

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Bromo-N'-(2-hydroxy-3,5-diiodobenzylidene)benzohydrazide monohydrate

Jing-Heng Ning^a* and Xiao-Wu Xu^b

^aCollege of Chemical and Biological Engineering, Changsha University of Science and Technology, Changsha 410004, People's Republic of China, and ^bChangsha Chemical Industry Research Institute, Changsha 410007, People's Republic of China Correspondence e-mail: ningjingheng@126.com

Received 23 March 2009; accepted 25 March 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.042; wR factor = 0.090; data-to-parameter ratio = 17.5.

Crystals of the title compound, $C_{14}H_9BrI_2N_2O_2\cdot H_2O$, were obtained from a condensation reaction of 3-bromobenzohydrazide with 3,5-diiodosalicylaldehyde. The Schiff base molecule assumes an *E* configuration with respect to the C==N bond, and the dihedral angle between the two benzene rings is 6.9 (2)°. An intramolecular $O-H\cdots N$ hydrogen bond is observed in the Schiff base molecule and may contribute to its overall near planarity. In the crystal structure, molecules are linked through intermolecular O- $H\cdots O$ and $N-H\cdots O$ hydrogen bonds, forming layers parallel to the *bc* plane. Short intermolecular $I\cdots O$ contacts [2.930 (5) Å] are also found, linking the molecules into zigzag chains along *b*.

Related literature

For the biological activity of Schiff bases, see: Bedia *et al.* (2006); Richardson & Bernhardt (1999); Koh *et al.* (1998); Prasad *et al.* (2007). For metal complexes of Schiff bases, see: Adams *et al.* (2000); Ainscough *et al.* (1998); Roth *et al.* (2007). For related structures, see: Fun *et al.* (2008); Butcher *et al.* (2007); Zhi & Yang (2007); Ejsmont *et al.* (2008); Yathirajan *et al.* (2007); Narayana *et al.* (2007). For bond-length data, see: Allen *et al.* (1987). For short intermolecular $I \cdots O$ contacts, see, for example: Britton (2003).

Experimental

Crystal data

C. H.BrL.N.O. H.O
$C_{14} H_{9} D H_{2} H_{2} C_{2} H_{2} C_{3}$
$M_r = 588.96$
Monoclinic, $P2_1/c$
a = 15.181 (3) Å
b = 7.611 (2) Å
c = 15.516 (3) Å
$\beta = 110.628 \ (3)^{\circ}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) *T*_{min} = 0.261, *T*_{max} = 0.293

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$
$wR(F^2) = 0.090$
S = 1.00
3656 reflections
209 parameters
4 restraints

 $\mu = 6.14 \text{ mm}^{-1}$ T = 298 K 0.23 × 0.20 × 0.20 mm

V = 1677.8 (6) Å³

Mo $K\alpha$ radiation

Z = 4

13552 measured reflections 3656 independent reflections 2651 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.059$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.63 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.69 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3-H3A\cdotsO1^{i}$	0.86 (4)	2.50 (6)	3.131 (6)	132 (6)
N2−H2···O3 ⁱⁱ	0.89 (4)	2.08 (6)	2.934 (6)	162 (7)
$O1-H1\cdots N1$	0.82	1.87	2.579 (6)	144

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful for financial support of this work from the Natural Science Foundation of Hunan Province, People's Republic of China (Project No. 07 J J6023).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2600).

References

- Adams, H., Fenton, D. E., Minardi, G., Mura, E., Pistuddi, A. M. & Solinas, C. (2000). Inorg. Chem. Commun. 3, 24–28.
- Ainscough, E. W., Brodie, A. M., Dobbs, A. J., Ranford, J. D. & Waters, J. M. (1998). *Inorg. Chim. Acta*, **267**, 27–38.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). *Eur. J. Med. Chem.* **41**, 1253–1261.
- Britton, D. (2003). Acta Cryst. E59, 01332-01333.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Butcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, 03652.
- Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, 01128.

- Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008). Acta Cryst. E64, 01907–01908.
- Koh, L. L., Kon, O. L., Loh, K. W., Long, Y. C., Ranford, J. D., Tan, A. L. C. & Tjan, Y. Y. (1998). J. Inorg. Biochem. 72, 155–162.
- Narayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, 03522.
- Prasad, C. V. C., Zheng, M., Vig, S., Bergstrom, C., Smith, D. W., Gao, Q., Yeola, S., Polson, C. T., Corsa, J. A., Guss, V. L., Loo, A., Wang, J., Sleczka, B. G., Dangler, C., Robertson, B. J., Hendrick, J. P., Roberts, S. B. & Barten, D. M. (2007). *Bioorg. Med. Chem. Lett.* **17**, 4006–4011.
- Richardson, D. R. & Bernhardt, P. V. (1999). J. Biol. Inorg. Chem. 4, 266–273. Roth, A., Buchholz, A., Gärtner, M., Malassa, A., Görls, H., Vaughan, G. &
- Plass, W. (2007). Z. Anorg. Allg. Chem. 633, 2009–2018.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Yathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, 02719.
- Zhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, 04471.

supporting information

Acta Cryst. (2009). E65, o905-o906 [doi:10.1107/S1600536809010964]

3-Bromo-N'-(2-hydroxy-3,5-diiodobenzylidene)benzohydrazide monohydrate

Jing-Heng Ning and Xiao-Wu Xu

S1. Comment

Schiff bases have been demonstrated to possess interesting biological activities (Bedia *et al.*, 2006; Richardson & Bernhardt, 1999; Koh *et al.*, 1998; Prasad *et al.*, 2007). These compounds have been widely used as versatile ligands in coordination chemistry (Adams *et al.*, 2000; Ainscough *et al.*, 1998; Roth *et al.*, 2007). Recently, the crystal structures of such compounds have been extensively reported (Fun *et al.*, 2008; Butcher *et al.*, 2007; Zhi & Yang, 2007). In this paper, the new title Schiff base, (I), Fig. 1, is reported.

The asymmetric unit of (I) contains a Schiff base molecule and a water molecule of crystallization. The Schiff base molecule assumes an E configuration with respect to the C=N bond. The dihedral angle between the two benzene rings is $6.9 (2)^{\circ}$, indicating that the molecule is essentially planar. An intramolecular O—H…N hydrogen bond is observed in the Schiff base molecule and may contribute to its overall planarity. All bond lengths in (I) are within normal ranges (Allen *et al.*, 1987) and comparable to the corresponding values in other similar compounds (Ejsmont *et al.*, 2008; Yathirajan *et al.*, 2007; Narayana *et al.*, 2007).

In the crystal structure, molecules are linked through intermolecular O–H···O and N–H···O (Table 1) hydrogen bonds, forming layers parallel to the bc plane (Fig. 2). Additional short intermolecular I1···O $I2^i$ contacts, 2.930 (5)Å, $^i = 1$ -x, -1/2+y, 1/2+z, are also observed linking molecules into zig-zag chains along *b*. Similar short I···O contacts have been reported previously (Britton, 2003).

S2. Experimental

3-Bromobenzohydrazide (1.0 mmol, 215.2 mg) and 3,5-diiodosalicylaldehyde (1.0 mmol, 374.9 mg) were stirred at room temperature for two hours. The filtrate was kept in air for a week to obtain yellow block-shaped crystals of (I).

S3. Refinement

Atoms H2, H3A and H3B were located in a difference Fourier map and refined isotropically, with the N–H, O–H, and H…H distances restrained to 0.90 (1), 0.85 (1), and 1.37 (2) Å, respectively. Other H atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, d(O-H) = 0.82 Å and $U_{iso} = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$.

Figure 1

The molecular structure of (I), with 30% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.

Figure 2

Molecular packing of (I), viewed along the b axis. H atoms not involved in the interactions have been omitted for clarity. Intermolecular hydrogen bonds and short I···O contacts are shown as dashed lines.

3-Bromo-N'-(2-hydroxy-3,5-diiodobenzylidene)benzohydrazide monohydrate

F(000) = 1096

 $\theta = 2.6 - 24.5^{\circ}$ $\mu = 6.14 \text{ mm}^{-1}$

Block, yellow

 $0.23 \times 0.20 \times 0.20$ mm

13552 measured reflections

 $\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$

3656 independent reflections

2651 reflections with $I > 2\sigma(I)$

T = 298 K

 $R_{\rm int} = 0.059$

 $h = -19 \rightarrow 19$

 $k = -9 \rightarrow 9$

 $l = -19 \rightarrow 19$

 $D_{\rm x} = 2.331 {\rm Mg m^{-3}}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 2004 reflections

Crystal data

C₁₄H₉BrI₂N₂O₂·H₂O $M_r = 588.96$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 15.181 (3) Å b = 7.611 (2) Å c = 15.516 (3) Å $\beta = 110.628$ (3)° V = 1677.8 (6) Å³ Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.261, T_{\max} = 0.293$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.090$	neighbouring sites
S = 1.00	H atoms treated by a mixture of independent
3656 reflections	and constrained refinement
209 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0296P)^2]$
4 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.69 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.32291 (3)	-0.01495 (5)	0.20582 (3)	0.04369 (14)	
I2	0.14532 (3)	-0.04420 (6)	0.49489 (3)	0.04849 (15)	
Br1	1.04870 (5)	0.64844 (11)	0.62538 (6)	0.0699 (3)	

01	0.4774 (3)	0.1800 (5)	0.3704 (2)	0.0362 (9)
H1	0.5212	0.2190	0.4140	0.054*
O2	0.6948 (3)	0.4091 (6)	0.4847 (3)	0.0465 (11)
03	0.4178 (4)	0.0028 (7)	0.7467 (3)	0.0636 (14)
N1	0.5549 (3)	0.3106 (5)	0.5331 (3)	0.0303 (10)
N2	0.6303 (3)	0.3938 (6)	0.5939 (3)	0.0318 (10)
C1	0.4070 (4)	0.1717 (7)	0.4882 (4)	0.0301 (12)
C2	0.4058 (4)	0.1324 (6)	0.3995 (3)	0.0260 (11)
C3	0.3290 (4)	0.0455 (7)	0.3393 (4)	0.0314 (12)
C4	0.2549 (4)	-0.0061 (7)	0.3655 (4)	0.0312 (13)
H4	0.2040	-0.0660	0.3244	0.037*
C5	0.2572 (4)	0.0324 (7)	0.4540 (4)	0.0333 (13)
C6	0.3317 (4)	0.1209 (7)	0.5138 (4)	0.0325 (13)
H6	0.3323	0.1476	0.5724	0.039*
C7	0.4852 (4)	0.2632 (7)	0.5544 (4)	0.0323 (13)
H7	0.4844	0.2872	0.6129	0.039*
C8	0.7013 (4)	0.4386 (7)	0.5641 (4)	0.0304 (12)
С9	0.7872 (4)	0.5200 (6)	0.6326 (4)	0.0301 (12)
C10	0.8620 (4)	0.5467 (7)	0.6036 (4)	0.0389 (14)
H10	0.8576	0.5140	0.5444	0.047*
C11	0.9424 (4)	0.6211 (8)	0.6616 (4)	0.0429 (15)
C12	0.9500 (4)	0.6747 (9)	0.7478 (5)	0.0530 (17)
H12	1.0052	0.7269	0.7863	0.064*
C13	0.8755 (4)	0.6511 (8)	0.7772 (4)	0.0489 (16)
H13	0.8802	0.6884	0.8357	0.059*
C14	0.7934 (5)	0.5721 (7)	0.7204 (4)	0.0422 (15)
H14	0.7433	0.5543	0.7407	0.051*
H2	0.626 (5)	0.411 (9)	0.649 (2)	0.080*
H3A	0.414 (6)	-0.082(4)	0.709 (3)	0.080*
H3B	0.414 (5)	0.097 (3)	0.717 (3)	0.080*

Atomic	displ	lacement parameters	$(Å^2)$
--------	-------	---------------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0401 (3)	0.0640 (3)	0.0293 (2)	-0.00844 (19)	0.01519 (18)	-0.01025 (18)
I2	0.0423 (3)	0.0602 (3)	0.0522 (3)	-0.0090(2)	0.0281 (2)	-0.0014 (2)
Br1	0.0381 (4)	0.0888 (6)	0.0902 (6)	-0.0056 (4)	0.0317 (4)	0.0133 (5)
O1	0.029 (2)	0.054 (3)	0.027 (2)	-0.0065 (19)	0.0114 (18)	-0.0023 (18)
O2	0.047 (3)	0.067 (3)	0.025 (2)	-0.009(2)	0.013 (2)	-0.004 (2)
O3	0.062 (3)	0.079 (3)	0.058 (3)	0.014 (3)	0.031 (3)	0.017 (3)
N1	0.024 (2)	0.032 (2)	0.030 (3)	0.0035 (19)	0.003 (2)	0.000(2)
N2	0.026 (3)	0.042 (3)	0.026 (3)	-0.005 (2)	0.007 (2)	-0.005 (2)
C1	0.027 (3)	0.032 (3)	0.029 (3)	-0.001 (2)	0.008 (2)	0.004 (2)
C2	0.028 (3)	0.030 (3)	0.021 (3)	0.004 (2)	0.009 (2)	0.003 (2)
C3	0.037 (3)	0.033 (3)	0.026 (3)	0.001 (3)	0.012 (3)	-0.003 (2)
C4	0.025 (3)	0.041 (3)	0.027 (3)	-0.006(2)	0.009 (2)	-0.002(2)
C5	0.030 (3)	0.035 (3)	0.037 (3)	0.003 (2)	0.014 (3)	0.006 (2)
C6	0.035 (3)	0.035 (3)	0.031 (3)	0.000 (2)	0.015 (3)	-0.001 (2)

supporting information

C7	0.033 (3)	0.039 (3)	0.024 (3)	-0.001 (3)	0.010 (3)	0.000(2)	
C8	0.030 (3)	0.029 (3)	0.029 (3)	0.002 (2)	0.006 (3)	0.004 (2)	
C9	0.028 (3)	0.029 (3)	0.031 (3)	-0.003 (2)	0.008 (3)	0.004 (2)	
C10	0.039 (4)	0.038 (3)	0.039 (3)	-0.005 (3)	0.013 (3)	0.001 (3)	
C11	0.032 (3)	0.048 (4)	0.045 (4)	-0.001 (3)	0.009 (3)	0.009 (3)	
C12	0.031 (4)	0.062 (4)	0.053 (4)	-0.009 (3)	0.000 (3)	0.011 (3)	
C13	0.048 (4)	0.065 (4)	0.031 (3)	-0.010 (3)	0.011 (3)	-0.002 (3)	
C14	0.046 (4)	0.044 (4)	0.042 (4)	-0.002 (3)	0.022 (3)	0.003 (3)	

Geometric parameters (Å, °)

I1—C3	2.092 (5)	C4—C5	1.394 (7)
I2—C5	2.094 (6)	C4—H4	0.9300
Br1—C11	1.898 (6)	C5—C6	1.362 (7)
O1—C2	1.364 (6)	С6—Н6	0.9300
O1—H1	0.8200	С7—Н7	0.9300
O2—C8	1.222 (6)	C8—C9	1.496 (7)
O3—H3A	0.86 (4)	C9—C10	1.377 (8)
O3—H3B	0.84 (3)	C9—C14	1.390 (8)
N1—C7	1.267 (6)	C10—C11	1.359 (8)
N1—N2	1.356 (6)	C10—H10	0.9300
N2—C8	1.357 (7)	C11—C12	1.363 (9)
N2—H2	0.89 (4)	C12—C13	1.373 (8)
C1—C6	1.390 (7)	C12—H12	0.9300
C1—C2	1.403 (7)	C13—C14	1.384 (8)
C1—C7	1.445 (7)	С13—Н13	0.9300
C2—C3	1.380 (7)	C14—H14	0.9300
C3—C4	1.379 (7)		
C2—O1—H1	109.5	N1—C7—C1	120.3 (5)
H3A—O3—H3B	107 (3)	N1—C7—H7	119.9
C7—N1—N2	121.9 (5)	С1—С7—Н7	119.9
N1—N2—C8	117.2 (4)	O2—C8—N2	120.4 (5)
N1—N2—H2	114 (5)	O2—C8—C9	122.2 (5)
C8—N2—H2	129 (5)	N2—C8—C9	117.4 (5)
C6—C1—C2	119.5 (5)	C10—C9—C14	120.0 (5)
C6—C1—C7	118.9 (5)	C10—C9—C8	116.2 (5)
C2—C1—C7	121.5 (5)	C14—C9—C8	123.7 (5)
O1—C2—C3	119.0 (4)	C11—C10—C9	119.8 (6)
O1—C2—C1	122.1 (5)	C11—C10—H10	120.1
C3—C2—C1	118.8 (5)	С9—С10—Н10	120.1
C4—C3—C2	121.3 (5)	C10-C11-C12	121.4 (6)
C4—C3—I1	118.2 (4)	C10-C11-Br1	120.5 (5)
C2—C3—I1	120.5 (4)	C12-C11-Br1	118.1 (5)
C3—C4—C5	119.4 (5)	C11—C12—C13	119.4 (6)
C3—C4—H4	120.3	C11—C12—H12	120.3
С5—С4—Н4	120.3	C13—C12—H12	120.3
C6—C5—C4	120.0 (5)	C12—C13—C14	120.5 (6)

C6—C5—I2	120.0 (4)	С12—С13—Н13	119.7
C4—C5—I2	120.0 (4)	C14—C13—H13	119.7
C5—C6—C1	120.9 (5)	C13—C14—C9	118.8 (6)
С5—С6—Н6	119.5	C13—C14—H14	120.6
С1—С6—Н6	119.5	C9—C14—H14	120.6

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
03—H3 <i>A</i> …O1 ⁱ	0.86 (4)	2.50 (6)	3.131 (6)	132 (6)
N2—H2···O3 ⁱⁱ	0.89 (4)	2.08 (6)	2.934 (6)	162 (7)
O1—H1…N1	0.82	1.87	2.579 (6)	144

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, *y*+1/2, -*z*+3/2.