

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hydroxonium 1-ammonioethane-1,1diyldiphosphonate

Ming Li,* Wen Wen, Wuzu Ha and Liang Chang

Department of Chemical Engineering, Wuhan University of Science and Engineering, Wuhan 430073, People's Republic of China Correspondence e-mail: lim@wuse.edu.cn

Received 9 October 2008; accepted 10 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.097; data-to-parameter ratio = 14.5.

The title complex, $H_3O^+ \cdot NH_3C(CH_3)(PO_3H)_2^-$, contains a hydroxonium ion and an $NH_3C(CH_3)(PO_3H)_2^-$ anion. The three H atoms of H_3O^+ form a pseudo-tetrahedron by being distributed over four positions with occupation factors of 0.75. Multiple $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds in the crystal structure form an intricate three-dimensional supramolecular network.

Related literature

For the structures of organophosphonates, see: Clearfield (2002); Finn *et al.* (2003). For similar bisphosphonates, see: Fernández *et al.* (2003); For complexes with 1-aminoethyl-idene-1,1-diphosphonic acid, see: Yin *et al.* (2005); Ding *et al.* (2006); Li *et al.* (2008). For the synthesis, see: Chai *et al.* (1980).

Experimental

Crystal data

 $\begin{array}{l} {\rm H_{3}O^{+} \cdot C_{2}H_{8}N_{2}O_{6}P_{2}}^{-} \\ M_{r} = 223.06 \\ {\rm Monoclinic, } P2_{1}/c \\ a = 7.3372 \ (6) \\ {\rm \AA} \\ b = 10.6553 \ (8) \\ {\rm \AA} \\ c = 10.6128 \ (8) \\ {\rm \AA} \\ \beta = 97.705 \ (1)^{\circ} \end{array}$

Data collection

Bruker SMART 4K CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2008*a*) *T*_{min} = 0.831, *T*_{max} = 0.910 V = 822.22 (11) Å³ Z = 4 Mo Kα radiation μ = 0.53 mm⁻¹ T = 293 K 0.36 × 0.27 × 0.18 mm organic compounds

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.032 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.097 & \text{independent and constrained} \\ S &= 1.10 & \text{refinement} \\ 1972 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.40 \text{ e } \text{ Å}^{-3} \\ 136 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.61 \text{ e } \text{ Å}^{-3} \\ 4 \text{ restraints} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1C\cdots O2^{i}$	0.89	1.98	2.809 (2)	155
$N1 - H1A \cdots O5^{i}$	0.89	1.90	2.713 (2)	151
$N1 - H1B \cdot \cdot \cdot O3^{ii}$	0.89	2.01	2.824 (2)	152
O4−H3···O3 ⁱⁱ	0.73 (4)	1.86 (4)	2.591 (2)	176 (4)
$O1-H4\cdots O6^{iii}$	0.71 (3)	1.84 (3)	2.550 (2)	172 (4)
$O1W-H5\cdots O5^{iv}$	0.893 (10)	1.954 (15)	2.804 (2)	159 (3)
$O1W - H8 \cdots O1^{v}$	0.888 (10)	2.64 (4)	3.061 (2)	110 (3)
$O1W - H8 \cdots O3^{vi}$	0.888 (10)	2.27 (2)	3.041 (2)	145 (3)
$O1W - H6 \cdot \cdot \cdot O2^{vii}$	0.896 (10)	1.935 (11)	2.828 (2)	175 (3)
$O1W - H7 \cdot \cdot \cdot O6^{iii}$	0.900 (10)	1.920 (11)	2.815 (2)	173 (3)

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$, (ii) -x + 2, -y + 1, -z; (iii) x - 1, y, z; (iv) -x + 2, -y + 1, -z + 1; (v) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (vi) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (vii) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008*b*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008*b*); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

This work was supported financially by the Foundation of Education Department of Hubei Province (No. Q20081705).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2053).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chai, B. J., Covina, W. & Muggee, F. D. (1980). US Patent No. 4 239 695.
- Clearfield, A. (2002). Recent Opin. Solid Mater. Sci. 6, 495-506.
- Ding, D., Yin, M., Lu, H., Fan, Y., Hou, H. & Wang, Y. (2006). J. Solid State Chem. 179, 747–752.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fernández, D., Vega, D. & Ellena, J. A. (2003). Acta Cryst. C59, o289-o292.
- Finn, R. C., Zubieta, J. & Haushalter, R. C. (2003). Prog. Inorg. Chem. 51, 421– 601.
- Li, M., Xiang, J. F., Chen, S. P., Wu, S. M., Yuan, L. J., Li, H., He, H. J. & Sun, J. T. (2008). *J. Coord. Chem.* **61**(3), 372–383.
- Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yin, P., Wang, X. C., Gao, S. & Zheng, L. M. (2005). J. Solid State Chem. 178, 1049–1053.

supporting information

Acta Cryst. (2009). E65, o787 [doi:10.1107/S1600536809008770]

Hydroxonium 1-ammonioethane-1,1-diyldiphosphonate

Ming Li, Wen Wen, Wuzu Ha and Liang Chang

S1. Comment

Organophosphonic acids and their compounds have attracted tremendous interest. A series of phosphonate hybrid materials have been prepared and show potential applications in catalysts, sensors, sorbents, magnetic and luminescent materials. Such materials also illustrate a variety of structures from one-dimensional chains, two-dimensional layers to three-dimensional porous frameworks. (Finn *et al.*, 2003). Introduction of some functional groups to phosphonic acids, such as crown ether, –COOH, –OH, –NR₂ or mixed groups will modify their complexing ability and construct a great number of novel phosphonates (Clearfield, 2002). Compared with other phosphonic acids, 1-aminoethylidene-1,1-di-phosphonic acid (AEDPH₄) is easier to synthesize. However, little attention has been paid to the structural study of metal-AEDP compounds (Yin *et al.*, 2005; Ding *et al.*, 2006). In our recent paper, it is found that AEDPH₄ is inclined to transfer one proton to the amino group, which is in agreement with Fernández's results on similar bisphosphonates. (Li *et al.*, 2008; Fernández *et al.*, 2003). Deprotonation of it will result in predictable hydrogen aggregates from stronger P—O—H···O—P to weaker C—H···O hydrogen bonds. Herein, we report its structure, (I).

The asymmetric unit of (I)is built up from one deprotonated AEDPH₃ anion and a disordered H_3O^+ cation, which are linked through four types of Ow-H···O hydrogen bonds (Fig. 1, Table 1). Two of the four protons of phosphonates are used in protonation, one for the amino group, the other for the H_3O^+ cation. The combination of different hydrogen bond interactions, N-H···O and O-H···O results in the formation of an intricate three dimensional supramolecular network (Fig.2, Table 1).

S2. Experimental

The AEDPH₄ was synthesized according to the US Patent 4239695 (Chai *et al.*, 1980). It was crystallized directly from the AEDPH₄ aqueous solution. When the mixture was heated for 24h, colorless crystals were obtained.

S3. Refinement

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (C), N—H = 0.89Å with U_{iso} (H) = $1.5U_{eq}$ (C,N). The H atoms of hydroxyl were located in difference Fourier maps and included in the subsequent refinement.

The three hydrogen atoms of the H_3O^+ cation are statistically distributed over four positions with occupation factor of 0.75, building a pseudo tetrahedron.

Figure 1

The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Partial packing view of compound (I), showing the formation of the three dimensional network built from hydrogen bonds. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.

Hydroxonium 1-ammonioethane-1,1-diyldiphosphonate

Crystal data

H₃O⁺·C₂H₈N₂O₆P₂⁻ $M_r = 223.06$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.3372 (6) Å b = 10.6553 (8) Å c = 10.6128 (8) Å $\beta = 97.705$ (1)° V = 822.22 (11) Å³ Z = 4

Data collection

Bruker SMART 4K CCD area-detector
diffractometer
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
$T_{\min} = 0.831, \ T_{\max} = 0.910$
5340 measured reflections

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of independent
$wR(F^2) = 0.097$	and constrained refinement
S = 1.10	$w = 1/[\sigma^2(F_o^2) + (0.0481P)^2 + 0.8715P]$
1972 reflections	where $P = (F_o^2 + 2F_c^2)/3$
136 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
4 restraints	$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.023 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 464

 $\theta = 2.7 - 29.8^{\circ}$

 $\mu = 0.53 \text{ mm}^{-1}$ T = 293 K

Plate, colorless

 $R_{\rm int} = 0.015$

 $k = -9 \longrightarrow 14$ $l = -13 \longrightarrow 11$

 $0.36 \times 0.27 \times 0.18 \text{ mm}$

 $\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$ $h = -9 \rightarrow 9$

1972 independent reflections 1837 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.802 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3640 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.9948 (2)	0.56114 (16)	0.24265 (16)	0.0131 (3)	
C2	0.9672 (3)	0.62357 (19)	0.36861 (18)	0.0209 (4)	
H2A	1.0741	0.6722	0.3993	0.031*	
H2B	0.9488	0.5602	0.4299	0.031*	
H2C	0.8615	0.6774	0.3556	0.031*	
N1	1.0165 (2)	0.66564 (14)	0.14939 (14)	0.0152 (3)	

H1A	0.9151	0.7124	0.1391	0.023*		
H1B	1.0347	0.6329	0.0750	0.023*		
H1C	1.1124	0.7131	0.1792	0.023*		
O1W	0.4462 (2)	0.70203 (18)	0.52441 (17)	0.0363 (4)		
01	0.63612 (19)	0.57626 (13)	0.17124 (14)	0.0209 (3)		
02	0.75556 (18)	0.37252 (13)	0.27913 (13)	0.0208 (3)		
03	0.80235 (18)	0.42568 (13)	0.05066 (12)	0.0208 (3)		
O4	1.23166 (19)	0.41015 (14)	0.13108 (14)	0.0209 (3)		
05	1.20389 (18)	0.37077 (13)	0.35944 (13)	0.0204 (3)		
06	1.36080 (17)	0.56986 (13)	0.29441 (13)	0.0199 (3)		
P1	0.78594 (6)	0.47061 (4)	0.18354 (4)	0.01339 (15)		
P2	1.21301 (6)	0.47175 (4)	0.26319 (4)	0.01358 (15)		
H3	1.227 (5)	0.456 (3)	0.079 (3)	0.051 (10)*		
H4	0.562 (5)	0.568 (3)	0.208 (3)	0.049 (10)*		
H5	0.5658 (17)	0.698 (3)	0.554 (3)	0.018 (7)*	0.75	
H6	0.386 (4)	0.673 (3)	0.587 (2)	0.018 (7)*	0.75	
H7	0.426 (4)	0.663 (2)	0.4485 (15)	0.013 (7)*	0.75	
H8	0.422 (5)	0.7827 (13)	0.509 (4)	0.038 (10)*	0.75	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0145 (7)	0.0114 (7)	0.0138 (7)	-0.0006 (6)	0.0032 (6)	0.0007 (6)
C2	0.0254 (9)	0.0214 (9)	0.0164 (8)	0.0030 (7)	0.0042 (7)	-0.0040 (7)
N1	0.0165 (7)	0.0123 (7)	0.0173 (7)	-0.0002 (5)	0.0040 (5)	0.0017 (5)
O1W	0.0356 (9)	0.0393 (10)	0.0331 (9)	0.0008 (8)	0.0010 (7)	-0.0001 (7)
01	0.0155 (6)	0.0200 (7)	0.0283 (7)	0.0043 (5)	0.0073 (5)	0.0065 (5)
O2	0.0210 (6)	0.0164 (6)	0.0261 (7)	0.0001 (5)	0.0068 (5)	0.0073 (5)
O3	0.0217 (6)	0.0236 (7)	0.0169 (6)	-0.0005 (5)	0.0022 (5)	-0.0037 (5)
O4	0.0248 (7)	0.0184 (7)	0.0201 (7)	0.0019 (5)	0.0051 (5)	-0.0036 (5)
O5	0.0191 (6)	0.0189 (6)	0.0227 (7)	0.0010 (5)	0.0005 (5)	0.0066 (5)
O6	0.0148 (6)	0.0193 (6)	0.0259 (7)	-0.0038 (5)	0.0037 (5)	-0.0049 (5)
P1	0.0127 (2)	0.0124 (2)	0.0152 (2)	-0.00029 (15)	0.00251 (16)	0.00126 (15)
P2	0.0123 (2)	0.0125 (2)	0.0158 (2)	0.00017 (15)	0.00167 (16)	0.00006 (15)

Geometric parameters (Å, °)

C1—N1	1.512 (2)	O1W—H6	0.896 (10)
C1—C2	1.531 (2)	O1W—H7	0.900 (10)
C1—P1	1.8479 (17)	O1W—H8	0.888 (10)
C1—P2	1.8505 (17)	O1—P1	1.5666 (14)
C2—H2A	0.9600	O1—H4	0.71 (3)
C2—H2B	0.9600	O2—P1	1.4940 (13)
C2—H2C	0.9600	O3—P1	1.5093 (13)
N1—H1A	0.8900	O4—P2	1.5706 (14)
N1—H1B	0.8900	O4—H3	0.73 (4)
N1—H1C	0.8900	O5—P2	1.4914 (13)
O1W—H5	0.893 (10)	O6—P2	1.5106 (13)

N1—C1—C2	106.82 (14)	H5—O1W—H7	109 (3)
N1—C1—P1	108.51 (11)	H6—O1W—H7	118 (3)
C2—C1—P1	108.82 (12)	H5—O1W—H8	106 (3)
N1—C1—P2	106.91 (11)	H6—O1W—H8	111 (3)
C2—C1—P2	109.54 (12)	H7—O1W—H8	106 (3)
P1—C1—P2	115.87 (9)	P1—O1—H4	116 (3)
C1—C2—H2A	109.5	Р2—О4—Н3	113 (3)
C1—C2—H2B	109.5	O2—P1—O3	116.77 (8)
H2A—C2—H2B	109.5	O2—P1—O1	113.10 (8)
C1—C2—H2C	109.5	O3—P1—O1	107.04 (8)
H2A—C2—H2C	109.5	O2—P1—C1	109.10 (8)
H2B—C2—H2C	109.5	O3—P1—C1	108.44 (8)
C1—N1—H1A	109.5	O1—P1—C1	101.18 (8)
C1—N1—H1B	109.5	O5—P2—O6	116.47 (8)
H1A—N1—H1B	109.5	O5—P2—O4	109.10 (8)
C1—N1—H1C	109.5	O6—P2—O4	109.82 (8)
H1A—N1—H1C	109.5	O5—P2—C1	109.54 (8)
H1B—N1—H1C	109.5	O6—P2—C1	104.71 (8)
H5—O1W—H6	107 (3)	O4—P2—C1	106.71 (8)
N1—C1—P1—O2	-176.13 (11)	N1—C1—P2—O5	177.18 (11)
C2-C1-P1-O2	-60.25(14)	C2-C1-P2-O5	61.79 (14)
P2—C1—P1—O2	63.66 (11)	P1—C1—P2—O5	-61.75 (11)
N1—C1—P1—O3	55.70 (13)	N1—C1—P2—O6	51.57 (12)
C2—C1—P1—O3	171.58 (12)	C2—C1—P2—O6	-63.82 (13)
P2—C1—P1—O3	-64.51 (11)	P1—C1—P2—O6	172.64 (9)
N1—C1—P1—O1	-56.68 (12)	N1—C1—P2—O4	-64.85 (12)
C2—C1—P1—O1	59.20 (13)	C2-C1-P2-O4	179.76 (12)
P2—C1—P1—O1	-176.89 (9)	P1—C1—P2—O4	56.22 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1C···O2 ⁱ	0.89	1.98	2.809 (2)	155
N1—H1A····O5 ⁱ	0.89	1.90	2.713 (2)	151
N1—H1 <i>B</i> ···O3 ⁱⁱ	0.89	2.01	2.824 (2)	152
O4—H3…O3 ⁱⁱ	0.73 (4)	1.86 (4)	2.591 (2)	176 (4)
O1—H4···O6 ⁱⁱⁱ	0.71 (3)	1.84 (3)	2.550 (2)	172 (4)
O1 <i>W</i> —H5…O5 ^{iv}	0.89(1)	1.95 (2)	2.804 (2)	159 (3)
O1 <i>W</i> —H8…O1 ^v	0.89(1)	2.64 (4)	3.061 (2)	110 (3)
O1 <i>W</i> —H8····O3 ^{vi}	0.89(1)	2.27 (2)	3.041 (2)	145 (3)
O1 <i>W</i> —H6···O2 ^{vii}	0.90(1)	1.94 (1)	2.828 (2)	175 (3)
O1 <i>W</i> —H7…O6 ⁱⁱⁱ	0.90(1)	1.92 (1)	2.815 (2)	173 (3)

Symmetry codes: (i) -*x*+2, *y*+1/2, -*z*+1/2; (ii) -*x*+2, -*y*+1, -*z*; (iii) *x*-1, *y*, *z*; (iv) -*x*+2, -*y*+1, -*z*+1; (v) *x*, -*y*+3/2, *z*+1/2; (vi) -*x*+1, *y*+1/2, -*z*+1/2; (vii) -*x*+1, -*y*+1, -*z*+1.