organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[(2-Hydroxy-1-naphthyl)(2-hydroxyphenyl)methyl]acetamide

M. NizamMohideen,^a S. Thenmozhi,^b A. SubbiahPandi,^b N. Panneer Selvam^c and P. T. Perumal^c*

^aDepartment of Physics, The New College (Autonomous), Chennai 600 014, India, ^bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and Corganic Chemistry Division, Central Leather Research Institute, Chennai 600 020. India

Correspondence e-mail: a_spandian@yahoo.com

Received 17 February 2009; accepted 4 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.146; data-to-parameter ratio = 15.5.

In the asymmetric unit of the title compound, $C_{19}H_{17}NO_3$, there are two crystallographically independent molecules, which are connected to each other by $O-H \cdots O$ hydrogen bonds, forming molecular chains as well as cyclic centrosymmetric $R_2^2(16)$ dimers.

Related literature

For background literature, see: Barker et al. (2008); Gade (2002); Linton & Hamilton (1997); Valeur & Leray (2000); Wabnitz & Spencer (2002). For related structures, see: Gowda et al. (2000, 2006, 2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Fun et al. (2008).

Experimental

Crystal data

C19H17NO3 $M_r = 307.34$ Monoclinic, C2/c a = 21.286 (5) Åb = 17.9288 (4) Å c = 19.524 (7) Å $\beta = 121.428 \ (1)^{\circ}$

$V = 6358 (3) \text{ Å}^3$	
Z = 16	
Mo $K\alpha$ radiation	
$\mu = 0.09 \text{ mm}^{-1}$	
T = 293 K	
$0.20 \times 0.16 \times 0.16$ mm	r

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\rm min} = 0.980, T_{\rm max} = 0.986$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	417 parameters
$wR(F^2) = 0.146$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
6464 reflections	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

33278 measured reflections

 $R_{\rm int} = 0.034$

6464 independent reflections

4384 reflections with $I > 2\sigma(I)$

Table 1

Hy	drogen-bond	geometry	(A, °	')
		<u></u>	× /	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···O3 ⁱ	0.82	1.99	2.792 (2)	166
$O2A - H2A1 \cdots O3^{ii}$	0.82	1.89	2.702 (2)	170
$O2-H2\cdots O3A^{iii}$	0.82	1.81	2.588 (2)	159
$O1A - H1A1 \cdots O3A$	0.82	2.16	2.928 (2)	156
Symmetry codes: ($-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1.$	i) — <i>x</i> , — <i>y</i> -	+1, -z + 1;	(ii) $x, -y + 1$	$1, z - \frac{1}{2};$ (iii)

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data. MNM and ASP thank Dr J. Jothi Kumar, Principal of Presidency College, Chennai, India, for providing computer and internet facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2141).

References

- Barker, D., Lehmann, A. L., Mai, A., Khan, G. S. & Ng, E. (2008). Tetrahedron Lett. 49, 1660-1664.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fun, H.-K., Jebas, S. R., Jana, S., Chakrabarty, R. & Goswami, S. (2008). Acta Cryst. E64, 0699.
- Gade, L. H. (2002). Acc. Chem. Res. 35, 575-582.
- Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Crvst. E63, 03364.
- Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711-720
- Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675-682.
- Linton, B. & Hamilton, A. D. (1997). Chem. Rev. 97, 1669-1680.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Valeur, B. & Leray, I. (2000). Coord. Chem. Rev. 205, 3-40.
- Wabnitz, T. C. & Spencer, J. B. (2002). Tetrahedron Lett. 43, 3891-3894.

supporting information

Acta Cryst. (2009). E65, o740 [doi:10.1107/S1600536809007983]

N-[(2-Hydroxy-1-naphthyl)(2-hydroxyphenyl)methyl]acetamide

M. NizamMohideen, S. Thenmozhi, A. SubbiahPandi, N. Panneer Selvam and P. T. Perumal

S1. Comment

 β -Acetamido ketones serve as potential intermediates in the synthesis of natural products and antibiotics (Wabnitz & Spencer, 2002). Due to the nucleophilic nature of benzylic hydroxyl groups these are usually protected during multi-step organic synthesis (Barker *et al.*, 2008). Amide moiety and their metal ion complexes are widely used for their properties and potential applications (Gade, 2002; Valeur & Leray, 2000; Linton & Hamilton, 1997). The amide linkage [– NHC(O)-] is known to be strong enough to form and maintain protein architectures and has been utilized to create various molecular devices for a spectrum of purposes in organic chemistry. The effect of substituents on the solid state structures of N-aromatic amides have been described in the literature (Gowda *et al.*, 2000, 2006, 2007). As part of our investigations on acetamide derivatives, the title compound, (I), has been prepared and its crystal structure is presented here.

Figs. 1 and 2 show the molecular structures and conformations of the two crystallographically independent molecules, A (C1—C19, N1, O1, O2, O3) and B (C1A—C19A, N1A, O1A, O2A, O3A), in the asymmetric unit of (I), with the atomic numbering scheme. The bond lengths and angles in the two independent molecules agree with each other. The normal probability plot analyses (International Tables for X-ray Crystallography, 1974, Vol. IV, pp. 293–309) for both bond lengths and angles show that the differences between the two symmetry independent molecules are of a statistical nature. The bond distances of C18 = O3 and C18A = O3A [1.245 (2) and 1.244 (2) Å] for the molecules A and B, respectively, which are typical for double bonds (Fun *et al.*, 2008).

In the molecules A and B, benzene and naphthalene rings are individually planar as expected. The deviations of the atoms O2 and O2A from the least-squares plane of the naphthalene rings are -0.075 (1) and 0.164 (1) Å. The deviations of the atoms O1 and O1A from the least-squares plane of the benzene rings are 0.056 (1) and 0.021 (1) Å. The dihedral angles between the naphthalene ring system and benzene rings are 75.7 (1) and 82.9 (1)° for molecules A and B respectively, and those between the fused rings are 0.3 (1) and 2.8 (1)°.

The crystal packing is stabilized by strong O—H···O inter and intramolecular hydrogen bonds and each molecule has a week intramolecular C—H···O interaction (Table 1). Considering only A-type molecules, atom O1 acts as a donar in a strong intermolecular O—H···O interaction *via* H1 with acetamido atom O3 of a symmetry related molecule, generating centrosymmetric hydrogen bonded dimers with a cyclic $R_2^2(16)$ ring system (Bernstein *et al.*, 1995) (Fig. 3). The interlinking of A and B molecules *via* strong O—H···O hydrogen bond generates infinite chains running along *c* axis. The atoms O3 and O3a act as a acceptors for all inter and intramolecular interactions.

S2. Experimental

A mixture of 2-hydroxybenzaldehyde (10 mmol), β -naphthol (10 mmol) and iodine (0.4 mmol, 4 mol%) were mixed in acetonitrile (5 ml). To the suspension acetyl chloride (2.8 mmol, 0.2 ml) was added and the reaction mixture was stirred at room temperature for 6 h. After the completion of the reaction (as monitored by TLC), saturated sodium thiosulfate

solution (5 ml) was added. The precipitated solid was filtered and dried. The dried sample was washed with diethyl ether $(2 \times 10 \text{ ml})$ and again dried. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in ethanol.

S3. Refinement

All H atoms were positioned geometrically, with N—H = 0.86, O—H = 0.82 and C—H = 0.93, 0.98 and 0.96 Å, for aromatic, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figure 1

One of the two independent molecules in the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The other independent molecules in the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 3

Part of the crystal structure of (I), showing the $R_2^2(16)$ rings. For the sake of clarity, H atoms not involved in the hydrogen bonding have been omitted for clarity. Hydrogen bonding is shown as dashed lines. [Symmetry codes: (*) -*x*, -*y* + 1, -*z* + 1]

N-[(2-Hydroxy-1-naphthyl)(2-hydroxyphenyl)methyl]acetamide

Crystal data	
C ₁₉ H ₁₇ NO ₃ $M_r = 307.34$ Monoclinic, C2/c Hall symbol: -C 2yc a = 21.286 (5) Å b = 17.9288 (4) Å c = 19.524 (7) Å $\beta = 121.428$ (1)° V = 6358 (3) Å ³ Z = 16	F(000) = 2592 $D_x = 1.284 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6464 reflections $\theta = 2.5-25^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K Prism, colourless $0.20 \times 0.16 \times 0.16 \text{ mm}$
Data collection	
Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004) $T_{\min} = 0.980, T_{\max} = 0.986$

33278 measured reflections	$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
6464 independent reflections	$h = -26 \rightarrow 26$
4384 reflections with $I > 2\sigma(I)$	$k = -22 \rightarrow 22$
$R_{\rm int} = 0.034$	$l = -24 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.146$	neighbouring sites
S = 1.02	H-atom parameters constrained
6464 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0747P)^2 + 2.6626P]$
417 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.005$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.47 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.05068 (7)	0.50195 (8)	0.59220 (8)	0.0556 (4)	
H1	0.0080	0.5100	0.5793	0.083*	
O2	0.30227 (7)	0.59048 (8)	0.70861 (10)	0.0655 (4)	
H2	0.3361	0.6207	0.7274	0.098*	
O3	0.09894 (7)	0.46622 (7)	0.47788 (7)	0.0427 (3)	
N1	0.17949 (8)	0.53425 (8)	0.58664 (9)	0.0413 (4)	
H1A	0.2011	0.5768	0.6017	0.050*	
C1	0.09638 (10)	0.51566 (10)	0.67223 (11)	0.0415 (4)	
C2	0.07009 (11)	0.53887 (11)	0.72002 (13)	0.0531 (5)	
H2A	0.0200	0.5475	0.6975	0.064*	
C3	0.11779 (12)	0.54928 (13)	0.80092 (14)	0.0619 (6)	
H3	0.1000	0.5648	0.8332	0.074*	
C4	0.19150 (13)	0.53670 (14)	0.83396 (13)	0.0659 (6)	
H4	0.2238	0.5436	0.8887	0.079*	
C5	0.21785 (11)	0.51384 (12)	0.78609 (12)	0.0533 (5)	
H5	0.2680	0.5051	0.8092	0.064*	
C6	0.17118 (9)	0.50360 (10)	0.70431 (11)	0.0391 (4)	
C7	0.19871 (9)	0.47856 (9)	0.65004 (10)	0.0376 (4)	
H7	0.1727	0.4323	0.6237	0.045*	
C8	0.28056 (9)	0.46165 (10)	0.69505 (11)	0.0399 (4)	
C9	0.33020 (10)	0.52005 (11)	0.72284 (12)	0.0473 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C10	0.40660 (11)	0.50776 (14)	0.76622 (13)	0.0600 (6)
H10	0.4390	0.5479	0.7834	0.072*
C11	0.43294 (11)	0.43680 (15)	0.78296 (13)	0.0641 (6)
H11	0.4836	0.4290	0.8120	0.077*
C12	0.38526(12)	0.37479 (13)	0.75730(12)	0.0552 (5)
C13	0.30753 (10)	0.38715 (11)	0.71243 (10)	0.0431 (4)
C14	0.26164 (12)	0.32330(11)	0.68782(12)	0.0531 (5)
H14	0.2108	0.3296	0.6590	0.064*
C15	0.28989 (16)	0.25316(13)	0.70521 (14)	0.0739(7)
H15	0.2584	0.2123	0.6876	0.089*
C16	0.36600 (18)	0.24206 (16)	0.74933 (16)	0.0850 (9)
H16	0.3850	0.1939	0.7615	0.102*
C17	0.41189 (15)	0.1999 0.30083 (17)	0.77423(14)	0.102 0.0747 (8)
H17	0.4624	0.2026	0.8033	0.0747 (0)
C18	0.13247(10)	0.2220 0.52537 (10)	0.50919 (11)	0.0308(4)
C10	0.13247(10) 0.12036(14)	0.52557(10) 0.50206(12)	0.30919(11) 0.45734(14)	0.0398(4)
U10A	0.12030 (14)	0.59200 (12)	0.43734 (14)	0.0709(7)
П19А U10Р	0.1420	0.5855	0.4201	0.100*
П19Б	0.1422	0.0332	0.4900	0.100*
H19C	0.0083	0.0002	0.4221	0.100°
	-0.04220(8)	0.82226 (9)	0.1004/(8)	0.0572(4)
	0.0018	0.6190	0.1703	0.080°
U2A	0.05897 (8)	0.65781(7)	0.02450 (8)	0.0552 (4)
H2A1	0.0688	0.6224	0.0051	0.080*
03A	0.11589 (7)	0.79276(7)	0.26185 (8)	0.0472 (3)
NIA	0.06323 (8)	0.72763 (8)	0.14574 (8)	0.0364 (3)
H1A2	0.0553	0.6835	0.1257	0.044*
CIA	-0.08229 (10)	0.80834 (10)	0.08044 (12)	0.0444 (4)
C2A	-0.15812 (11)	0.80967 (13)	0.03873 (14)	0.0591 (6)
H2A2	-0.1826	0.8196	0.0656	0.071*
C3A	-0.19743 (13)	0.79645 (16)	-0.04221 (16)	0.0768 (8)
H3A	-0.2486	0.7973	-0.0700	0.092*
C4A	-0.16199 (13)	0.78190 (18)	-0.08270 (15)	0.0820 (8)
H4A	-0.1888	0.7730	-0.1377	0.098*
C5A	-0.08569 (12)	0.78056 (14)	-0.04061 (12)	0.0613 (6)
H5A	-0.0617	0.7708	-0.0680	0.074*
C6A	-0.04459 (10)	0.79339 (10)	0.04089 (11)	0.0412 (4)
C7A	0.03910 (9)	0.79041 (9)	0.08923 (10)	0.0361 (4)
H7A	0.0562	0.8361	0.1214	0.043*
C8A	0.07419 (9)	0.78832 (9)	0.03854 (10)	0.0361 (4)
C9A	0.08438 (10)	0.72246 (10)	0.00967 (11)	0.0421 (4)
C10A	0.11902 (12)	0.72005 (12)	-0.03502 (12)	0.0547 (5)
H10A	0.1268	0.6744	-0.0520	0.066*
C11A	0.14087 (12)	0.78344 (13)	-0.05326 (12)	0.0573 (6)
H11A	0.1644	0.7810	-0.0821	0.069*
C12A	0.12871 (10)	0.85341 (11)	-0.02947 (11)	0.0471 (5)
C13A	0.09502 (9)	0.85622 (10)	0.01715 (10)	0.0385 (4)
C14A	0.08239 (10)	0.92775 (10)	0.03835 (12)	0.0478 (5)
H14A	0.0605	0.9315	0.0689	0.057*

C15A	0.10157 (12)	0.99152 (12)	0.01502 (14)	0.0618 (6)	
H15A	0.0927	1.0378	0.0299	0.074*	
C16A	0.13439 (13)	0.98752 (14)	-0.03111 (15)	0.0678 (7)	
H16A	0.1471	1.0310	-0.0471	0.081*	
C17A	0.14749 (12)	0.92046 (14)	-0.05222 (13)	0.0609 (6)	
H17A	0.1695	0.9183	-0.0826	0.073*	
C18A	0.09592 (9)	0.73285 (9)	0.22438 (10)	0.0376 (4)	
C19A	0.10774 (14)	0.66185 (12)	0.26910 (13)	0.0664 (6)	
H19D	0.1576	0.6455	0.2912	0.100*	
H19E	0.0746	0.6245	0.2332	0.100*	
H19F	0.0986	0.6698	0.3118	0.100*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0317 (7)	0.0809 (10)	0.0451 (8)	0.0032 (6)	0.0138 (6)	-0.0079 (7)
O2	0.0455 (8)	0.0528 (9)	0.0865 (11)	-0.0171 (6)	0.0263 (8)	-0.0101 (8)
03	0.0459 (7)	0.0437 (7)	0.0373 (7)	-0.0037 (5)	0.0210 (6)	0.0021 (5)
N1	0.0413 (8)	0.0384 (8)	0.0412 (9)	-0.0073 (6)	0.0195 (7)	0.0029 (6)
C1	0.0359 (10)	0.0454 (10)	0.0392 (10)	-0.0024 (7)	0.0170 (8)	-0.0011 (8)
C2	0.0417 (11)	0.0628 (13)	0.0575 (13)	0.0017 (9)	0.0278 (10)	-0.0055 (10)
C3	0.0575 (14)	0.0827 (16)	0.0557 (14)	-0.0054 (11)	0.0367 (12)	-0.0149 (11)
C4	0.0558 (14)	0.0982 (18)	0.0403 (12)	-0.0084 (12)	0.0226 (11)	-0.0121 (11)
C5	0.0383 (10)	0.0776 (14)	0.0405 (12)	-0.0030 (9)	0.0181 (9)	-0.0024 (10)
C6	0.0347 (9)	0.0431 (9)	0.0384 (10)	-0.0037 (7)	0.0183 (8)	0.0017 (8)
C7	0.0344 (9)	0.0394 (9)	0.0353 (10)	-0.0045 (7)	0.0156 (8)	0.0017 (7)
C8	0.0336 (9)	0.0510 (10)	0.0345 (10)	-0.0024 (7)	0.0173 (8)	-0.0013 (8)
C9	0.0376 (10)	0.0579 (12)	0.0466 (12)	-0.0060 (8)	0.0221 (9)	-0.0049 (9)
C10	0.0359 (11)	0.0898 (17)	0.0515 (13)	-0.0125 (11)	0.0208 (10)	-0.0118 (11)
C11	0.0339 (11)	0.108 (2)	0.0452 (13)	0.0087 (11)	0.0170 (9)	-0.0039 (12)
C12	0.0496 (12)	0.0800 (15)	0.0343 (11)	0.0183 (11)	0.0207 (9)	0.0040 (10)
C13	0.0440 (10)	0.0565 (11)	0.0288 (9)	0.0069 (8)	0.0190 (8)	0.0016 (8)
C14	0.0631 (13)	0.0502 (11)	0.0416 (11)	0.0043 (9)	0.0243 (10)	0.0037 (9)
C15	0.103 (2)	0.0525 (13)	0.0569 (15)	0.0120 (12)	0.0349 (14)	0.0057 (11)
C16	0.116 (2)	0.0699 (17)	0.0615 (16)	0.0430 (17)	0.0412 (17)	0.0142 (14)
C17	0.0735 (16)	0.096 (2)	0.0478 (14)	0.0407 (15)	0.0266 (12)	0.0112 (13)
C18	0.0392 (10)	0.0421 (10)	0.0400 (11)	0.0004 (7)	0.0220 (8)	0.0062 (8)
C19	0.0904 (17)	0.0539 (13)	0.0561 (14)	-0.0071 (11)	0.0296 (13)	0.0165 (11)
O1A	0.0482 (8)	0.0822 (10)	0.0491 (9)	0.0035 (7)	0.0308 (7)	-0.0040 (7)
O2A	0.0785 (10)	0.0377 (7)	0.0558 (9)	-0.0008 (6)	0.0437 (8)	-0.0059 (6)
O3A	0.0497 (8)	0.0510 (8)	0.0430 (8)	-0.0150 (6)	0.0257 (6)	-0.0112 (6)
N1A	0.0441 (8)	0.0343 (7)	0.0327 (8)	0.0001 (6)	0.0212 (7)	-0.0004 (6)
C1A	0.0443 (11)	0.0470 (10)	0.0448 (11)	0.0062 (8)	0.0253 (9)	0.0098 (8)
C2A	0.0468 (12)	0.0752 (15)	0.0633 (15)	0.0115 (10)	0.0343 (11)	0.0171 (11)
C3A	0.0406 (12)	0.117 (2)	0.0626 (16)	0.0098 (12)	0.0201 (12)	0.0232 (14)
C4A	0.0492 (14)	0.140 (3)	0.0415 (13)	0.0071 (14)	0.0133 (11)	0.0125 (14)
C5A	0.0530 (13)	0.0939 (17)	0.0376 (12)	0.0075 (11)	0.0242 (10)	0.0092 (11)
C6A	0.0427 (10)	0.0449 (10)	0.0398 (10)	0.0053 (7)	0.0241 (8)	0.0085 (8)

C7A	0.0433 (10)	0.0335 (8)	0.0362 (10)	0.0019 (7)	0.0241 (8)	0.0024 (7)
C8A	0.0378 (9)	0.0396 (9)	0.0314 (9)	0.0033 (7)	0.0184 (8)	0.0018 (7)
C9A	0.0482 (11)	0.0436 (10)	0.0361 (10)	0.0038 (8)	0.0231 (9)	0.0012 (8)
C10A	0.0682 (14)	0.0587 (13)	0.0486 (12)	0.0087 (10)	0.0384 (11)	-0.0051 (10)
C11A	0.0640 (14)	0.0759 (15)	0.0486 (13)	0.0025 (11)	0.0410 (11)	-0.0010 (10)
C12A	0.0430 (11)	0.0617 (12)	0.0361 (10)	-0.0028 (8)	0.0203 (9)	0.0056 (9)
C13A	0.0350 (9)	0.0464 (10)	0.0310 (9)	-0.0001 (7)	0.0151 (8)	0.0038 (7)
C14A	0.0511 (11)	0.0443 (10)	0.0497 (12)	0.0021 (8)	0.0275 (10)	0.0048 (9)
C15A	0.0647 (14)	0.0450 (11)	0.0678 (15)	-0.0017 (9)	0.0291 (12)	0.0083 (10)
C16A	0.0716 (15)	0.0637 (15)	0.0650 (15)	-0.0153 (11)	0.0335 (13)	0.0165 (12)
C17A	0.0608 (13)	0.0790 (16)	0.0479 (13)	-0.0136 (11)	0.0319 (11)	0.0091 (11)
C18A	0.0360 (9)	0.0429 (10)	0.0353 (10)	-0.0027 (7)	0.0194 (8)	-0.0010 (8)
C19A	0.0892 (17)	0.0554 (13)	0.0411 (12)	-0.0012 (11)	0.0245 (12)	0.0092 (10)

Geometric parameters (Å, °)

01—C1	1.365 (2)	O1A—H1A1	0.8200
O1—H1	0.8200	O2A—C9A	1.372 (2)
O2—C9	1.361 (2)	O2A—H2A1	0.8200
O2—H2	0.8200	O3A—C18A	1.243 (2)
O3—C18	1.246 (2)	N1A—C18A	1.318 (2)
N1-C18	1.317 (2)	N1A—C7A	1.469 (2)
N1—C7	1.473 (2)	N1A—H1A2	0.8600
N1—H1A	0.8600	C1A—C2A	1.378 (3)
C1—C2	1.379 (3)	C1A—C6A	1.400 (3)
C1—C6	1.391 (2)	C2A—C3A	1.369 (3)
C2—C3	1.374 (3)	C2A—H2A2	0.9300
C2—H2A	0.9300	C3A—C4A	1.373 (4)
C3—C4	1.369 (3)	СЗА—НЗА	0.9300
С3—Н3	0.9300	C4A—C5A	1.386 (3)
C4—C5	1.380 (3)	C4A—H4A	0.9300
C4—H4	0.9300	C5A—C6A	1.378 (3)
C5—C6	1.384 (3)	C5A—H5A	0.9300
С5—Н5	0.9300	C6A—C7A	1.521 (2)
C6—C7	1.521 (3)	C7A—C8A	1.520 (2)
C7—C8	1.518 (2)	C7A—H7A	0.9800
С7—Н7	0.9800	C8A—C9A	1.374 (2)
C8—C9	1.382 (3)	C8A—C13A	1.430 (2)
C8—C13	1.423 (3)	C9A—C10A	1.406 (3)
C9—C10	1.405 (3)	C10A—C11A	1.344 (3)
C10-C11	1.360 (3)	C10A—H10A	0.9300
C10—H10	0.9300	C11A—C12A	1.408 (3)
C11—C12	1.410 (3)	C11A—H11A	0.9300
C11—H11	0.9300	C12A—C17A	1.410 (3)
C12—C17	1.412 (3)	C12A—C13A	1.423 (3)
C12—C13	1.429 (3)	C13A—C14A	1.416 (3)
C13—C14	1.416 (3)	C14A—C15A	1.370 (3)
C14—C15	1.358 (3)	C14A—H14A	0.9300

C14—H14	0.9300	C15A—C16A	1.400 (4)
C15—C16	1.397 (4)	С15А—Н15А	0.9300
C15—H15	0.9300	C16A—C17A	1.347 (3)
C16—C17	1.344 (4)	C16A—H16A	0.9300
C16—H16	0.9300	C17A—H17A	0.9300
С17—Н17	0.9300	C18A—O3A	1.243 (2)
C18—O3	1.246 (2)	C18A—O3A	1.243 (2)
C18—C19	1.499 (3)	C18A—C19A	1.489 (3)
С19—Н19А	0.9600	C19A—H19D	0.9600
С19—Н19В	0.9600	С19А—Н19Е	0.9600
С19—Н19С	0.9600	C19A—H19F	0.9600
O1A—C1A	1.357 (2)		
C1—O1—H1	109.5	C9A—O2A—H2A1	109.5
С9—О2—Н2	109.5	C18A—N1A—C7A	125.89 (14)
C18—N1—C7	126.49 (14)	C18A—N1A—H1A2	117.1
C18—N1—H1A	116.8	C7A—N1A—H1A2	117.1
C7—N1—H1A	116.8	O1A—C1A—C2A	121.13 (18)
01—C1—C2	122.04 (16)	O1A—C1A—C6A	118.25 (16)
O1—C1—C6	116.91 (17)	C2A—C1A—C6A	120.61 (19)
C2—C1—C6	121.03 (17)	C3A—C2A—C1A	120.1 (2)
C3—C2—C1	120.10 (18)	C3A—C2A—H2A2	119.9
C3—C2—H2A	120.0	C1A—C2A—H2A2	119.9
C1—C2—H2A	120.0	C2A—C3A—C4A	120.6 (2)
C4—C3—C2	119.9 (2)	С2А—С3А—НЗА	119.7
С4—С3—Н3	120.1	С4А—С3А—Н3А	119.7
С2—С3—Н3	120.1	C3A—C4A—C5A	119.2 (2)
C3—C4—C5	120.1 (2)	C3A—C4A—H4A	120.4
C3—C4—H4	120.0	С5А—С4А—Н4А	120.4
C5—C4—H4	120.0	C6A—C5A—C4A	121.6 (2)
C6—C5—C4	121.34 (19)	С6А—С5А—Н5А	119.2
С6—С5—Н5	119.3	C4A—C5A—H5A	119.2
С4—С5—Н5	119.3	C5A—C6A—C1A	117.88 (17)
C5—C6—C1	117.60 (18)	C5A—C6A—C7A	122.95 (17)
C5—C6—C7	122.49 (16)	C1A—C6A—C7A	119.16 (16)
C1—C6—C7	119.90 (16)	N1A—C7A—C8A	111.85 (13)
N1—C7—C8	110.73 (14)	N1A—C7A—C6A	109.32 (13)
N1—C7—C6	110.26 (14)	C8A—C7A—C6A	114.26 (14)
C8—C7—C6	113.48 (14)	N1A—C7A—H7A	107.0
N1—C7—H7	107.4	С8А—С7А—Н7А	107.0
С8—С7—Н7	107.4	С6А—С7А—Н7А	107.0
С6—С7—Н7	107.4	C9A—C8A—C13A	118.19 (16)
C9—C8—C13	119.13 (17)	C9A—C8A—C7A	121.65 (15)
C9—C8—C7	119.21 (16)	C13A—C8A—C7A	120.11 (15)
C13—C8—C7	121.61 (15)	O2A—C9A—C8A	118.40 (16)
02—C9—C8	117.37 (16)	O2A—C9A—C10A	119.78 (16)
O2—C9—C10	120.90 (18)	C8A—C9A—C10A	121.81 (17)
C8—C9—C10	121.71 (19)	C11A—C10A—C9A	120.26 (18)
	. /		× /

C11—C10—C9	119.6 (2)	C11A—C10A—H10A	119.9
С11—С10—Н10	120.2	C9A—C10A—H10A	119.9
C9-C10-H10	120.2	C10A— $C11A$ — $C12A$	121.17 (19)
C10-C11-C12	121 49 (19)	C10A—C11A—H11A	119.4
C10—C11—H11	1193	C12A— $C11A$ — $H11A$	119.4
C_{12} C_{11} H_{11}	119.3	$C_{11}A = C_{12}A = C_{17}A$	121.7(2)
C11 - C12 - C17	122 1 (2)	$C_{11A} = C_{12A} = C_{13A}$	121.7(2) 118 89 (17)
$C_{11} - C_{12} - C_{13}$	1122.1(2) 118.98(19)	C17A - C12A - C13A	110.09(17) 119.44(19)
C17 - C12 - C13	110.00(1)	$C_{14} - C_{13} - C_{12}$	117.06 (16)
C14-C13-C8	117.0(2) 123.81(17)	C14A - C13A - C8A	117.00(10) 123 40(17)
$C_{14} = C_{13} = C_{12}$	117 12 (18)	$C_{12} - C_{13} - C_{8}$	129.40(17) 119.53(16)
$C_{14} = C_{13} = C_{12}$	110.06 (18)	C15A $C15A$ $C13A$	117.55(10)
$C_{15} = C_{15} = C_{12}$	119.00(10) 121.8(2)	C15A = C14A = C15A	121.0 (2)
$C_{15} = C_{14} = C_{15}$	121.0 (2)	$C_{13A} = C_{14A} = H_{14A}$	119.2
$C_{13} = C_{14} = H_{14}$	119.1	C14A $C15A$ $C16A$	119.2 120.4(2)
$C_{13} - C_{14} - C_{15} - C_{16}$	119.1 120.4(2)	C14A = C15A = C10A	120.4 (2)
C14 - C15 - C10	120.4 (5)	C14A - C15A - H15A	119.0
С14—С15—Н15	119.8	C17A = C15A = H15A	119.8
С17—С15—П15	119.8	C17A = C16A = C15A	119.7 (2)
C17 - C10 - C13	120.1 (2)	C17A - C10A - H10A	120.2
C17 - C16 - H16	119.9	C16A = C17A = C12A	120.2
C16_C17_C12	119.9	C16A - C17A - C12A	121.8 (2)
C16 - C17 - C12	121.0 (2)	C10A - C17A - H17A	119.1
C16—C17—H17	119.2	C12A - C12A - H1/A	119.1
C12—C17—H17	119.2	O_{3A} — C_{18A} — N_{1A}	123.91 (16)
03-018-NI	124.33 (16)	O3A—C18A—NIA	123.91 (16)
03—C18—N1	124.33 (16)	O3A—C18A—NIA	123.91 (16)
03-018-019	119.64 (17)	O3A—C18A—C19A	119.49 (17)
03-C18-C19	119.64 (17)	O3A—C18A—C19A	119.49 (17)
N1—C18—C19	116.02 (17)	O3A—C18A—C19A	119.49 (17)
C18—C19—H19A	109.5	N1A—C18A—C19A	116.59 (16)
C18—C19—H19B	109.5	C18A—C19A—H19D	109.5
H19A—C19—H19B	109.5	C18A—C19A—H19E	109.5
C18—C19—H19C	109.5	H19D—C19A—H19E	109.5
H19A—C19—H19C	109.5	C18A—C19A—H19F	109.5
H19B—C19—H19C	109.5	H19D—C19A—H19F	109.5
C1A—O1A—H1A1	109.5	H19E—C19A—H19F	109.5
01-01-02-03	177.50 (19)	C6A—C1A—C2A—C3A	-0.1(3)
C6-C1-C2-C3	-1.1(3)	C1A—C2A—C3A—C4A	-0.1(4)
C1—C2—C3—C4	0.1 (3)	C2A—C3A—C4A—C5A	0.1 (4)
C2—C3—C4—C5	0.2 (4)	C3A—C4A—C5A—C6A	0.1 (4)
C3—C4—C5—C6	0.4 (4)	C4A—C5A—C6A—C1A	-0.3 (3)
C4—C5—C6—C1	-1.3 (3)	C4A—C5A—C6A—C7A	178.4 (2)
C4—C5—C6—C7	179.9 (2)	OIA—CIA—C6A—C5A	-178.92 (18)
01-C1-C6-C5	-177.01 (17)	C2A—C1A—C6A—C5A	0.3 (3)
C2-C1-C6-C5	1.7 (3)	01A—C1A—C6A—C7A	2.3 (2)
01-C1-C6-C7	1.8 (2)	C2A—C1A—C6A—C7A	-178.44 (17)
C2—C1—C6—C7	-179.54 (17)	C18A—N1A—C7A—C8A	122.33 (17)

C18—N1—C7—C8	120.86 (18)	C18A—N1A—C7A—C6A	-110.10 (18)
C18—N1—C7—C6	-112.71 (19)	C5A—C6A—C7A—N1A	-114.0 (2)
C5—C6—C7—N1	-121.32 (19)	C1A—C6A—C7A—N1A	64.7 (2)
C1—C6—C7—N1	59.9 (2)	C5A—C6A—C7A—C8A	12.2 (2)
C5—C6—C7—C8	3.5 (2)	C1A—C6A—C7A—C8A	-169.11 (15)
C1—C6—C7—C8	-175.20 (15)	N1A—C7A—C8A—C9A	39.0 (2)
N1—C7—C8—C9	49.0 (2)	C6A—C7A—C8A—C9A	-85.9 (2)
C6—C7—C8—C9	-75.7 (2)	N1A—C7A—C8A—C13A	-143.40 (15)
N1—C7—C8—C13	-133.86 (17)	C6A—C7A—C8A—C13A	91.73 (19)
C6—C7—C8—C13	101.53 (19)	C13A—C8A—C9A—O2A	-174.72 (15)
C13—C8—C9—O2	-176.66 (17)	C7A—C8A—C9A—O2A	2.9 (3)
C7—C8—C9—O2	0.6 (3)	C13A—C8A—C9A—C10A	4.5 (3)
C13—C8—C9—C10	1.5 (3)	C7A—C8A—C9A—C10A	-177.87 (17)
C7—C8—C9—C10	178.75 (18)	O2A-C9A-C10A-C11A	176.72 (19)
O2—C9—C10—C11	176.8 (2)	C8A—C9A—C10A—C11A	-2.5 (3)
C8—C9—C10—C11	-1.3 (3)	C9A—C10A—C11A—C12A	-1.0 (3)
C9—C10—C11—C12	0.4 (3)	C10A—C11A—C12A—C17A	-176.2 (2)
C10-C11-C12-C17	179.9 (2)	C10A—C11A—C12A—C13A	2.3 (3)
C10-C11-C12-C13	0.2 (3)	C11A—C12A—C13A—C14A	-178.70 (18)
C9—C8—C13—C14	179.16 (18)	C17A—C12A—C13A—C14A	-0.2 (3)
C7—C8—C13—C14	2.0 (3)	C11A—C12A—C13A—C8A	-0.2 (3)
C9—C8—C13—C12	-0.8 (3)	C17A—C12A—C13A—C8A	178.39 (17)
C7—C8—C13—C12	-177.97 (17)	C9A—C8A—C13A—C14A	175.33 (17)
C11—C12—C13—C14	179.99 (19)	C7A—C8A—C13A—C14A	-2.4 (3)
C17—C12—C13—C14	0.3 (3)	C9A—C8A—C13A—C12A	-3.1 (2)
C11—C12—C13—C8	-0.1 (3)	C7A—C8A—C13A—C12A	179.18 (15)
C17—C12—C13—C8	-179.79 (19)	C12A—C13A—C14A—C15A	0.1 (3)
C8—C13—C14—C15	179.4 (2)	C8A—C13A—C14A—C15A	-178.39 (18)
C12—C13—C14—C15	-0.7 (3)	C13A—C14A—C15A—C16A	0.2 (3)
C13—C14—C15—C16	0.9 (4)	C14A—C15A—C16A—C17A	-0.4 (3)
C14—C15—C16—C17	-0.7 (4)	C15A—C16A—C17A—C12A	0.3 (4)
C15—C16—C17—C12	0.3 (4)	C11A—C12A—C17A—C16A	178.5 (2)
C11—C12—C17—C16	-179.8 (2)	C13A—C12A—C17A—C16A	-0.1 (3)
C13—C12—C17—C16	-0.1 (4)	C7A—N1A—C18A—O3A	-5.8 (3)
C7—N1—C18—O3	-2.7 (3)	C7A—N1A—C18A—O3A	-5.8 (3)
C7—N1—C18—O3	-2.7 (3)	C7A—N1A—C18A—O3A	-5.8 (3)
C7—N1—C18—C19	177.57 (19)	C7A—N1A—C18A—C19A	173.15 (18)
O1A—C1A—C2A—C3A	179.1 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H1…O3 ⁱ	0.82	1.99	2.792 (2)	166
O2 <i>A</i> —H2 <i>A</i> 1···O3 ⁱⁱ	0.82	1.89	2.702 (2)	170
O2—H2···O3A ⁱⁱⁱ	0.82	1.81	2.588 (2)	159
O1 <i>A</i> —H1 <i>A</i> 1···O3 <i>A</i>	0.82	2.16	2.928 (2)	156

			supportin	supporting information		
С7—Н7…О3	0.98	2.51	2.901 (2)	104		
C7 <i>A</i> —H7 <i>A</i> ···O3 <i>A</i>	0.98	2.47	2.879 (2)	105		

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, -y+1, z-1/2; (iii) -x+1/2, -y+3/2, -z+1.