Chem. Soc. 129, 13706– 13712.
- Li, M. X., Miao, Z. X., Shao, M., Liang, S. W. & Zhu, S. R. (2008). *Inorg. Chem.* **47**, 4481–4489.
- Lin, W. B., Rieter, W. J. & Taylor, K. M. L. (2009). Angew. Chem. Int. Ed. 48, 650-658.
- Lin, J. G., Wen, L. L., Zang, S. Q., Su, Y., Lu, Z. D., Zhu, H. Z. & Meng, Q. J. (2007). *Inorg. Chem. Commun.* **10**, 74–76.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Syper, L., Kloc, K. & Mochowski, J. (1980). Tetrahedron, 36, 123-129.

supporting information

Acta Cryst. (2009). E65, m450-m451 [doi:10.1107/S1600536809010514]

Bis[4-(4-pyridyl)pyridinium] (4-carboxypyridine-2,6-dicarboxylato- $\kappa^3 O^2$, N, O⁶) (pyridine-2,4,6-tricarboxylato- $\kappa^3 O^2$, N, O⁶) ferrate(III) trihydrate

Li Zhao, You-Ren Dong and Hong-Zhen Xie

S1. Comment

Great interest has been focused on the rapidly expanding field of supramolecular chemistry and crystal engineering of the coordination polymers in reacent years because of their intriguing network topoloies as well as their potential application as functional materials in many areas such as separations and catalysis, gas storage, and magnetism (Kaneko *et al.*, 2007; Li *et al.*, 2008; Lin *et al.*, 2009). Pyridine-2,4,6-tricarboxylic acid (H₃ptc) is a good building block for constructing supramolecular complex, which can link 3 d, 4f and 3 d-4f metal ions. However, plenty of researches have focused on the supramolecular chemistry and coordination polymers which only include single carboxylic acid ligands, whereas the studies and syntheses about the mixed-ligand compounds which contain two or two more ligands seem comparatively limited (Ghosh & Bharadwaj, 2006; Lin *et al.*, 2007). In this paper, we report the crystal structure of the title compound prepared from FeCl₂.6H₂O, H₃ptc and 4,4'-bipyridine (4,4'-bpy).

The structure of title compound consists of $[Fe(Hptc)(ptc)]^{2-}$ anions, Hbpy+ cations and lattice water molecules. In the anion, Hptc²⁻ and ptc³⁻ ligands are bound to one Fe(III) ion through pyridine N and deprotonated carboxylate O atoms at 2- and 6-positions, leading to a distorted octahedral geometry around the metal. The carboxylic groups at the 4-position of ptc ligands are uncoordinated. $[Fe(Hptc)(ptc)]^{2-}$ anion is connected into two-dimensional layers through H-bonding interactions (Talbe 2). In the cationic part, the Hbpy⁺ ligands are not coordinated to metal ions. They are connected by N —H···N hydrogen-bonding and π - π stacking interactions to form another two-dimensional layers. The layers are futher linked into three-dimensional supramolecular structure by the intermolecular hydrogen bond interaction.

S2. Experimental

Pyridine-2,4,6-tricarboxylic acid (H₃ptc) was synthesized by oxidization of pyridine-2,4,6-trimethyl with potassium permanganate according to a literature (Syper *et al.*, 1980). A mixture of H₃ptc (0.110 g, 0.05 mmol), FeCl₂.6H₂O (0.126 g, 0.10 mmol), 4,4'-bpy (0.156 g, 0.10 mmol), 16 ml H₂O and seven drops of triethylamine were loaded into a 23 ml Teflon-lined stainless autoclave, which was heated up to 120 °C, at which temperature the reactor was held for 3 days, and then cooled to room temperature. The reaction yielded brown block crystals of (I) in a yield of 10.32% based on FeCl₂.6H₂O. IR spectroscopic analysis (KBr, v/cm^{-1}): 3535(*m*), 3436(*m*), 1674(*s*), 1612(*m*), 1573(w), 1492(*m*), 1330(*s*), 1195(*s*), 1076(w), 1043(*m*), 1006(*m*), 931(w), 813(*s*), 779(w), 748(*m*), 771(w), 678(w).

S3. Refinement

H atoms bonded to C atoms were placed in geometrically calculated position and were refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$. H atoms bonded to N and carboxyl O atoms were palced in geometrically calculated position and were refined using a riding model, with $U_{iso}(H) = 1.5 U_{eq}(C)$. The water H atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as 0.85 ± 0.01 Å and with $U_{iso}(H)$ values

C25 C18 C19 C17 ก้วว C20 N3 C21 Ø⁰⁸ C14 09 07 C10 С9 02 C15 N2 010 06 C30 C36 Č12 03 012 C13 C35 C31 C16 N6 C5 C3 C4 C8 N5 011 05 04 C33 C28 C2

set at 1.5 Ueq(O). The O13 was disordered into two positions and treated as each occupation of 50%.

Figure 1

Aview of the complex molecule of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 45% probability level. (Lattice water molecules and hydrogen atoms are all delected)

Figure 2

The two-dimensional layers constructed with [Fe(Hptc)(ptc)]²⁻ by hydrogen bonds.

Figure 3

The two-dimensional layers constructed with Hbpy⁺ by hydrogen bonds and π - π stacking.

Bis[4-(4-pyridyl)pyridinium] (4-carboxypyridine-2,6-dicarboxylato- $\kappa^3 O^2$, N, O⁶) (pyridine-2,4,6-tricarboxylato- $\kappa^3 O^2$, N, O⁶) ferrate(III) trihydrate

Crystal	data
---------	------

$(C_{10}H_9N_2)_2[Fe(C_8H_2NO_6)(C_8H_3NO_6)]\cdot 3H_2O$ $M_r = 841.50$ Triclinic P_1	Z = 2 F(000) = 866 $D_{\rm r} = 1.586 \mathrm{Mg}\mathrm{m}^{-3}$
Hall symbol: -P 1	$D_x = 1.500$ Mg m Mo Ka radiation $\lambda = 0.71073$ Å
a = 10568(2) Å	Cell parameters from 17019 reflections
h = 12,386(3) Å	$A = 3.2, 27.5^{\circ}$
c = 14.344 (3) Å	$u = 0.51 \text{ mm}^{-1}$
$a = 77.13(3)^{\circ}$	T = 293 K
$\beta = 79.82 (3)^{\circ}$	Block, brown
$\gamma = 76.15(3)^{\circ}$	$0.35 \times 0.24 \times 0.17 \text{ mm}$
V = 1761.9 (6) Å ³	
Data collection	
Rigaku R-AXIS RAPID	17019 measured reflections
diffractometer	7934 independent reflections
Radiation source: fine-focus sealed tube	5458 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.040$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 3.1^\circ$
ω scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan	$k = -15 \rightarrow 16$
(ABSCOR; Higashi, 1995)	$l = -17 \rightarrow 18$
$T_{\min} = 0.860, \ T_{\max} = 0.913$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.138$	neighbouring sites
S = 1.06	H-atom parameters constrained
7934 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0677P)^2 + 0.2949P]$
526 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.018$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Fe	0.48489 (4)	0.50845 (4)	0.74947 (3)	0.02949 (13)	
N1	0.3459 (2)	0.51476 (19)	0.86945 (15)	0.0271 (5)	
N2	0.6260 (2)	0.52164 (19)	0.63117 (14)	0.0253 (5)	
C1	0.3767 (3)	0.4481 (2)	0.95274 (18)	0.0272 (6)	
C2	0.2896 (3)	0.4545 (2)	1.03624 (18)	0.0299 (6)	
H2	0.3096	0.4081	1.0945	0.036*	
C3	0.1708 (3)	0.5328 (2)	1.03055 (18)	0.0300 (6)	
C4	0.1416 (3)	0.6013 (2)	0.94256 (19)	0.0310 (6)	
H4	0.0624	0.6535	0.9381	0.037*	
C5	0.2338 (3)	0.5894 (2)	0.86208 (18)	0.0286 (6)	
C6	0.5121 (3)	0.3728 (2)	0.94093 (19)	0.0308 (6)	
01	0.57272 (18)	0.39221 (17)	0.85399 (13)	0.0358 (5)	
O2	0.5550 (2)	0.30376 (19)	1.00811 (15)	0.0450 (5)	
C7	0.0695 (3)	0.5450 (3)	1.1186 (2)	0.0335 (6)	
O3	0.1080 (2)	0.4852 (2)	1.19749 (14)	0.0525 (6)	
Н3	0.0457	0.4873	1.2407	0.079*	
O4	-0.0370 (2)	0.6083 (2)	1.10993 (15)	0.0529 (6)	
C8	0.2268 (3)	0.6545 (2)	0.75967 (19)	0.0311 (6)	
05	0.1333 (2)	0.73086 (19)	0.73936 (14)	0.0436 (5)	
O6	0.32849 (19)	0.62091 (18)	0.70084 (12)	0.0352 (5)	
C9	0.6408 (2)	0.4532 (2)	0.56858 (18)	0.0266 (6)	
C10	0.7329 (3)	0.4614 (2)	0.48723 (18)	0.0294 (6)	
H10	0.7429	0.4149	0.4426	0.035*	
C11	0.8105 (3)	0.5417 (2)	0.47426 (18)	0.0299 (6)	
C12	0.7941 (3)	0.6101 (2)	0.54191 (18)	0.0301 (6)	

H12	0.8464	0.6629	0.5345	0.036*
C13	0.6987 (2)	0.5981 (2)	0.62030 (18)	0.0271 (6)
C14	0.5477 (3)	0.3726 (2)	0.60007 (19)	0.0317 (6)
07	0.47146 (19)	0.38846 (18)	0.67958 (14)	0.0379 (5)
O8	0.5477 (2)	0.3013 (2)	0.55424 (17)	0.0524 (6)
C15	0.9150 (3)	0.5546 (3)	0.38788 (19)	0.0356 (7)
09	0.9347 (2)	0.4803 (2)	0.33614 (16)	0.0558 (7)
O10	0.9727 (2)	0.6326 (2)	0.37478 (17)	0.0595 (7)
C16	0.6609 (3)	0.6649 (2)	0.70080 (19)	0.0305 (6)
011	0.7138 (2)	0.74272 (19)	0.69996 (15)	0.0441 (5)
012	0.56886 (19)	0.63358 (17)	0.76424 (13)	0.0360 (5)
N3	0.9300 (3)	0.0772 (3)	0.6608 (2)	0.0529 (8)
НЗА	0.9740	0.0865	0.7025	0.079*
C17	0.8781 (4)	-0.0123(4)	0.6781 (2)	0.0579 (10)
H17	0.8887	-0.0644	0.7354	0.069*
C18	0.8083 (4)	-0.0307(3)	0.6131 (2)	0.0556 (10)
H18	0 7717	-0.0945	0.6263	0.067*
C19	0.7928(3)	0.0913	0.5278(2)	0.0373(7)
C20	0.7920(3) 0.8491(3)	0.0107(3) 0.1404(3)	0.5270(2) 0.5113(2)	0.0373(7) 0.0422(7)
H20	0.8415	0.1932	0.4542	0.051*
C21	0.0415	0.1532 0.1548 (3)	0.5797 (3)	0.0512(9)
H21	0.9100 (3)	0.1348 (3)	0.5697	0.0512(9)
N/4	0.5820 (3)	-0.0080(3)	0.3077	0.001
1N 4 C22	0.3820(3)	0.0089(3)	0.3213(2)	0.0302(7)
C22	0.7179(3)	0.0271(3)	0.4300(2)	0.0380(7)
C23	0.0303 (3)	0.11/1 (5)	0.3902 (2)	0.0430(7)
H23	0.0490	0.1915	0.4003	0.032°
C24	0.5854 (3)	0.0946 (3)	0.3297 (2)	0.0476(8)
H24	0.5414	0.1555	0.2886	0.05/*
025	0.6459 (5)	-0.094/(4)	0.3793 (3)	0.0829 (15)
H25	0.6458	-0.1680	0.3735	0.100*
C26	0.7133 (5)	-0.0797 (3)	0.4485 (3)	0.0783 (15)
H26	0.7552	-0.1423	0.4893	0.094*
N5	0.9437 (3)	0.9490 (3)	1.1818 (2)	0.0495 (7)
C27	0.8663 (3)	1.0491 (3)	1.1540 (2)	0.0491 (9)
H27	0.8631	1.1076	1.1858	0.059*
C28	0.7908 (3)	1.0700 (3)	1.0802 (2)	0.0443 (8)
H28	0.7390	1.1414	1.0619	0.053*
C29	0.7940 (3)	0.9821 (2)	1.0337 (2)	0.0320 (6)
C30	0.8776 (3)	0.8807 (3)	1.0597 (2)	0.0418 (7)
H30	0.8854	0.8217	1.0273	0.050*
C31	0.9503 (3)	0.8665 (3)	1.1342 (3)	0.0509 (9)
H31	1.0059	0.7969	1.1518	0.061*
N6	0.5522 (3)	1.0162 (2)	0.81949 (19)	0.0445 (7)
H6A	0.5044	1.0219	0.7753	0.067*
C32	0.7079 (3)	0.9959 (3)	0.9582 (2)	0.0324 (6)
C33	0.6801 (3)	1.0959 (3)	0.8931 (2)	0.0403 (7)
H33	0.7144	1.1574	0.8958	0.048*
C34	0.6010 (3)	1.1043 (3)	0.8238 (2)	0.0452 (8)

H34	0.5817	1.1718	0.7799	0.054*		
C35	0.5763 (3)	0.9191 (3)	0.8826 (2)	0.0433 (8)		
H35	0.5400	0.8592	0.8786	0.052*		
C36	0.6533 (3)	0.9062 (3)	0.9529 (2)	0.0394 (7)		
H36	0.6690	0.8383	0.9967	0.047*		
O14	0.8797 (3)	0.7658 (3)	0.8387 (2)	0.0770 (9)		
H14A	0.8215	0.7521	0.8116	0.116*		
H14B	0.9524	0.7531	0.8024	0.116*		
015	1.1872 (2)	0.7054 (2)	0.25415 (18)	0.0571 (7)		
H15A	1.1225	0.6765	0.2841	0.086*		
H15B	1.2405	0.6626	0.2191	0.086*		
O13A	-0.299 (4)	0.735 (3)	1.201 (2)	0.087 (5)	0.50	
O13B	-0.293 (4)	0.719 (3)	1.174 (2)	0.087 (5)	0.50	
H13A	-0.3480	0.6982	1.2502	0.131*		
H13B	-0.2432	0.6654	1.1609	0.131*		

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe	0.0310 (2)	0.0340 (2)	0.0201 (2)	-0.00864 (17)	0.00912 (14)	-0.00606 (16)
N1	0.0288 (12)	0.0288 (12)	0.0202 (10)	-0.0050 (10)	0.0050 (8)	-0.0047 (9)
N2	0.0270 (11)	0.0293 (12)	0.0175 (10)	-0.0071 (9)	0.0045 (8)	-0.0043 (9)
C1	0.0317 (14)	0.0284 (15)	0.0196 (12)	-0.0071 (11)	0.0038 (10)	-0.0052 (11)
C2	0.0357 (15)	0.0335 (16)	0.0178 (12)	-0.0097 (12)	0.0040 (10)	-0.0026 (11)
C3	0.0340 (15)	0.0350 (16)	0.0213 (13)	-0.0107 (12)	0.0070 (10)	-0.0106 (12)
C4	0.0275 (14)	0.0339 (16)	0.0296 (14)	-0.0021 (12)	0.0021 (11)	-0.0111 (12)
C5	0.0312 (14)	0.0297 (15)	0.0228 (13)	-0.0055 (12)	0.0025 (10)	-0.0061 (11)
C6	0.0355 (15)	0.0304 (16)	0.0254 (13)	-0.0082 (12)	0.0027 (11)	-0.0066 (12)
01	0.0309 (10)	0.0404 (12)	0.0280 (10)	-0.0012 (9)	0.0100 (8)	-0.0074 (9)
O2	0.0454 (13)	0.0424 (13)	0.0325 (11)	0.0073 (10)	0.0005 (9)	0.0016 (10)
C7	0.0355 (16)	0.0363 (17)	0.0270 (14)	-0.0091 (13)	0.0094 (11)	-0.0113 (12)
O3	0.0432 (13)	0.0707 (17)	0.0273 (11)	-0.0002 (12)	0.0159 (9)	-0.0045 (11)
O4	0.0406 (13)	0.0621 (16)	0.0411 (12)	0.0063 (12)	0.0118 (10)	-0.0107 (12)
C8	0.0367 (16)	0.0336 (16)	0.0223 (13)	-0.0077 (13)	-0.0017 (11)	-0.0050 (12)
05	0.0447 (13)	0.0442 (14)	0.0337 (11)	0.0016 (11)	-0.0047 (9)	-0.0022 (10)
06	0.0388 (11)	0.0427 (12)	0.0196 (9)	-0.0065 (9)	0.0032 (8)	-0.0046 (8)
C9	0.0289 (14)	0.0282 (15)	0.0208 (12)	-0.0066 (11)	0.0033 (10)	-0.0054 (11)
C10	0.0287 (14)	0.0369 (16)	0.0207 (12)	-0.0055 (12)	0.0031 (10)	-0.0078 (11)
C11	0.0278 (14)	0.0339 (16)	0.0225 (13)	-0.0061 (12)	0.0054 (10)	-0.0013 (11)
C12	0.0326 (15)	0.0305 (15)	0.0251 (13)	-0.0118 (12)	0.0032 (11)	-0.0009 (11)
C13	0.0278 (14)	0.0290 (15)	0.0219 (13)	-0.0071 (11)	0.0015 (10)	-0.0016 (11)
C14	0.0342 (15)	0.0342 (16)	0.0267 (14)	-0.0121 (13)	0.0047 (11)	-0.0070 (12)
O7	0.0385 (11)	0.0427 (13)	0.0330 (10)	-0.0194 (10)	0.0127 (8)	-0.0104 (9)
08	0.0595 (15)	0.0541 (15)	0.0543 (14)	-0.0294 (12)	0.0149 (11)	-0.0308 (12)
C15	0.0340 (15)	0.0437 (18)	0.0253 (14)	-0.0104 (14)	0.0064 (11)	-0.0043 (13)
09	0.0602 (15)	0.0702 (17)	0.0390 (13)	-0.0285 (13)	0.0272 (11)	-0.0246 (12)
O10	0.0616 (15)	0.0712 (18)	0.0495 (14)	-0.0384 (14)	0.0268 (12)	-0.0193 (13)
C16	0.0352 (15)	0.0272 (15)	0.0279 (14)	-0.0060 (12)	-0.0013 (11)	-0.0056 (12)

011	0.0546 (14)	0.0407 (13)	0.0431 (12)	-0.0207 (11)	0.0018 (10)	-0.0153 (10)
012	0.0451 (12)	0.0380 (12)	0.0260 (10)	-0.0130 (10)	0.0076 (8)	-0.0131 (9)
N3	0.0578 (18)	0.066 (2)	0.0462 (17)	-0.0192 (16)	-0.0176 (14)	-0.0182 (16)
C17	0.072 (3)	0.068 (3)	0.0364 (18)	-0.023 (2)	-0.0220 (17)	0.0058 (17)
C18	0.074 (3)	0.053 (2)	0.0473 (19)	-0.034 (2)	-0.0233 (17)	0.0104 (17)
C19	0.0395 (17)	0.0368 (18)	0.0388 (16)	-0.0089 (14)	-0.0146 (13)	-0.0047 (13)
C20	0.054 (2)	0.0351 (18)	0.0424 (17)	-0.0150 (15)	-0.0144 (14)	-0.0053 (14)
C21	0.055 (2)	0.053 (2)	0.056 (2)	-0.0212 (18)	-0.0125 (16)	-0.0168 (18)
N4	0.0571 (18)	0.0484 (18)	0.0533 (17)	-0.0110 (14)	-0.0291 (14)	-0.0092 (14)
C22	0.0448 (17)	0.0364 (18)	0.0375 (16)	-0.0154 (14)	-0.0135 (13)	-0.0028 (13)
C23	0.055 (2)	0.0358 (18)	0.0409 (17)	-0.0031 (15)	-0.0181 (14)	-0.0100 (14)
C24	0.049 (2)	0.044 (2)	0.0485 (19)	0.0038 (16)	-0.0258 (15)	-0.0067 (16)
C25	0.127 (4)	0.038 (2)	0.106 (4)	-0.024 (2)	-0.078 (3)	-0.004 (2)
C26	0.121 (4)	0.032 (2)	0.100 (3)	-0.018 (2)	-0.085 (3)	0.007 (2)
N5	0.0512 (17)	0.056 (2)	0.0476 (16)	-0.0099 (15)	-0.0234 (13)	-0.0100 (14)
C27	0.053 (2)	0.052 (2)	0.050(2)	-0.0059 (17)	-0.0173 (16)	-0.0223 (17)
C28	0.0459 (18)	0.0380 (19)	0.053 (2)	-0.0032 (15)	-0.0188 (15)	-0.0139 (16)
C29	0.0312 (15)	0.0330 (16)	0.0317 (14)	-0.0065 (12)	-0.0058 (11)	-0.0047 (12)
C30	0.0453 (18)	0.0384 (18)	0.0449 (18)	-0.0040 (14)	-0.0157 (14)	-0.0119 (15)
C31	0.054 (2)	0.041 (2)	0.061 (2)	-0.0005 (16)	-0.0284 (17)	-0.0111 (17)
N6	0.0439 (15)	0.0547 (18)	0.0402 (14)	-0.0101 (13)	-0.0208 (12)	-0.0078 (13)
C32	0.0330 (15)	0.0345 (17)	0.0311 (14)	-0.0061 (12)	-0.0064 (11)	-0.0082 (12)
C33	0.0451 (18)	0.0387 (18)	0.0398 (17)	-0.0109 (14)	-0.0113 (13)	-0.0063 (14)
C34	0.051 (2)	0.044 (2)	0.0418 (18)	-0.0082 (16)	-0.0191 (14)	-0.0015 (15)
C35	0.0421 (18)	0.046 (2)	0.0494 (19)	-0.0134 (15)	-0.0148 (14)	-0.0123 (16)
C36	0.0435 (18)	0.0368 (18)	0.0397 (16)	-0.0118 (14)	-0.0124 (13)	-0.0018 (14)
O14	0.0659 (18)	0.091 (2)	0.0760 (19)	-0.0138 (17)	-0.0019 (15)	-0.0274 (18)
015	0.0461 (14)	0.0489 (15)	0.0652 (15)	-0.0081 (12)	0.0163 (11)	-0.0084 (12)
O13A	0.075 (4)	0.063 (8)	0.101 (15)	-0.016 (5)	0.050 (8)	-0.016 (6)
O13B	0.075 (4)	0.063 (8)	0.101 (15)	-0.016 (5)	0.050 (8)	-0.016 (6)
	× /	~ /	× /	× /		~ /

Geometric parameters (Å, °)

Fe—O6	2.008 (2)	C18—H18	0.9300
Fe—O7	2.012 (2)	C19—C20	1.384 (4)
Fe—O1	2.018 (2)	C19—C22	1.488 (4)
Fe—O12	2.026 (2)	C20—C21	1.371 (4)
Fe—N2	2.056 (2)	C20—H20	0.9300
Fe—N1	2.058 (2)	C21—H21	0.9300
N1-C5	1.321 (3)	N4—C25	1.318 (5)
N1-C1	1.336 (3)	N4—C24	1.323 (4)
N2-C13	1.324 (3)	C22—C26	1.367 (5)
N2—C9	1.332 (3)	C22—C23	1.381 (4)
C1—C2	1.380 (3)	C23—C24	1.380 (4)
C1—C6	1.514 (4)	C23—H23	0.9300
C2—C3	1.393 (4)	C24—H24	0.9300
С2—Н2	0.9300	C25—C26	1.386 (5)
C3—C4	1.394 (4)	С25—Н25	0.9300

С3—С7	1.515 (3)	C26—H26	0.9300
C4—C5	1.383 (3)	N5—C27	1.332 (4)
C4—H4	0.9300	N5—C31	1.332 (4)
C5—C8	1.515 (4)	C27—C28	1.379 (4)
C6—O2	1.212 (3)	С27—Н27	0.9300
C6—O1	1.296 (3)	C28—C29	1.389 (4)
C7—O4	1.216 (4)	С28—Н28	0.9300
С7—ОЗ	1.281 (4)	C29—C30	1.369 (4)
O3—H3	0.8200	C29—C32	1.491 (4)
C8—O5	1.220 (3)	C30—C31	1.380 (4)
C8—O6	1.289 (3)	С30—Н30	0.9300
C9—C10	1.383 (3)	C31—H31	0.9300
C9—C14	1.510 (4)	N6—C34	1.331 (4)
C10—C11	1.397 (4)	N6—C35	1.334 (4)
С10—Н10	0.9300	N6—H6A	0.8600
C11—C12	1.388 (4)	C32—C33	1.379 (4)
C11—C15	1.514 (3)	C32—C36	1.390 (4)
C12—C13	1.378 (3)	C33—C34	1.379 (4)
С12—Н12	0.9300	С33—Н33	0.9300
C13—C16	1.510 (4)	C34—H34	0.9300
C14-08	1.213 (3)	C35—C36	1.364 (4)
C14—07	1.299 (3)	С35—Н35	0.9300
C15—O10	1.225 (4)	С36—Н36	0.9300
C15—O9	1.265 (4)	014—H14A	0.8499
C16—O11	1.221 (3)	O14—H14B	0.8508
C16—O12	1.279 (3)	015—H15A	0.8517
N3—C17	1.309 (5)	O15—H15B	0.8520
N3—C21	1.339 (5)	O13A—H13A	0.9035
N3—H3A	0.8600	O13A—H13B	1.1256
C17—C18	1.372 (5)	O13B—H13A	1.1455
С17—Н17	0.9300	O13B—H13B	0.7764
C18—C19	1.383 (4)		
O6—Fe—O7	95.18 (9)	C16—O12—Fe	120.48 (17)
O6—Fe—O1	151.77 (7)	C17—N3—C21	121.4 (3)
O7—Fe—O1	92.17 (9)	C17—N3—H3A	119.3
O6—Fe—O12	91.68 (9)	C21—N3—H3A	119.3
O7—Fe—O12	151.67 (8)	N3—C17—C18	121.1 (3)
O1—Fe—O12	94.66 (9)	N3—C17—H17	119.5
O6—Fe—N2	102.03 (9)	C18—C17—H17	119.5
O7—Fe—N2	75.81 (8)	C17—C18—C19	119.5 (3)
O1—Fe—N2	106.20 (8)	C17—C18—H18	120.3
O12—Fe—N2	75.88 (8)	C19—C18—H18	120.3
O6—Fe—N1	75.78 (9)	C18—C19—C20	118.3 (3)
O7—Fe—N1	110.98 (8)	C18—C19—C22	119.9 (3)
01—Fe—N1	76.14 (8)	C20—C19—C22	121.9 (3)
O12—Fe—N1	97.35 (8)	C21—C20—C19	119.5 (3)
N2—Fe—N1	172.91 (9)	C21—C20—H20	120.2
	× /		

C5—N1—C1	122.9 (2)	С19—С20—Н20	120.2
C5—N1—Fe	118.62 (18)	N3—C21—C20	120.3 (3)
C1—N1—Fe	118.31 (18)	N3—C21—H21	119.9
C13—N2—C9	122.6 (2)	C20—C21—H21	119.9
C13—N2—Fe	118.47 (16)	C25—N4—C24	117.7 (3)
C9—N2—Fe	118.94 (17)	C26—C22—C23	117.7 (3)
N1—C1—C2	120.3 (2)	C26—C22—C19	121.5 (3)
N1—C1—C6	111.8 (2)	C23—C22—C19	120.8 (3)
C2—C1—C6	127.9 (3)	C24—C23—C22	118.6 (3)
C1—C2—C3	118.0 (2)	С24—С23—Н23	120.7
C1—C2—H2	121.0	С22—С23—Н23	120.7
С3—С2—Н2	121.0	N4—C24—C23	123.6 (3)
C2—C3—C4	120.4 (2)	N4—C24—H24	118.2
C2—C3—C7	121.4 (3)	C23—C24—H24	118.2
C4—C3—C7	118.2 (3)	N4—C25—C26	122.5 (4)
C5—C4—C3	118.1 (3)	N4—C25—H25	118.8
C5—C4—H4	120.9	C26—C25—H25	118.8
C3—C4—H4	120.9	C22—C26—C25	119.9 (4)
N1—C5—C4	120.3 (2)	С22—С26—Н26	120.1
N1—C5—C8	111.4 (2)	C25—C26—H26	120.1
C4—C5—C8	128.3 (3)	C27—N5—C31	118.0 (3)
O2—C6—O1	126.0 (3)	N5—C27—C28	123.1 (3)
O2—C6—C1	121.2 (2)	N5—C27—H27	118.4
O1—C6—C1	112.7 (2)	С28—С27—Н27	118.4
C6—O1—Fe	120.88 (18)	C27—C28—C29	118.4 (3)
O4—C7—O3	126.2 (2)	C27—C28—H28	120.8
O4—C7—C3	119.8 (3)	C29—C28—H28	120.8
O3—C7—C3	114.1 (3)	C30—C29—C28	118.4 (3)
С7—О3—Н3	109.5	C30—C29—C32	120.1 (3)
O5—C8—O6	126.1 (3)	C28—C29—C32	121.5 (3)
O5—C8—C5	121.1 (2)	C29—C30—C31	119.6 (3)
O6—C8—C5	112.8 (2)	С29—С30—Н30	120.2
C8—O6—Fe	120.84 (18)	С31—С30—Н30	120.2
N2-C9-C10	120.4 (2)	N5-C31-C30	122.4 (3)
N2-C9-C14	111.4 (2)	N5—C31—H31	118.8
C10—C9—C14	128.2 (2)	С30—С31—Н31	118.8
C9—C10—C11	117.9 (2)	C34—N6—C35	121.2 (3)
С9—С10—Н10	121.0	C34—N6—H6A	119.4
C11—C10—H10	121.0	C35—N6—H6A	119.4
C12—C11—C10	120.1 (2)	C33—C32—C36	118.6 (3)
C12—C11—C15	118.8 (2)	C33—C32—C29	121.7 (3)
C10—C11—C15	121.1 (2)	C36—C32—C29	119.7 (3)
C13—C12—C11	118.6 (2)	C34—C33—C32	119.7 (3)
C13—C12—H12	120.7	С34—С33—Н33	120.2
C11—C12—H12	120.7	С32—С33—Н33	120.2
N2-C13-C12	120.4 (2)	N6—C34—C33	120.2 (3)
N2-C13-C16	111.8 (2)	N6—C34—H34	119.9
C12—C13—C16	127.8 (2)	С33—С34—Н34	119.9

supporting information

O8—C14—O7	125.4 (3)	N6—C35—C36	121.1 (3)	
O8—C14—C9	121.8 (2)	N6-C35-H35	119.4	
O7—C14—C9	112.8 (2)	С36—С35—Н35	119.4	
C14—O7—Fe	121.07 (17)	C35—C36—C32	119.2 (3)	
O10—C15—O9	126.3 (3)	С35—С36—Н36	120.4	
O10-C15-C11	118.9 (3)	С32—С36—Н36	120.4	
O9—C15—C11	114.8 (3)	H14A—O14—H14B	107.2	
O11—C16—O12	126.0 (2)	H15A—O15—H15B	112.8	
O11—C16—C13	120.6 (2)	H13A—O13A—H13B	103.2	
O12—C16—C13	113.4 (2)	H13A—O13B—H13B	110.8	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A
O3—H3…O9 ⁱ	0.82	1.64	2.454 (3)	172
N3—H3A····N5 ⁱⁱ	0.86	1.93	2.741 (4)	158
N6—H6A····N4 ⁱⁱⁱ	0.86	1.84	2.694 (4)	170
O13A—H13A…O7 ^{iv}	0.90	1.90	2.766 (4)	161
O13 <i>B</i> —H13 <i>B</i> ···O4	0.78	2.17	2.821 (4)	142
O14—H14A…O11	0.85	2.16	2.973 (4)	160
O14—H14 <i>B</i> ···O5 ^v	0.85	1.95	2.788 (4)	169
O15—H15A…O10	0.85	1.97	2.801 (3)	166
O15—H15 <i>B</i> ···O1 ^{vi}	0.85	2.10	2.877 (3)	152

Symmetry codes: (i) x-1, y, z+1; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+2; (v) x+1, y, z; (vi) -x+2, -y+1, -z+1.