

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Methyl-3,5-bis[(*E*)-(3-methyl-2thienyl)methylene]piperidin-4-one monohydrate

K. Rajeswari,^a K. Pandiarajan,^a P. Gayathri^b and A. Thiruvalluvar^b*

^aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and ^bPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India Correspondence e-mail: athiru@vsnl.net

Received 11 March 2009; accepted 20 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.130; data-to-parameter ratio = 14.4.

In the title molecule, $C_{18}H_{19}NOS_2 H_2O$, the piperidine ring adopts an envelope conformation with the methyl substituent in an equatorial position. Each of the olefinic double bonds has an *E* configuration. The dihedral angle between the two thiophene rings is 6.04 (14)°. The water molecule forms two donor interactions, one with the carbonyl O atom and the other to the hetero N atom. The centrosymmetric $\{C_{18}H_{19}NOS_2 H_2O\}_2$ pairs thus formed are linked into a supramolecular chain *via* $C-H \cdots O_{water}$ contacts.

Related literature

For piperidine-4-ones as antimycobacterial agents, see: Jha & Dimmock (2006). For their cytotoxic properties, see: Das *et al.* (2007).

Experimental

Crystal data

 $\begin{array}{l} C_{18}H_{19}NOS_2 \cdot H_2O\\ M_r = 347.50\\ Triclinic, P\overline{1}\\ a = 7.5781 \ (7) \ \text{\AA}\\ b = 10.9926 \ (9) \ \text{\AA}\\ c = 11.5304 \ (10) \ \text{\AA} \end{array}$

$\alpha = 70.531.(2)^{\circ}$

- $\beta = 83.404 (2)^{\circ}$ $\gamma = 71.673 (2)^{\circ}$ $V = 894.90 (14) \text{ Å}^3$
 - Z = 2
 - Mo $K\alpha$ radiation

organic compounds

 $0.36 \times 0.22 \times 0.22 \text{ mm}$

15827 measured reflections

 $R_{\rm int} = 0.021$

refinement $\Delta \rho_{\text{max}} = 0.44 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

3127 independent reflections

2686 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.31 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\rm min} = 0.901, T_{\rm max} = 0.938$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.130$ S = 1.113127 reflections 217 parameters 3 restraints

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1W-H1A\cdots N1$	0.86 (4)	2.03 (4)	2.867 (4)	164 (4)
$O1W-H1B\cdots O4^{i}$	0.86 (4)	1.91 (4)	2.759 (3)	167 (4)
$C2-H2B\cdots$ S31	0.97	2.58	3.200 (2)	122
$C6-H6A\cdots$ S51	0.97	2.53	3.208 (2)	127
C13-H13···O4	0.93	2.26	2.693 (3)	108
C15-H15···O4	0.93	2.28	2.711 (3)	108
$C35-H35\cdotsO1W^{ii}$	0.93	2.34	3.222 (4)	159
$C55-H55\cdots O1W^{iii}$	0.93	2.52	3.450 (4)	176
$C56-H56B\cdots Cg1^{i}$	0.96	2.97	3.763 (3)	141
$C36-H36C\cdots Cg2^{i}$	0.96	2.83	3.742 (3)	159

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 2; (iii) -x + 1, -y, -z + 1. Cg1 and Cg2 are the centroids of the S31/C32–C35 and S51/C52–C55 rings ,respectively.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-NT* (Bruker, 2004); data reduction: *SAINT-NT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2009).

The authors are grateful to Dr A. Babu Vargheese, Sophisticated Analytical Instrument Facility (SAIF), IIT-Madras, Chennai, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2393).

References

Bruker (2004). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Das, U., Alcorn, J., Shrivastav, A., Sharma, R. K., Clercq, E. D., Balzarini, J. & Dimmock, J. R. (2007). Eur. J. Med. Chem. 42, 71–80.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Jha, A. & Dimmock, J. R. (2006). Pharmazie, 61, 562-563.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o885 [doi:10.1107/S1600536809010393]

1-Methyl-3,5-bis[(*E*)-(3-methyl-2-thienyl)methylene]piperidin-4-one monohydrate

K. Rajeswari, K. Pandiarajan, P. Gayathri and A. Thiruvalluvar

S1. Comment

1-*N*-(Arylmaleamoyl)-3,5-bis(phenylmethylene)piperidin-4-ones (Jha & Dimmock, 2006) have been proved as antimycobacterial agents. The cytotoxic properties of 3,5 bis(arylidene)piperidin-4-ones (Das *et al.*, 2007) have also been reported. Due to the above importance, the crystal structure of the title compound (I) has been determined by X-ray diffraction.

The piperidine ring in (I), Fig. 1, adopts an envelope conformation with the methyl substituent in an equatorial position. The sum of the bond angles around N1 [330.9 (2)°] indicates a pyramidal geometry. The N1 atom deviates by -0.645 (3) Å from the least-squares plane passing through atoms C2—C6. Both olefinic double bonds have an E-configuration. The thiophene rings are co-planar with the adjacent olefinic double bonds and the planar portion of piperidone ring. The dihedral angle between the two thiophene rings is 6.04 (14)°. The molecular conformation is stabilized by weak C—H···O and C—H···S contacts, Table 1. The water molecules forms two O—H donor interactions, one with the carbonyl-O atom and other to the amine-N atom, Table 1. These hydrogen bonds result in the formation of a centrosymmetric $\{C_{18}H_{19}NOS_2.H_2O\}_2$ pair, and these are linked into supramolecular chains via C35-H···O contacts, Table 1. Additional stabilisation to the crystal strucutre is afforded by C-H···O and C-H··· π contacts, as detailed in Table 1 and illustrated in Fig. 2.

S2. Experimental

To a mixture of *N*-methylpiperidin-4-one (1.5 ml, 0.01 mol) and 3-methylthiophene-2-aldehyde (2.7 ml, 0.02 mol) in ethanol (95%, 10 ml), sodium hydroxide (20%, 5 ml) was added. The solution was heated on a waterbath for 30 mins. The solid that separated on cooling was filtered and was recrystallized from 95% ethanol in a yield of 2.5 g (80%).

S3. Refinement

The water-H atoms, H1A and H1B, were located in a difference density Fourier map and included in the refinement with the O—H distances restrained to be 0.86 ± 0.01 Å, with the H…H distance restrained to 1.373 Å, and with $U_{iso}(H) = 1.5$ times $U_{eq}(O)$. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.93 - 0.97 Å, and with $U_{iso}(H) = 1.2 - 1.5$ times $U_{eq}(C)$.

Figure 1

The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Figure 2

A view down the b axis of the packing in (I). Dashed lines indicate hydrogen bonds. The H atoms not involved in hydrogen bonding have been omitted for reasons of clarity.

1-Methyl-3,5-bis[(E)-(3-methyl-2-thienyl)methylene]piperidin-4-one monohydrate

Crystal data

 $\begin{array}{l} C_{18}H_{19}NOS_{2} \cdot H_{2}O\\ M_{r} = 347.50\\ Triclinic, P\overline{1}\\ Hall symbol: -P 1\\ a = 7.5781 (7) Å\\ b = 10.9926 (9) Å\\ c = 11.5304 (10) Å\\ a = 79.531 (2)^{\circ}\\ \beta = 83.404 (2)^{\circ}\\ \gamma = 71.673 (2)^{\circ}\\ V = 894.90 (14) Å^{3} \end{array}$

Data collection

Bruker Kappa APEXII CCD	15827 measured reflections
diffractometer	3127 independent reflections
Radiation source: fine-focus sealed tube	2686 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.021$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.0^\circ$
ω and φ scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan	$k = -13 \rightarrow 13$
(SADABS; Bruker, 2004)	$l = -13 \rightarrow 13$
$T_{\min} = 0.901, \ T_{\max} = 0.938$	
Refinement	

Z = 2

F(000) = 368 $D_x = 1.290 \text{ Mg m}^{-3}$

 $\theta = 2.0 - 25.0^{\circ}$

 $\mu = 0.31 \text{ mm}^{-1}$

Prism, colourless

 $0.36 \times 0.22 \times 0.22$ mm

T = 293 K

Melting point: 423 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9874 reflections

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.043$ Hydrogen site location: inferred from $wR(F^2) = 0.130$ neighbouring sites S = 1.11H atoms treated by a mixture of independent and constrained refinement 3127 reflections 217 parameters $w = 1/[\sigma^2(F_o^2) + (0.0602P)^2 + 0.4317P]$ where $P = (F_0^2 + 2F_c^2)/3$ 3 restraints Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} = 0.001$ direct methods $\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.31 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

(Fractional atomic coordinates a	ıd isotropic o	r equivalent	isotropic	displacement	parameters	$(Å^2)$)
---	---------------------------------	----------------	--------------	-----------	--------------	------------	---------	---

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
S31	0.12090 (9)	0.66376 (7)	0.92973 (5)	0.0616 (2)
S51	0.60928 (9)	0.12751 (6)	0.41757 (6)	0.0613 (2)
O4	0.1381 (3)	0.60702 (18)	0.46923 (16)	0.0789 (7)

N1	0.3386 (3)	0.31766 (17)	0.73473 (15)	0.0491 (6)
C2	0.3009 (4)	0.4473 (2)	0.7629 (2)	0.0561 (8)
C3	0.1977 (3)	0.5506 (2)	0.67020 (19)	0.0481 (7)
C4	0.2189 (3)	0.5242 (2)	0.54771 (19)	0.0517 (7)
C5	0.3416 (3)	0.3973 (2)	0.52192 (19)	0.0491 (7)
C6	0.4442 (3)	0.3036 (2)	0.6214 (2)	0.0562 (8)
C11	0.4415 (4)	0.2222 (3)	0.8279 (2)	0.0644 (9)
C13	0.0932 (3)	0.6700 (2)	0.6881 (2)	0.0496 (7)
C15	0.3552 (3)	0.3766 (2)	0.40958 (19)	0.0503 (7)
C32	0.0478 (3)	0.7334 (2)	0.7898 (2)	0.0508 (7)
C33	-0.0590 (3)	0.8610 (2)	0.7893 (2)	0.0580 (8)
C34	-0.0799 (4)	0.8984 (3)	0.9011 (3)	0.0717 (10)
C35	0.0091 (4)	0.8029 (3)	0.9852 (3)	0.0747 (11)
C36	-0.1438 (4)	0.9519 (3)	0.6826 (3)	0.0700 (9)
C52	0.4595 (3)	0.2700 (2)	0.3507 (2)	0.0520 (8)
C53	0.4559 (3)	0.2664 (3)	0.2315 (2)	0.0564 (8)
C54	0.5707 (4)	0.1487 (3)	0.1991 (2)	0.0660 (9)
C55	0.6615 (4)	0.0657 (3)	0.2886 (3)	0.0688 (10)
C56	0.3477 (4)	0.3754 (3)	0.1436 (2)	0.0733 (10)
O1W	0.0177 (4)	0.2338 (3)	0.7303 (2)	0.1048 (11)
H2A	0.41793	0.46199	0.77200	0.0673*
H2B	0.22827	0.45349	0.83775	0.0673*
H6A	0.46857	0.21572	0.60610	0.0675*
H6B	0.56308	0.31811	0.62516	0.0675*
H11A	0.55653	0.23881	0.83494	0.0966*
H11B	0.46732	0.13670	0.80858	0.0966*
H11C	0.36829	0.22828	0.90153	0.0966*
H13	0.03931	0.72188	0.62050	0.0595*
H15	0.28175	0.44574	0.35991	0.0604*
H34	-0.14837	0.98102	0.91613	0.0860*
H35	0.00891	0.81227	1.06375	0.0897*
H36A	-0.05985	0.93530	0.61429	0.1049*
H36B	-0.16638	1.03985	0.69444	0.1049*
H36C	-0.25932	0.93860	0.67070	0.1049*
H54	0.58282	0.12987	0.12261	0.0792*
H55	0.74340	-0.01605	0.28108	0.0825*
H56A	0.26073	0.44002	0.18485	0.1096*
H56B	0.28137	0.34220	0.09710	0.1096*
H56C	0.43205	0.41357	0.09267	0.1096*
HIA	0.099 (5)	0.273 (4)	0.734 (4)	0.1573*
HIB	-0.046 (5)	0.280 (4)	0.672 (3)	0.1573*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S31	0.0677 (4)	0.0680 (4)	0.0491 (4)	-0.0236 (3)	-0.0051 (3)	-0.0026 (3)
S51	0.0647 (4)	0.0559 (4)	0.0604 (4)	-0.0181 (3)	-0.0016 (3)	-0.0035 (3)
O4	0.0979 (14)	0.0685 (12)	0.0485 (10)	0.0049 (10)	-0.0227 (10)	0.0036 (9)

N1	0.0583 (11)	0.0452 (10)	0.0402 (9)	-0.0132 (8)	-0.0086 (8)	0.0021 (8)
C2	0.0684 (15)	0.0514 (13)	0.0466 (12)	-0.0150 (11)	-0.0143 (11)	-0.0016 (10)
C3	0.0477 (12)	0.0487 (12)	0.0466 (12)	-0.0157 (10)	-0.0068 (9)	0.0008 (9)
C4	0.0536 (13)	0.0521 (13)	0.0446 (12)	-0.0123 (10)	-0.0099 (10)	0.0025 (10)
C5	0.0491 (12)	0.0531 (12)	0.0436 (11)	-0.0169 (10)	-0.0050 (9)	0.0003 (9)
C6	0.0559 (14)	0.0571 (14)	0.0469 (12)	-0.0084 (11)	-0.0046 (10)	-0.0002 (10)
C11	0.0805 (18)	0.0536 (14)	0.0501 (13)	-0.0102 (12)	-0.0153 (12)	0.0041 (11)
C13	0.0463 (12)	0.0500 (12)	0.0493 (12)	-0.0143 (10)	-0.0070 (9)	0.0025 (10)
C15	0.0509 (12)	0.0545 (13)	0.0444 (12)	-0.0182 (10)	-0.0071 (9)	0.0021 (10)
C32	0.0451 (12)	0.0544 (13)	0.0522 (13)	-0.0176 (10)	-0.0021 (10)	-0.0021 (10)
C33	0.0458 (12)	0.0588 (14)	0.0672 (15)	-0.0147 (10)	0.0035 (11)	-0.0106 (12)
C34	0.0656 (16)	0.0710 (17)	0.0754 (18)	-0.0145 (14)	0.0074 (14)	-0.0215 (14)
C35	0.0772 (19)	0.093 (2)	0.0607 (16)	-0.0330 (16)	0.0111 (14)	-0.0255 (15)
C36	0.0591 (15)	0.0571 (15)	0.0807 (18)	-0.0026 (12)	-0.0072 (13)	-0.0027 (13)
C52	0.0513 (13)	0.0602 (14)	0.0497 (12)	-0.0272 (11)	-0.0026 (10)	-0.0036 (10)
C53	0.0563 (14)	0.0712 (15)	0.0519 (13)	-0.0328 (12)	-0.0003 (10)	-0.0129 (11)
C54	0.0687 (16)	0.0806 (18)	0.0608 (15)	-0.0361 (14)	0.0044 (13)	-0.0224 (14)
C55	0.0650 (16)	0.0635 (16)	0.0848 (19)	-0.0271 (13)	0.0106 (14)	-0.0246 (14)
C56	0.0785 (18)	0.099 (2)	0.0501 (14)	-0.0375 (16)	-0.0123 (13)	-0.0066 (14)
O1W	0.114 (2)	0.126 (2)	0.0823 (15)	-0.0674 (16)	-0.0458 (14)	0.0452 (14)

Geometric parameters (Å, °)

S31—C32	1.728 (2)	C53—C56	1.506 (4)
S31—C35	1.698 (3)	C53—C54	1.401 (4)
S51—C52	1.726 (2)	C54—C55	1.341 (4)
S51—C55	1.701 (3)	C2—H2A	0.9700
O4—C4	1.225 (3)	C2—H2B	0.9700
O1W—H1A	0.86 (4)	C6—H6B	0.9700
O1W—H1B	0.86 (4)	C6—H6A	0.9700
N1-C11	1.460 (3)	C11—H11C	0.9600
N1—C2	1.452 (3)	C11—H11B	0.9600
N1-C6	1.459 (3)	C11—H11A	0.9600
С2—С3	1.495 (3)	C13—H13	0.9300
C3—C4	1.474 (3)	C15—H15	0.9300
C3—C13	1.342 (3)	C34—H34	0.9300
C4—C5	1.473 (3)	С35—Н35	0.9300
C5—C15	1.342 (3)	C36—H36A	0.9600
С5—С6	1.501 (3)	C36—H36C	0.9600
C13—C32	1.426 (3)	C36—H36B	0.9600
C15—C52	1.429 (3)	C54—H54	0.9300
C32—C33	1.381 (3)	С55—Н55	0.9300
C33—C34	1.400 (4)	C56—H56C	0.9600
C33—C36	1.502 (4)	C56—H56A	0.9600
C34—C35	1.354 (5)	C56—H56B	0.9600
C52—C53	1.386 (3)		
\$31····C2	3.200 (2)	C54…H36C ⁱⁱⁱ	2.9700

S31…C54 ⁱ	3.611 (3)	C55····H36C ⁱⁱⁱ	3.0400
S51…C6	3.208 (2)	С56…Н15	2.6900
S51…C13 ⁱ	3.614 (2)	H1A…N1	2.03 (4)
S51…C36 ⁱⁱ	3.669 (3)	H1A…C2	2.88 (4)
S31…H56B ⁱⁱⁱ	3.1200	H1A····H35 ^{iv}	2.5000
S31…H2B	2.5800	H1A···C11	2.78 (4)
S51…H6A	2.5300	H1A···C6	2.87 (4)
01W…N1	2.867 (4)	H1B···O4 ⁱⁱⁱ	1.91 (4)
01W…04 ⁱⁱⁱ	2.759 (3)	H2A…H11A	2.3600
O1W···C35 ^{iv}	3.222 (4)	H2A···H6B	2.4600
04…01W ⁱⁱⁱ	2.759 (3)	H2B···C32	2.9200
$O1W\cdots H55^{v}$	2.5200	H2B···H11C	2.3800
O1W····H35 ^{iv}	2 3400	H2B····\$31	2 5800
04···H15	2.2800	H6A····S51	2.5300
04H13	2,2600	H6A···H11B	2 3400
O4···H6B ⁱ	2 7000	H6A····C52	2 9000
$04 \cdots H1B^{iii}$	1 91 (4)	H6B···H11A	2.9000
N1…O1W	2 867 (4)	H6B···H2A	2.4200
N1H1A	2.007(4)	$H6B \cdots O4^{i}$	2.4000
C2\$31	2.03(4)	H6B····C ^{Ai}	2.7000
C6\$51	3.200(2)	H11 A H2 A	2 3600
C13\$51 ⁱ	3.200(2)	H11AH6B	2.3000
$C_{13}^{23} \cdots C_{55}^{13}$	3.525(4)	H11BH6A	2.4200
C32C56 ⁱⁱⁱ	3.525 (4)		2.3400
$C_{32} = C_{50}$	3.521(4)	H11C····C35 ^{iv}	2.3800
$C_{32} = C_{34}$	3.343(4)	H12C36	2 6600
C35O1Wiv	3.342(4)	H13 C30	2.0000
C_{36}	3.222 (4)	H1304	2.2200
C_{50}^{-1}	3.009(3)	H1504	2.2000
C54\$21i	3.545 (4)	H15C56	2.2800
C55C22i	3.011(3)	H15	2.0900
C55C32i	3.323(4)	H15H30A	2.0000
C56C32iii	5.542(4)		2.5500
C211.4	3.321(4)		2.3000
	2.88 (4)		2.3400
	3.0800	H30A····C15	2.7900
	2.87(4)	H30A···H15	2.2200
	2.78 (4)		2.5500
С15-115(А	2.7900		3.0400
С15…Н56А	2.6800		3.0600
C32H2B	2.9200		2.9700
C32H36B ^m	2.9600		2.5200
	3.1000	H56AH15	2.0600
C50-116A	2.0000	H30A····U13	2.0800
	2.9000	H56B\$31 ^m	3.1200
С53…Н36Сш	3.0600	НэөВ…С32 ^т	2.9600
C32—S31—C35	92.06 (14)	H2A—C2—H2B	108.00
C52—S51—C55	91.93 (14)	C3—C2—H2A	109.00

H1A—O1W—H1B	104 (4)	N1—C6—H6A	109.00
C2—N1—C6	111.48 (18)	С5—С6—Н6А	109.00
C2—N1—C11	109.72 (19)	С5—С6—Н6В	109.00
C6—N1—C11	109.73 (19)	N1—C6—H6B	109.00
N1—C2—C3	112.71 (19)	H6A—C6—H6B	108.00
C2—C3—C4	118.61 (19)	N1—C11—H11B	109.00
C2—C3—C13	125.0 (2)	N1—C11—H11C	109.00
C4—C3—C13	116.3 (2)	H11A—C11—H11B	109.00
O4—C4—C3	120.4 (2)	H11A—C11—H11C	109.00
O4—C4—C5	121.1 (2)	H11B—C11—H11C	109.00
C3—C4—C5	118.50 (19)	N1—C11—H11A	109.00
C4—C5—C15	116.6 (2)	C3—C13—H13	113.00
C6—C5—C15	125.4 (2)	С32—С13—Н13	114.00
C4—C5—C6	117.98 (18)	С52—С15—Н15	113.00
N1—C6—C5	111.81 (19)	C5—C15—H15	113.00
C3—C13—C32	133.0 (2)	С33—С34—Н34	123.00
C5-C15-C52	133.1 (2)	C35—C34—H34	123.00
S31-C32-C33	110.37(17)	C34—C35—H35	123.00
C_{13} C_{32} C_{33}	124 3 (2)	S31-C35-H35	124.00
$S_{31} - C_{32} - C_{13}$	12532(17)	C33—C36—H36A	109.00
$C_{32} - C_{33} - C_{36}$	125.32(17) 125.1(2)	C33—C36—H36C	109.00
C_{34} C_{33} C_{36}	122.1(2) 122.7(2)	H36A—C36—H36B	109.00
C_{32} C_{33} C_{34}	1122.7(2) 112.2(2)	$H_{36A} = C_{36} = H_{36C}$	109.00
C_{33} C_{34} C_{35}	112.2 (2)	H36B-C36-H36C	109.00
$S_{31} = C_{35} = C_{34}$	113.0(3) 111.7(3)	C33_C36_H36B	110.00
S51_C52_C15	124.92(17)	C55-C54-H54	123.00
S51-C52-C13 S51-C52-C53	124.92(17) 110.18(18)	C53-C54-H54	123.00
C_{15} C_{52} C_{53}	124.9(2)	S51 C55 H55	123.00
$C_{13} - C_{32} - C_{33}$	124.9(2) 1254(3)	C54 C55 H55	124.00
$C_{32} = C_{33} = C_{30}$	123.4(3) 122.5(2)	C53 C56 H56B	109.00
$C_{54} = C_{53} = C_{50}$	122.3(2) 112.1(2)	C53 C56 H56C	109.00
$C_{32} = C_{33} = C_{34}$	112.1(2) 113.8(2)	C53 C56 H56A	109.00
S51 C55 C54	113.0(2)	H56A C56 H56C	100.00
$S_{31} = C_{33} = C_{34}$	112.0 (2)	H56P C56 H56C	109.00
N1 = C2 = H2P	109.00	H56A C56 H56P	109.00
$H = C_2 = H_2 B$	109.00	НЗОА—СЗО—НЗОВ	109.00
С5—С2—П2В	109.00		
C35 S31 C32 C13	170.2(2)	C4 C5 C6 N1	31.7(3)
$C_{35} = S_{31} = C_{32} = C_{13}$	1/9.2(2)	$C_{4} = C_{5} = C_{6} = N_{1}$	-1500(2)
$C_{33} = S_{31} = C_{32} = C_{33}$	-0.1(3)	$C_{15} = C_{5} = C_{15} = C_{52}$	130.0(2)
$C_{52} = S_{51} = C_{53} = C_{54}$	-0.1(3)	C4 - C5 - C15 - C52	1/0.7(2)
$C_{55} = S_{51} = C_{52} = C_{53}$	1/9.7(2)	$C_{0} = C_{12} = C_{12} = C_{22}$	0.3(4)
$C_{53} = S_{51} = C_{52} = C_{53}$	-0.7(2)	C_{3} C_{13} C_{22} C_{23} C_{23}	-1.2(4)
$C_{52} = 551 = C_{53} = C_{54}$	0.2(3)	$C_{5} = C_{15} = C_{52} = C_{55}$	177.3(3)
$C_{11} N_{1} C_{2} C_{3}$	(3)	$C_{5} = C_{15} = C_{52} = C_{52}$	-170.2(4)
C11 - N1 - C2 - C3	1/9.2(2)	C_{3} C_{13} C_{22} C_{24} C_{25}	-1/9.8(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-39.9(3)	531 - 0.52 - 0.53 - 0.54	-0.5(3)
$\bigcup_{i=1}^{n} \bigcup_{i=1}^{n} \bigcup_{i$	1/8.4 (2)	531 - 0.32 - 0.35 - 0.35	1/9.2 (2)
NI-C2-C3-C4	-20.9 (3)	C13—C32—C33—C34	-1/9.4 (2)

N1—C2—C3—C13	156.9 (2)	C13—C32—C33—C36	0.2 (4)
C2—C3—C4—O4	-179.2 (2)	C32—C33—C34—C35	0.4 (4)
C2—C3—C4—C5	-0.3 (3)	C36—C33—C34—C35	-179.2 (3)
C13—C3—C4—O4	-2.7 (4)	C33—C34—C35—S31	-0.2 (4)
C13—C3—C4—C5	176.3 (2)	S51—C52—C53—C54	1.1 (3)
C2—C3—C13—C32	-0.3 (4)	S51—C52—C53—C56	-177.2 (2)
C4—C3—C13—C32	-176.6 (2)	C15—C52—C53—C54	-179.3 (2)
O4—C4—C5—C6	176.6 (2)	C15—C52—C53—C56	2.4 (4)
O4—C4—C5—C15	-1.9 (4)	C52—C53—C54—C55	-1.0 (4)
C3—C4—C5—C6	-2.3 (3)	C56—C53—C54—C55	177.4 (3)
C3—C4—C5—C15	179.2 (2)	C53—C54—C55—S51	0.4 (4)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y-1, z; (iii) -x, -y+1, -z+1; (iv) -x, -y+1, -z+2; (v) -x+1, -y, -z+1; (vi) x-1, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
01 <i>W</i> —H1 <i>A</i> …N1	0.86 (4)	2.03 (4)	2.867 (4)	164 (4)
O1 <i>W</i> —H1 <i>B</i> ····O4 ⁱⁱⁱ	0.86 (4)	1.91 (4)	2.759 (3)	167 (4)
C2—H2 <i>B</i> ···S31	0.97	2.58	3.200 (2)	122
C6—H6A···S51	0.97	2.53	3.208 (2)	127
C13—H13…O4	0.93	2.26	2.693 (3)	108
C15—H15…O4	0.93	2.28	2.711 (3)	108
C35—H35…O1 <i>W</i> ^{iv}	0.93	2.34	3.222 (4)	159
C55—H55…O1 <i>W</i> ^v	0.93	2.52	3.450 (4)	176
C56—H56 <i>B</i> ··· <i>Cg</i> (1) ⁱⁱⁱ	0.96	2.97	3.763 (3)	141
C36—H36 <i>C</i> ··· <i>Cg</i> (2) ⁱⁱⁱ	0.96	2.83	3.742 (3)	159

Symmetry codes: (iii) -x, -y+1, -z+1; (iv) -x, -y+1, -z+2; (v) -x+1, -y, -z+1.