organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2⁴,4,8-Trioxa-2¹-aza-1,3,6(1,2)-tribenzena-2(2,3)-bicyclo[3.3.0]octanacyclooctaphane

P. R. Seshadri,^a* B. Balakrishnan,^b K. Ilangovan,^c S. Purushothaman^d and R. Raghunathan^d

^aPostGraduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, ^bDepartment of Physics, P. T. Lee Chengalvaraya Naicker College of Engineering and Technology, Kancheepuram 631 502, India, ^cPostGraduate and Research Department of Physics, RKM Vivekananda College, Chennai 600 004, India, and ^dDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: seshadri_pr@yahoo.com

Received 18 February 2009; accepted 26 February 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.059; wR factor = 0.213; data-to-parameter ratio = 18.5.

The crystal structure of the title compound, $C_{26}H_{25}NO_3$, was determined as part of an investigation of host-guest and electron donor-acceptor complexes. The oxazole and the pyrrole rings both adopt envelope conformations. The dihedral angle between the two benzene rings directly linked to the oxazole ring is $49.5 (1)^{\circ}$. The crystal structure is stabilized by a $C-H \cdots \pi$ interaction.

Related literature

For biological properties of azomethine vlides, see: Chiacchio et al. (2003). For general background, see: Diederich (1991); Cram & Cram (1994); Morrison & Hoger (1996); Padwa (1984). For reference bond-length data, see: Allen et al. (1987).For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental

Crystal data

C ₂₆ H ₂₅ NO ₃	V = 4116.70 (17) Å
$M_r = 399.47$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 31.1942 (7) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 8.3992 (2) Å	T = 293 K
c = 16.0323 (4) Å	$0.25 \times 0.20 \times 0.20$
$\beta = 101.468 \ (1)^{\circ}$	

Data collection

Bruker Kappa APEXII areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.979, \ T_{\max} = 0.983$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	271 parameters
$wR(F^2) = 0.213$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
5004 reflections	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

mm

22005 measured reflections

 $R_{\rm int} = 0.029$

5004 independent reflections

2790 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots$	A
$C7-H7A\cdots Cg1^{i}$	0.97	2.94	3.827 (3)	153	_
	1 1				_

Symmetry code: (i) $-x + \frac{1}{2}, -y - \frac{1}{2}, -z + 1$. Cg1 is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

BB thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2311).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chiacchio, U., Corsaro, A., Iannazzo, D., Piperno, A., Pistara, V., Resifina, A., Romeo, R., Sindona, G. & Romeo, G. (2003). Tetrahedron Asymmetry, 14, 2717-2723.
- Cram, D. J. & Cram, D. M. (1994). Container Molecules and Their Guests. Cambridge: Royal Society of Chemistry.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Diederich, F. (1991). Cyclophanes. Cambridge: Royal Society of Chemistry.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Morrison, D. L. & Hoger, S. (1996). Chem. Commun. pp. 2313-2314.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Padwa, A. (1984). Editor. 1-3-Dipolar Cycloaddition Chemistry, Vols. 1 and 2. New York: Wiley.

Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o670 [doi:10.1107/S160053680900720X]

2⁴,4,8-Trioxa-2¹-aza-1,3,6(1,2)-tribenzena-2(2,3)-bicyclo[3.3.0]octanacyclooctaphane

P. R. Seshadri, B. Balakrishnan, K. Ilangovan, S. Purushothaman and R. Raghunathan

S1. Comment

The design and synthesis of cyclophanes possessing rigidly defined cavities and shape-persistent structures of molecular dimensions is of interest as molecular hosts in the areas of host-guest and electron donor-acceptor complexes (Diederich, 1991; Cram & Cram, 1994; Morrison & Hoger, 1996). 1,3-Dipolar cycloaddition reactions afford efficient methods for the construction of heterocyclic units in a highly regio- and stereoselective manner (Padwa, 1984). In particular, the chemistry of azomethine ylides has gained significance in recent years as it serves as an expedient route for the construction of nitrogen heterocycles. N and O heterocycles have also been shown to provide useful information about anticancer and antiviral properties (Chiacchio *et al.*, 2003).

In the crystal structure of the title compound, the oxazole ring adopts an envelope conformation with atom C15 displaced by 0.172 (3) Å from the plane of the other ring atoms N1/O3//C14/C19. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are $q_2 = 0.275$ (2) Å, $\varphi = 152.3$ (5)°, $\Delta_s(C15) = 5.7$ (2)° and $\Delta_2(C19) = 8.5$ (2)°. The pyrrole ring also adopts an envelope conformation with atom C18 displaced by 0.208 (3) Å from the plane of the other ring atoms C15/C16/C17/N1. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are $q_2 = 0.329$ (3) Å, $\varphi = 144.0$ (6)°, $\Delta_s(C18) = 0.9$ (4)° and $\Delta_2(C16) = 16.5$ (4)°.

The conformation of the cyclophane ring O1/ C7/ C6/ C1/ C26/ O2/ C21/ C20/ C19/ C14/ C13/ C8 is described by the torsion angles in Table 1. The dihedral angle between the two benzene rings directly linked to the oxazole ring is 49.5 (1)°. The bond lengths (Allen *et al.*, 1987) and bond angles are in agreement with the values reported in literature.

The crystal structure is stabilized by a C—H··· π (C7—H7A···Cg1) interaction, where Cg1 is the centroid of the C1—C6 ring.

S2. Experimental

To a solution of O,O'-coupled salicylaldehyde (bis aldehyde), using o-xylylene bromide (2 mmol) in dry acetonitrile (20 ml), was added *L*-proline (1 mmol) under an N₂ atmosphere. The reaction was refluxed for 4 h. After completion of the reaction, the solvent was distilled off under reduced pressure and the crude product was purified by column chromatography.

S3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

Molecular structure of the title compound, showing 30% probability displacement ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radius. Hydrogen atoms of the benzene rings are omitted for clarity.

2⁴,4,8-Trioxa-2¹-aza-1,3,6(1,2)-tribenzena-2(2,3)- bicyclo[3.3.0]octanacyclooctaphane

Crystal data	
C ₂₆ H ₂₅ NO ₃	$V = 4116.70 (17) Å^3$
$M_r = 399.47$	Z = 8
Monoclinic, $C2/c$	F(000) = 1696
Hall symbol: C2/c	$D_{\rm x} = 1.289 {\rm ~Mg} {\rm ~m}^{-3}$
a = 31.1942 (7) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 8.3992 (2) Å	Cell parameters from 4735 reflections
c = 16.0323 (4) Å	$\theta = 1.3 - 28.2^{\circ}$
$\beta = 101.468 \ (1)^{\circ}$	$\mu=0.08~\mathrm{mm^{-1}}$

T = 293 KBlock, colourless

Data collection

Bruker Kappa APEXII area-detector diffractometer	22005 measured reflections 5004 independent reflections
Radiation source: fine-focus sealed tube	2790 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.029$
ωscans	$\theta_{\rm max} = 28.2^{\circ}, \theta_{\rm min} = 1.3^{\circ}$
Absorption correction: multi-scan	$h = -40 \rightarrow 41$
(SADABS; Sheldrick, 2001)	$k = -11 \rightarrow 10$
$T_{\min} = 0.979, \ T_{\max} = 0.983$	$l = -20 \rightarrow 21$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from
$wR(F^2) = 0.213$	neighbouring sites
S = 1.03	H-atom parameters constrained

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1118P)^2 + 1.2039P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.40 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

 $0.25 \times 0.20 \times 0.20$ mm

Special details

direct methods

5004 reflections

271 parameters 0 restraints

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.20831 (5)	1.12120 (17)	0.44961 (9)	0.0625 (4)	
02	0.14559 (5)	0.87432 (17)	0.35663 (10)	0.0594 (4)	
03	0.11764 (7)	1.3961 (2)	0.32924 (11)	0.0843 (6)	
N1	0.06599 (6)	1.2386 (2)	0.24650 (12)	0.0645 (5)	
C1	0.21940 (7)	0.7919 (3)	0.37217 (15)	0.0599 (6)	
C2	0.22911 (10)	0.7010 (3)	0.30588 (17)	0.0781 (8)	
H2	0.2090	0.6262	0.2794	0.094*	
C3	0.26785 (11)	0.7196 (4)	0.27879 (19)	0.0905 (9)	
H3	0.2739	0.6577	0.2345	0.109*	
C4	0.29724 (11)	0.8295 (4)	0.3174 (2)	0.0923 (9)	
H4	0.3236	0.8419	0.2993	0.111*	
C5	0.28860 (8)	0.9222 (3)	0.38261 (18)	0.0752 (7)	
H5	0.3090	0.9971	0.4081	0.090*	
C6	0.24927 (8)	0.9047 (3)	0.41087 (15)	0.0607 (6)	

C7	0.24064 (8)	1.0041 (3)	0.48294 (15)	0.0668 (6)
H7A	0.2302	0.9376	0.5242	0.080*
H7B	0.2674	1.0560	0.5112	0.080*
C8	0.17635 (7)	1.1527 (2)	0.49412 (13)	0.0527 (5)
С9	0.18214 (9)	1.1313 (3)	0.58168 (14)	0.0665 (6)
Н9	0.2089	1.0964	0.6125	0.080*
C10	0.14848 (10)	1.1616 (3)	0.62241 (16)	0.0745 (7)
H10	0.1523	1.1456	0.6808	0.089*
C11	0.10922 (10)	1.2155 (3)	0.57754 (17)	0.0774 (7)
H11	0.0862	1.2343	0.6052	0.093*
C12	0.10395 (8)	1.2421 (3)	0.49096 (16)	0.0704 (7)
H12	0.0774	1.2816	0.4612	0.084*
C13	0.13715 (7)	1.2113 (2)	0.44787 (13)	0.0525 (5)
C14	0.13172 (7)	1.2381 (3)	0.35333 (14)	0.0563 (5)
H14	0.1603	1.2224	0.3381	0.068*
C15	0.07270 (10)	1.3900 (3)	0.28885 (17)	0.0798 (8)
H15	0.0538	1.4013	0.3306	0.096*
C16	0.06289 (13)	1.5177 (4)	0.22115 (19)	0.1011 (10)
H16A	0.0388	1.5845	0.2301	0.121*
H16B	0.0884	1.5840	0.2213	0.121*
C17	0.05085 (14)	1.4273 (4)	0.1393 (2)	0.1170 (12)
H17A	0.0193	1.4220	0.1209	0.140*
H17B	0.0631	1.4782	0.0950	0.140*
C18	0.06941 (10)	1.2667 (3)	0.15755 (16)	0.0816 (8)
H18A	0.0528	1.1882	0.1201	0.098*
H18B	0.0997	1.2631	0.1511	0.098*
C19	0.09799 (7)	1.1284 (2)	0.29399 (13)	0.0525 (5)
H19	0.1133	1.0770	0.2534	0.063*
C20	0.07809 (7)	0.9999 (3)	0.33905 (12)	0.0519 (5)
C21	0.10425 (7)	0.8702 (2)	0.37255 (13)	0.0540 (5)
C22	0.08812 (9)	0.7507 (3)	0.41656 (16)	0.0687 (7)
H22	0.1058	0.6657	0.4391	0.082*
C23	0.04511 (10)	0.7597 (3)	0.42659 (19)	0.0816 (8)
H23	0.0338	0.6801	0.4563	0.098*
C24	0.01903 (9)	0.8843 (4)	0.3933 (2)	0.0832 (8)
H24	-0.0099	0.8886	0.4001	0.100*
C25	0.03556 (8)	1.0033 (3)	0.34981 (16)	0.0698 (7)
H25	0.0176	1.0875	0.3273	0.084*
C26	0.17676 (7)	0.7624 (3)	0.39923 (16)	0.0657 (6)
H26A	0.1668	0.6548	0.3845	0.079*
H26B	0.1804	0.7750	0.4604	0.079*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0701 (10)	0.0589 (9)	0.0583 (9)	0.0164 (7)	0.0121 (8)	0.0064 (7)
O2	0.0591 (9)	0.0554 (9)	0.0626 (9)	0.0100 (7)	0.0094 (7)	0.0100 (7)
O3	0.1190 (16)	0.0529 (10)	0.0703 (11)	-0.0025 (9)	-0.0067 (10)	0.0091 (8)

N1	0.0603 (12)	0.0722 (13)	0.0579 (11)	0.0056 (9)	0.0046 (9)	0.0161 (9)
C1	0.0632 (14)	0.0525 (12)	0.0595 (13)	0.0157 (10)	0.0015 (11)	0.0063 (10)
C2	0.0860 (19)	0.0707 (16)	0.0692 (16)	0.0215 (13)	-0.0045 (14)	-0.0063 (13)
C3	0.098 (2)	0.100 (2)	0.0741 (18)	0.0352 (18)	0.0192 (17)	-0.0050 (16)
C4	0.083 (2)	0.111 (2)	0.089 (2)	0.0345 (18)	0.0320 (17)	0.0158 (19)
C5	0.0646 (16)	0.0723 (16)	0.0863 (18)	0.0094 (12)	0.0089 (13)	0.0138 (14)
C6	0.0640 (14)	0.0521 (12)	0.0622 (14)	0.0154 (10)	0.0035 (11)	0.0072 (10)
C7	0.0656 (15)	0.0626 (14)	0.0653 (15)	0.0142 (11)	-0.0032 (11)	0.0013 (11)
C8	0.0643 (13)	0.0428 (11)	0.0487 (11)	-0.0024 (9)	0.0059 (10)	-0.0038 (8)
C9	0.0797 (16)	0.0666 (15)	0.0478 (12)	-0.0007 (12)	-0.0003 (11)	-0.0036 (10)
C10	0.104 (2)	0.0747 (16)	0.0452 (12)	-0.0122 (14)	0.0145 (14)	-0.0080 (11)
C11	0.0869 (19)	0.0867 (19)	0.0649 (16)	-0.0075 (14)	0.0302 (15)	-0.0144 (13)
C12	0.0687 (15)	0.0807 (17)	0.0619 (15)	0.0058 (12)	0.0136 (12)	-0.0048 (12)
C13	0.0616 (13)	0.0468 (11)	0.0486 (11)	-0.0020 (9)	0.0097 (10)	-0.0061 (9)
C14	0.0621 (13)	0.0550 (13)	0.0502 (12)	0.0010 (9)	0.0074 (10)	0.0041 (9)
C15	0.104 (2)	0.0718 (17)	0.0639 (15)	0.0302 (14)	0.0183 (15)	0.0094 (12)
C16	0.144 (3)	0.080 (2)	0.0763 (19)	0.0394 (18)	0.0144 (18)	0.0199 (16)
C17	0.178 (4)	0.086 (2)	0.078 (2)	0.009 (2)	0.004 (2)	0.0264 (18)
C18	0.102 (2)	0.0821 (18)	0.0520 (14)	-0.0150 (14)	-0.0052 (13)	0.0114 (12)
C19	0.0564 (12)	0.0537 (12)	0.0461 (11)	0.0062 (9)	0.0074 (9)	0.0007 (9)
C20	0.0541 (13)	0.0550 (12)	0.0445 (11)	0.0000 (9)	0.0046 (9)	-0.0044 (9)
C21	0.0617 (13)	0.0503 (12)	0.0473 (11)	-0.0052 (9)	0.0044 (9)	-0.0047 (9)
C22	0.0781 (17)	0.0597 (14)	0.0647 (15)	-0.0086 (11)	0.0053 (12)	0.0034 (11)
C23	0.092 (2)	0.0769 (18)	0.0759 (18)	-0.0253 (15)	0.0164 (15)	0.0091 (14)
C24	0.0637 (16)	0.094 (2)	0.093 (2)	-0.0116 (14)	0.0185 (14)	0.0062 (16)
C25	0.0621 (15)	0.0729 (16)	0.0733 (16)	-0.0012 (11)	0.0109 (12)	0.0062 (12)
C26	0.0678 (15)	0.0525 (13)	0.0717 (15)	0.0072 (10)	0.0019 (12)	0.0098 (11)

Geometric parameters (Å, °)

01	1.362 (2)	C11—H11	0.9300
O1—C7	1.433 (2)	C12—C13	1.379 (3)
O2—C21	1.364 (3)	C12—H12	0.9300
O2—C26	1.425 (2)	C13—C14	1.508 (3)
O3—C15	1.423 (3)	C14—C19	1.569 (3)
O3—C14	1.427 (3)	C14—H14	0.9800
N1-C15	1.437 (3)	C15—C16	1.513 (4)
N1-C19	1.459 (3)	C15—H15	0.9800
N1-C18	1.470 (3)	C16—C17	1.498 (5)
C1—C6	1.386 (3)	C16—H16A	0.9700
C1—C2	1.390 (3)	C16—H16B	0.9700
C1—C26	1.500 (3)	C17—C18	1.475 (4)
С2—С3	1.372 (4)	C17—H17A	0.9700
С2—Н2	0.9300	C17—H17B	0.9700
C3—C4	1.360 (5)	C18—H18A	0.9700
С3—Н3	0.9300	C18—H18B	0.9700
C4—C5	1.373 (4)	C19—C20	1.501 (3)
C4—H4	0.9300	C19—H19	0.9800

C5—C6	1,398 (3)	C20—C25	1.372 (3)
C5—H5	0.9300	C_{20} C_{21}	1402(3)
C6—C7	1 493 (3)	C_{21} C_{22}	1.102(3) 1.378(3)
C7—H7A	0.9700	C^{22} C^{23}	1.376(3) 1 385(4)
C7—H7B	0.9700	C22_H22	0.9300
C_8 C_{13}	1 388 (3)	C_{23} C_{24}	1.367(4)
C_{8}	1 301 (3)	C23_H23	0.9300
C_{0} C_{10}	1 366 (4)	$C_{23} = 1123$	1.376(4)
C_{0} H0	0.0300	$C_{24} = C_{23}$	0.0300
	1 368 (4)	C25 H25	0.9300
C10 H10	0.0300	C26 H26A	0.9300
C_{11} C_{12}	1.383(A)	C26 H26R	0.9700
011-012	1.365 (4)	C20—1120B	0.9700
C8—O1—C7	118.15 (17)	O3—C15—N1	106.52 (19)
C21—O2—C26	118.28 (17)	O3—C15—C16	110.0 (3)
C15—O3—C14	108.19 (18)	N1—C15—C16	107.4 (2)
C15—N1—C19	107.11 (18)	O3—C15—H15	110.9
C15—N1—C18	106.54 (19)	N1—C15—H15	110.9
C19—N1—C18	115.7 (2)	C16—C15—H15	110.9
C6—C1—C2	119.2 (2)	C17—C16—C15	104.4 (3)
C6—C1—C26	122.7 (2)	C17—C16—H16A	110.9
C2—C1—C26	118.1 (2)	C15—C16—H16A	110.9
C3—C2—C1	121.3 (3)	C17—C16—H16B	110.9
C3—C2—H2	119.4	C15—C16—H16B	110.9
C1—C2—H2	119.4	H16A—C16—H16B	108.9
C4—C3—C2	119.3 (3)	C18—C17—C16	105.6 (2)
С4—С3—Н3	120.3	С18—С17—Н17А	110.6
С2—С3—Н3	120.3	С16—С17—Н17А	110.6
C_{3} — C_{4} — C_{5}	121.0 (3)	C18—C17—H17B	110.6
C3—C4—H4	119.5	C16—C17—H17B	110.6
C5—C4—H4	119.5	H17A—C17—H17B	108.7
C4—C5—C6	120.3 (3)	N1-C18-C17	103.8 (2)
C4—C5—H5	119.8	N1—C18—H18A	111.0
C6—C5—H5	119.8	C17—C18—H18A	111.0
C1—C6—C5	118.8 (2)	N1-C18-H18B	111.0
C1 - C6 - C7	1213(2)	C17—C18—H18B	111.0
C5—C6—C7	119.8 (2)	H18A—C18—H18B	109.0
01-C7-C6	108 49 (18)	N1-C19-C20	113 70 (17)
01—C7—H7A	110.0	N1-C19-C14	10453(17)
C6—C7—H7A	110.0	C_{20} C_{19} C_{14}	114.96 (17)
01—C7—H7B	110.0	N1-C19-H19	107.8
C6-C7-H7B	110.0	C_{20} C_{19} H_{19}	107.8
H7A-C7-H7B	108.4	C14— $C19$ — $H19$	107.8
01 - 08 - 013	116 60 (18)	C_{25} C_{20} C_{21}	118 2 (2)
01 - 03 - 012	122 8 (2)	$C_{25} = C_{20} = C_{19}$	123 3 (2)
$C_{13} - C_{8} - C_{9}$	120.6 (2)	C_{21} C_{20} C_{19}	118 58 (18)
C10-C9-C8	120.0 (2)	02-C21-C22	124 7 (2)
С10—С9—Н9	120.0 (2)	02 - 021 - 022	12 1.7 (2) 114 11 (18)
	120.0	02 021 020	117.11 (10)

С8—С9—Н9	120.0	C22—C21—C20	121.2 (2)
C9—C10—C11	120.2 (2)	C21—C22—C23	118.7 (2)
С9—С10—Н10	119.9	C21—C22—H22	120.6
C11—C10—H10	119.9	С23—С22—Н22	120.6
C10—C11—C12	119.8 (2)	C24—C23—C22	120.8 (2)
C10-C11-H11	120.1	C24—C23—H23	119.6
C12—C11—H11	120.1	С22—С23—Н23	119.6
C13—C12—C11	121.4 (2)	C23—C24—C25	120.0 (3)
C13—C12—H12	119.3	С23—С24—Н24	120.0
C11—C12—H12	119.3	С25—С24—Н24	120.0
C12—C13—C8	117.9 (2)	C20—C25—C24	121.2 (2)
C12—C13—C14	122.0 (2)	С20—С25—Н25	119.4
C8—C13—C14	120.04 (19)	C24—C25—H25	119.4
O3—C14—C13	112.20 (18)	O2—C26—C1	108.19 (18)
O3—C14—C19	104.38 (17)	O2—C26—H26A	110.1
C13—C14—C19	116.72 (18)	C1—C26—H26A	110.1
O3—C14—H14	107.7	O2—C26—H26B	110.1
C13—C14—H14	107.7	C1—C26—H26B	110.1
C19—C14—H14	107.7	H26A—C26—H26B	108.4
C6—C1—C2—C3	0.7 (4)	C19—N1—C15—C16	145.9 (2)
C26—C1—C2—C3	-178.8 (2)	C18—N1—C15—C16	21.5 (3)
C1—C2—C3—C4	-0.2 (4)	O3—C15—C16—C17	115.0 (3)
C2—C3—C4—C5	-0.3 (5)	N1—C15—C16—C17	-0.5 (4)
C3—C4—C5—C6	0.3 (4)	C15—C16—C17—C18	-20.5 (4)
C2-C1-C6-C5	-0.7 (3)	C15—N1—C18—C17	-34.3 (3)
C26—C1—C6—C5	178.8 (2)	C19—N1—C18—C17	-153.2 (2)
C2-C1-C6-C7	-179.3 (2)	C16—C17—C18—N1	33.6 (4)
C26—C1—C6—C7	0.2 (3)	C15—N1—C19—C20	111.9 (2)
C4—C5—C6—C1	0.2 (3)	C18—N1—C19—C20	-129.5 (2)
C4—C5—C6—C7	178.9 (2)	C15—N1—C19—C14	-14.3 (2)
C8—O1—C7—C6	138.6 (2)	C18—N1—C19—C14	104.3 (2)
C1—C6—C7—O1	-74.0 (3)	O3—C14—C19—N1	-4.3 (2)
C5—C6—C7—O1	107.5 (2)	C13—C14—C19—N1	120.2 (2)
C7—O1—C8—C13	-154.37 (19)	O3—C14—C19—C20	-129.65 (19)
C7—O1—C8—C9	26.9 (3)	C13—C14—C19—C20	-5.2 (3)
O1-C8-C9-C10	-178.5 (2)	N1—C19—C20—C25	-12.9 (3)
C13—C8—C9—C10	2.8 (3)	C14—C19—C20—C25	107.6 (2)
C8—C9—C10—C11	-1.1 (4)	N1-C19-C20-C21	167.67 (18)
C9-C10-C11-C12	-1.2 (4)	C14—C19—C20—C21	-71.9 (2)
C10-C11-C12-C13	1.8 (4)	C26—O2—C21—C22	-10.6(3)
C11—C12—C13—C8	-0.1 (3)	C26—O2—C21—C20	170.11 (18)
C11—C12—C13—C14	179.4 (2)	C25—C20—C21—O2	178.11 (19)
O1—C8—C13—C12	179.08 (19)	C19—C20—C21—O2	-2.4 (3)
C9—C8—C13—C12	-2.2 (3)	C25—C20—C21—C22	-1.2 (3)
O1—C8—C13—C14	-0.4 (3)	C19—C20—C21—C22	178.2 (2)
C9—C8—C13—C14	178.3 (2)	O2—C21—C22—C23	-178.6 (2)
C15—O3—C14—C13	-105.7 (2)	C20—C21—C22—C23	0.7 (3)
	× /		× /

C15 - O3 - C14 - C19	216(2)	C_{21} C_{22} C_{23} C_{24}	0.2(4)
	21.0 (2)	021-022-025-024	0.2 (4)
C12—C13—C14—O3	54.1 (3)	C22—C23—C24—C25	-0.5 (4)
C8—C13—C14—O3	-126.5 (2)	C21—C20—C25—C24	0.9 (3)
C12-C13-C14-C19	-66.3 (3)	C19—C20—C25—C24	-178.5 (2)
C8—C13—C14—C19	113.2 (2)	C23—C24—C25—C20	-0.1 (4)
C14—O3—C15—N1	-31.6 (3)	C21—O2—C26—C1	-179.37 (17)
C14—O3—C15—C16	-147.6 (2)	C6-C1-C26-O2	84.9 (3)
C19—N1—C15—O3	28.2 (2)	C2-C1-C26-O2	-95.5 (2)
C18—N1—C15—O3	-96.2 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
$C7$ — $H7A$ ··· $Cg1^i$	0.97	2.94	3.827 (3)	153

Symmetry code: (i) -x+1/2, -y-1/2, -z+1.