

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Ammonio-2,2,6,6-tetramethylpiperidinium bis(dihydrogen phosphate) monohydrate

Mohamed Lahbib Mrad, Sameh Akriche, Mohamed Rzaigui and Cherif Ben Nasr*

Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia

Correspondence e-mail: cherif_bennasr@yahoo.fr

Received 3 February 2009; accepted 9 March 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.128; data-to-parameter ratio = 18.3.

In the crystal structure of the title compound, $C_9H_{22}N_2^{2+}$. $2H_2PO_4^- \cdot H_2O$, the $H_2PO_4^-$ anions are hydrogen bonded to each other, forming a ribbon parallel to the *b* axis. The water molecules connect these ribbons *via* $O-H \cdots O$ hydrogen bonds. The organic cations are attached to the dihydrogen phosphate anions and water molecules through $N-H \cdots O$ and $C-H \cdots O$ hydrogen bonds, forming an infinite threedimensional network.

Related literature

For common applications of hybrid compounds, see: Wang *et al.* (1996); Coombs *et al.* (1997); Masse *et al.* (1993). For organic phosphates, see: Baoub & Jouini (1998). For a discussion of the O···O distances, see: Kefi *et al.* (2006). For P···O bond-length data, see: Oueslati & Ben Nasr (2006). For the $[(H_2PO_4^-)_4]_n$ subnetwork as a polyanion, see: Kefi *et al.* (2006).

Experimental

Crystal data

$C_9H_{22}N_2^{2+}\cdot 2H_2PO_4^{-}\cdot H_2O$	c = 16.321 (2) Å
$M_r = 370.27$	$\beta = 104.56 \ (4)^{\circ}$
Monoclinic, $P2_1/c$	V = 1642.4 (8) Å ³
a = 12.604 (5) Å	Z = 4
b = 8.249 (2) Å	Mo $K\alpha$ radiation

2575 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

frequency: 120 min intensity decay: 8%

 $0.5 \times 0.35 \times 0.25 \text{ mm}$

 $R_{\rm int} = 0.056$ 2 standard reflections

refinement $\Delta \rho_{\text{max}} = 0.32 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.49$ e Å⁻³

 $\mu = 0.31 \text{ mm}^{-1}$ T = 298 K

Data collection

Enraf–Nonius TurboCAD-4
diffractometer
Absorption correction: none
6617 measured reflections
3953 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.128$ S = 1.003953 reflections 216 parameters 3 restraints

Table 1Hydrogen-bond geometry (Å, °).

$\overline{D - H \cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\overline{\Omega_{2}-H_{2}\cdots\Omega_{1}^{i}}$	0.82	1.74	2.537 (3)	163
O4-H4···O5 ⁱⁱ	0.82	1.79	2.538 (3)	152
O6-H6···O3	0.82	1.83	2.646 (3)	172
O7−H7···O1	0.82	1.85	2.662 (3)	173
O9−H91···O5	0.85(1)	1.97 (1)	2.811 (3)	170 (3)
O9−H92···O3 ⁱⁱⁱ	0.85 (1)	2.00(1)	2.837 (3)	165 (5)
O9−H92···O4 ⁱⁱⁱ	0.85 (1)	2.66 (5)	3.256 (3)	128 (5)
$N1 - H1A \cdots O8^{iv}$	0.90	1.84	2.742 (3)	176
$N1 - H1B \cdots O5^{v}$	0.90	2.31	3.168 (3)	159
$N1 - H1B \cdot \cdot \cdot O8^{v}$	0.90	2.33	3.038 (3)	136
$N2-H2A\cdots O2$	0.89	2.05	2.929 (3)	172
$N2-H2A\cdots O1$	0.89	2.51	3.076 (3)	122
$N2-H2B\cdots O3^{ii}$	0.89	2.07	2.919 (3)	160
$N2 - H2C \cdots O9$	0.89	1.88	2.721 (4)	156
C3-H3···O6 ⁱⁱ	0.98	2.59	3.406 (3)	141
$C4 - H4B \cdot \cdot \cdot O9^{vi}$	0.97	2.58	3.492 (4)	158
$C9-H9A\cdots O7^{vi}$	0.96	2.40	3.343 (3)	168

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) x - 1, y, z; (v) -x + 1, -y + 1, -z + 1; (vi) -x + 1, -y, -z + 1.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2099).

References

- Baoub, L. & Jouini, A. (1998). J. Solid State Chem. 141, 343-351.
- Coombs, N., Khuehniani, D., Oliver, S., Ozin, G. A., Shen, G. C., Sokolov, I. & Yang, H. (1997). J. Chem. Soc. Dalton Trans. pp. 3941–3952.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kefi, R., Abid, S., Ben Nasr, C. & Rzaigui, M. (2006). Mater. Res. Bull. 42, 404– 412. Masse, R., Bagieu-Bleucher, M., Pecaul, J., Levy, J. P. & Zyss, J. (1993). Nonlinear Opt. 5, 413–423.

Oueslati, A. & Ben Nasr, C. (2006). Anal. Sci. X-Ray Struct. Online, 22, 225-226.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, J. T., Savinell, R. F., Wainright, J., Litt, M. & Yu, H. (1996). *Electrochim.* Acta, 41, 193–197.

supporting information

Acta Cryst. (2009). E65, o757-o758 [doi:10.1107/S1600536809008563]

4-Ammonio-2,2,6,6-tetramethylpiperidinium bis(dihydrogen phosphate) monohydrate

Mohamed Lahbib Mrad, Sameh Akriche, Mohamed Rzaigui and Cherif Ben Nasr

S1. Comment

The combination of organic molecules and inorganic materials was the starting point for the development of new hybrid compounds having many practical and potential applications in various fields, such as biomolecular sciences, catalysis, fuel cells, liquid crystal-material development and quadratic nonlinear optics (Wang et al., 1996; Coombs et al., 1997; Masse et al., 1993). Among these hybrid compounds, organic phosphates are particularly interesting owing to the specific H-bond schemes that they can present in their infinite networks (Baoub & Jouini, 1998). We report here the synthesis and the crystal structure of a new member of this family, the compound ($C_9H_{28}N_2O_9P_2$). As shown in Fig. 1, to ensure charge equilibrium the organic species is doubly protonated at N1 and N2 nitrogen atoms. Thus, the structure associates to each 4-ammonio-2,2,6,6,-tetramethylpiperidinium cation two dihydrogen phosphate anions and one water molecule. The two H_2PO_4 are crystallographically independent. They form, via H-bonds a repetitive motif of four member (H_2PO_4)₄ (Fig. 2). The organic cations and the water molecules are attached to these units via (O—H···O), N—H···O and C—H···O hydrogen bonds to perform a three dimensional infinite network. An examination of the anionic entity shows that the O···O distances involved in hydrogen bonds [2.537 (3) to 2.662 (3) A°] are close to the O···O distances in the H₂PO₄tetrahedra [2.469 (3) to 2.536 (3) A°], so one could consider the $[(H_2PO_4)_4]_n$ subnetwork as a polyanion (Kefi *et al.*, 2006). The detailed geometries of $H_2P(1)O_4^-$ and $H_2P(2)O_4^-$ entities show that the P...O distances significantly are shorter [1.480 (2) to $1.515 (2) A^{\circ}]$ than the P···OH distances [1.552 (2) to $1.582 (2) A^{\circ}]$, which is in full agreement with those observed in such anions in other organic dihydrogenomonophosphates [Oueslati and Ben Nasr, 2006].

S2. Experimental

Crystals of the title compound have been prepared in a Petri dish by adding 50 mmol of concentrated orthophosphoric acid (Fluka, 85%, d = 1.7) to 25 mmol of 4-Amino-2,2,6,6-tetramethylpiperidine (Acros) dissolved in ethanol. After agitation, the resulting solution has been slowly evaporated at room temperature until the formation of single crystals suitable for X-ray structure analysis and these remained stable under normal conditions of temperature and humidity.

S3. Refinement

Hydrogen atoms were placed in calculated positions and refined as part of a riding model except those of the water molecule which were located in difference Fourier maps and their positions and isotropic displacement parameters refined.

Figure 1

A view of (C₉H₂₈N₂O₉P₂), showing 40% probability displacement ellipsoids and arbitrary spheres for the H atoms.

Figure 2

Projection of $(C_9H_{28}N_2O_9P_2)$ subnetwork along the *b* axis.

4-Ammonio-2,2,6,6-tetramethylpiperidinium bis(dihydrogen phosphate) monohydrate

Crystal data	
$C_9H_{22}N_2^{2+}\cdot 2H_2PO_4^{-}\cdot H_2O$	F(000) = 792
$M_r = 370.27$	$D_{\rm x} = 1.497 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 12.604 (5) Å	$\theta = 9-11^{\circ}$
b = 8.249 (2) Å	$\mu = 0.31 \text{ mm}^{-1}$
c = 16.321 (2) Å	T = 298 K
$\beta = 104.56 \ (4)^{\circ}$	Prism, colorless
V = 1642.4 (8) Å ³	$0.5 \times 0.35 \times 0.25 \text{ mm}$
Z = 4	
Data collection	
Enraf–Nonius TurboCAD-4	3953 independent reflections
diffractometer	2575 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.056$
Graphite monochromator	$\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$
Nonprofiled ω scans	$h = -16 \rightarrow 16$
6617 measured reflections	$k = 0 \rightarrow 10$

$l = -10 \rightarrow 21$	intensity decay: 8%
2 standard reflections every 120 min	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.128$	neighbouring sites
S = 1.00	H atoms treated by a mixture of independent
3953 reflections	and constrained refinement
216 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0646P)^2]$
3 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.32 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
P1	0.52437 (5)	0.19580 (8)	0.19702 (4)	0.02151 (17)
P2	0.79116 (5)	0.36565 (8)	0.37537 (4)	0.02164 (17)
01	0.57523 (14)	0.0956 (2)	0.27473 (12)	0.0301 (4)
O2	0.42447 (15)	0.2885 (2)	0.21633 (14)	0.0332 (5)
H2	0.4379	0.3859	0.2203	0.050*
03	0.60240 (14)	0.3112 (2)	0.17133 (12)	0.0279 (4)
O4	0.47608 (15)	0.0832 (3)	0.12059 (12)	0.0372 (5)
H4	0.4155	0.0509	0.1233	0.056*
05	0.70615 (14)	0.4348 (2)	0.41668 (12)	0.0312 (5)
O6	0.77241 (16)	0.4361 (3)	0.28269 (12)	0.0356 (5)
H6	0.7172	0.3954	0.2520	0.053*
O7	0.77502 (16)	0.1773 (2)	0.36442 (15)	0.0380 (5)
H7	0.7113	0.1577	0.3394	0.057*
08	0.90532 (14)	0.3991 (3)	0.42314 (13)	0.0358 (5)
O9	0.59416 (18)	0.2150 (3)	0.49650 (14)	0.0393 (5)
H91	0.626 (3)	0.290 (3)	0.476 (2)	0.055 (11)*
H92	0.597 (4)	0.226 (6)	0.5489 (11)	0.13 (2)*
N1	0.12655 (16)	0.3672 (3)	0.44120 (13)	0.0195 (4)
H1A	0.0535	0.3763	0.4329	0.023*
H1B	0.1573	0.4360	0.4833	0.023*
N2	0.40484 (17)	0.1521 (3)	0.37758 (15)	0.0301 (5)
H2A	0.4183	0.1931	0.3307	0.045*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H2B	0.4093	0.0445	0.3764	0.045*
H2C	0.4540	0.1900	0.4226	0.045*
C1	0.15485 (19)	0.4285 (3)	0.36124 (16)	0.0228 (5)
C2	0.2733 (2)	0.3797 (3)	0.36452 (18)	0.0268 (6)
H22A	0.2892	0.4053	0.3108	0.032*
H22B	0.3231	0.4418	0.4083	0.032*
C3	0.29204 (19)	0.2008 (3)	0.38261 (17)	0.0241 (5)
H3	0.2383	0.1395	0.3400	0.029*
C4	0.27523 (19)	0.1613 (3)	0.46967 (17)	0.0233 (5)
H4A	0.3253	0.2256	0.5121	0.028*
H4B	0.2919	0.0478	0.4823	0.028*
C5	0.15786 (19)	0.1958 (3)	0.47367 (17)	0.0221 (5)
C6	0.0747 (2)	0.3618 (4)	0.28233 (18)	0.0404 (8)
H6A	0.0866	0.2475	0.2781	0.061*
H6B	0.0862	0.4155	0.2331	0.061*
H6C	0.0010	0.3804	0.2862	0.061*
C7	0.1434 (2)	0.6124 (3)	0.36298 (19)	0.0345 (7)
H7A	0.0700	0.6401	0.3646	0.052*
H7B	0.1589	0.6580	0.3131	0.052*
H7C	0.1941	0.6550	0.4123	0.052*
C8	0.0775 (2)	0.0728 (4)	0.4223 (2)	0.0339 (7)
H8A	0.0875	0.0665	0.3660	0.051*
H8B	0.0038	0.1062	0.4198	0.051*
H8C	0.0908	-0.0317	0.4488	0.051*
C9	0.1488 (2)	0.1962 (3)	0.56518 (17)	0.0291 (6)
H9A	0.1607	0.0885	0.5879	0.044*
H9B	0.0771	0.2325	0.5670	0.044*
H9C	0.2030	0.2679	0.5982	0.044*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0200 (3)	0.0239 (3)	0.0216 (3)	-0.0024 (3)	0.0070 (3)	-0.0030 (3)
P2	0.0183 (3)	0.0229 (3)	0.0226 (4)	0.0007 (3)	0.0032 (2)	-0.0014 (3)
01	0.0333 (10)	0.0257 (10)	0.0286 (11)	-0.0049 (8)	0.0030 (8)	0.0036 (8)
O2	0.0323 (10)	0.0254 (10)	0.0473 (13)	0.0010 (8)	0.0203 (9)	-0.0007 (10)
O3	0.0245 (9)	0.0328 (10)	0.0272 (10)	-0.0066 (8)	0.0077 (8)	0.0008 (9)
O4	0.0286 (10)	0.0517 (13)	0.0333 (12)	-0.0120 (9)	0.0115 (9)	-0.0202 (10)
05	0.0281 (9)	0.0362 (11)	0.0317 (11)	0.0093 (8)	0.0121 (8)	0.0049 (9)
06	0.0392 (11)	0.0427 (12)	0.0228 (11)	-0.0127 (9)	0.0037 (8)	0.0015 (9)
07	0.0322 (10)	0.0249 (10)	0.0506 (14)	0.0027 (8)	-0.0014 (10)	-0.0035 (10)
08	0.0209 (9)	0.0438 (12)	0.0382 (12)	-0.0010 (8)	-0.0009 (8)	-0.0108 (10)
09	0.0422 (12)	0.0495 (14)	0.0278 (12)	-0.0122 (10)	0.0117 (10)	-0.0011 (11)
N1	0.0193 (9)	0.0214 (10)	0.0183 (11)	0.0005 (8)	0.0059 (8)	0.0003 (9)
N2	0.0263 (11)	0.0339 (13)	0.0335 (13)	0.0045 (9)	0.0136 (10)	-0.0046 (11)
C1	0.0231 (12)	0.0300 (13)	0.0154 (12)	0.0004 (11)	0.0051 (10)	0.0048 (11)
C2	0.0252 (12)	0.0308 (14)	0.0275 (15)	-0.0008 (11)	0.0122 (11)	0.0038 (12)
C3	0.0194 (11)	0.0283 (13)	0.0268 (14)	-0.0006 (10)	0.0100 (10)	-0.0038 (12)

supporting information

C4	0 0227 (11)	0 0209 (13)	0 0263 (14)	0.0032 (10)	0 0064 (10)	0.0010.(11)
C5	0.0226 (11)	0.0194 (11)	0.0255 (14)	-0.0010(10)	0.0082 (10)	-0.0001(11)
C6	0.0330 (15)	0.061 (2)	0.0229 (15)	0.0037 (14)	-0.0001 (12)	-0.0019 (15)
C7	0.0391 (15)	0.0298 (15)	0.0374 (17)	0.0078 (12)	0.0148 (13)	0.0118 (13)
C8	0.0284 (13)	0.0279 (14)	0.0482 (19)	-0.0110 (11)	0.0146 (13)	-0.0081 (14)
C9	0.0350 (14)	0.0278 (14)	0.0280 (15)	0.0019 (11)	0.0143 (12)	0.0071 (12)

Geometric parameters (Å, °)

P1—O3	1.5020 (19)	C1—C2	1.534 (3)
P1—O1	1.515 (2)	C2—C3	1.512 (4)
P1—O4	1.552 (2)	C2—H22A	0.9700
P1—O2	1.5713 (19)	C2—H22B	0.9700
P2—O8	1.480 (2)	C3—C4	1.524 (4)
P2—O5	1.5137 (19)	С3—Н3	0.9800
P2—O7	1.572 (2)	C4—C5	1.524 (3)
P2—O6	1.582 (2)	C4—H4A	0.9700
O2—H2	0.8200	C4—H4B	0.9700
O4—H4	0.8200	С5—С9	1.526 (4)
O6—H6	0.8200	C5—C8	1.527 (4)
O7—H7	0.8200	С6—Н6А	0.9600
O9—H91	0.848 (10)	С6—Н6В	0.9600
O9—H92	0.852 (10)	С6—Н6С	0.9600
N1—C1	1.523 (3)	С7—Н7А	0.9600
N1—C5	1.527 (3)	С7—Н7В	0.9600
N1—H1A	0.9000	С7—Н7С	0.9600
N1—H1B	0.9000	C8—H8A	0.9600
N2—C3	1.499 (3)	C8—H8B	0.9600
N2—H2A	0.8900	C8—H8C	0.9600
N2—H2B	0.8900	С9—Н9А	0.9600
N2—H2C	0.8900	С9—Н9В	0.9600
C1—C7	1.525 (4)	С9—Н9С	0.9600
C1—C6	1.526 (4)		
O3—P1—O1	114.23 (11)	N2—C3—C4	110.5 (2)
03—P1—O4	107.88 (11)	C_{2} C_{3} C_{4}	109.8 (2)
01—P1—04	110.16 (13)	N2—C3—H3	108.6
O3—P1—O2	111.20 (12)	C2—C3—H3	108.6
O1—P1—O2	106.82 (12)	С4—С3—Н3	108.6
O4—P1—O2	106.28 (12)	C3—C4—C5	111.4 (2)
O8—P2—O5	113.48 (12)	C3—C4—H4A	109.4
O8—P2—O7	108.97 (11)	C5—C4—H4A	109.4
O5—P2—O7	109.72 (12)	C3—C4—H4B	109.4
O8—P2—O6	109.09 (13)	C5—C4—H4B	109.4
O5—P2—O6	109.58 (12)	H4A—C4—H4B	108.0
O7—P2—O6	105.71 (12)	C4—C5—C9	110.8 (2)
Р1—О2—Н2	109.5	C4—C5—N1	109.09 (19)
P1—O4—H4	109.5	C9—C5—N1	105.1 (2)

	100 5		111 7 (2)
Р2—О6—Н6	109.5	C4—C5—C8	111.7 (2)
Р2—О7—Н7	109.5	C9—C5—C8	109.7 (2)
H91—O9—H92	114 (3)	N1—C5—C8	110.3 (2)
C1—N1—C5	120.63 (19)	C1—C6—H6A	109.5
C1—N1—H1A	107.2	C1—C6—H6B	109.5
C5—N1—H1A	107.2	H6A—C6—H6B	109.5
C1—N1—H1B	107.2	C1—C6—H6C	109.5
C5—N1—H1B	107.2	H6A—C6—H6C	109.5
H1A—N1—H1B	106.8	H6B—C6—H6C	109.5
C3—N2—H2A	109.5	C1—C7—H7A	109.5
C3—N2—H2B	109.5	C1—C7—H7B	109.5
H2A—N2—H2B	109.5	H7A—C7—H7B	109.5
C3—N2—H2C	109.5	C1—C7—H7C	109.5
H2A—N2—H2C	109.5	H7A—C7—H7C	109.5
H2B—N2—H2C	109.5	H7B—C7—H7C	109.5
N1—C1—C7	105.7 (2)	С5—С8—Н8А	109.5
N1—C1—C6	110.8 (2)	С5—С8—Н8В	109.5
C7—C1—C6	109.2 (2)	H8A—C8—H8B	109.5
N1—C1—C2	108.6 (2)	С5—С8—Н8С	109.5
C7—C1—C2	110.9 (2)	H8A—C8—H8C	109.5
C6—C1—C2	111.5 (2)	H8B—C8—H8C	109.5
C3—C2—C1	111.4 (2)	С5—С9—Н9А	109.5
C3—C2—H22A	109.3	С5—С9—Н9В	109.5
C1—C2—H22A	109.3	H9A—C9—H9B	109.5
C3—C2—H22B	109.3	С5—С9—Н9С	109.5
C1—C2—H22B	109.3	Н9А—С9—Н9С	109.5
H22A—C2—H22B	108.0	Н9В—С9—Н9С	109.5
N2—C3—C2	110.7 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H···A
02—H2…O1 ⁱ	0.82	1.74	2.537 (3)	163
O4—H4····O5 ⁱⁱ	0.82	1.79	2.538 (3)	152
O6—H6…O3	0.82	1.83	2.646 (3)	172
O7—H7…O1	0.82	1.85	2.662 (3)	173
O9—H91…O5	0.85(1)	1.97 (1)	2.811 (3)	170 (3)
O9—H92…O3 ⁱⁱⁱ	0.85 (1)	2.00(1)	2.837 (3)	165 (5)
O9—H92…O4 ⁱⁱⁱ	0.85(1)	2.66 (5)	3.256 (3)	128 (5)
N1—H1 <i>A</i> ····O8 ^{iv}	0.90	1.84	2.742 (3)	176
N1—H1 <i>B</i> ····O5 ^v	0.90	2.31	3.168 (3)	159
N1—H1 <i>B</i> ···O8 ^v	0.90	2.33	3.038 (3)	136
N2—H2 <i>A</i> ···O2	0.89	2.05	2.929 (3)	172
N2—H2A…O1	0.89	2.51	3.076 (3)	122
N2—H2 <i>B</i> ····O3 ⁱⁱ	0.89	2.07	2.919 (3)	160
N2—H2 <i>C</i> ···O9	0.89	1.88	2.721 (4)	156
C3—H3…O6 ⁱⁱ	0.98	2.59	3.406 (3)	141

supporting information

C4—H4 <i>B</i> ···O9 ^{vi}	0.97	2.58	3.492 (4)	158	
C9—H9A····O7 ^{vi}	0.96	2.40	3.343 (3)	168	

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x+1, y-1/2, -z+1/2; (iii) x, -y+1/2, z+1/2; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y, -z+1.