organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1*S*,5*R*)-1-(3,4-Dichlorophenyl)-3-oxabicyclo[3.1.0]hexan-2-one

Carl Henrik Görbitz,* Tore Hansen and Kristian Vestli

Department of Chemistry, University of Oslo, P.O.Box 1033 Blindern, N-0315 Oslo, Norway

Correspondence e-mail: c.h.gorbitz@kjemi.uio.no

Received 30 January 2009; accepted 2 March 2009

Key indicators: single-crystal X-ray study; T = 102 K; mean σ (C–C) = 0.002 Å; R factor = 0.024; wR factor = 0.063; data-to-parameter ratio = 14.6.

The absolute structure has been determined by X-ray analysis for the title compound, $C_{11}H_8Cl_2O_2$. The five-membered ring of the molecule is best described as a flattened envelope conformation with the methylene C atom located 0.208 (2) Å below the plane formed by the other four atoms. A weak intermolecular C-H···O hydrogen bond is present in the crystal structure

Related literature

The title compound was prepared as an intermediate in the search for potential triple neurotransmittor reuptake inhibitors, see: Milewska *et al.* (1996); Lin & Charette (2005); Tsuji *et al.* (1999); Džolić *et al.* (2003).

Experimental

Crystal data

 $C_{11}H_8Cl_2O_2$ $V = 996.36 (11) \text{ Å}^3$ $M_r = 243.07$ Z = 4Orthorhombic, $P2_12_12_1$ Mo K α radiationa = 7.0597 (4) Å $\mu = 0.62 \text{ mm}^{-1}$ b = 11.1343 (7) ÅT = 102 Kc = 12.6756 (8) Å $0.58 \times 0.36 \times 0.18 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.680, T_{max} = 0.894$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	$\Delta \rho_{\rm max} = 0.43 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.063$	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
S = 1.10	Absolute structure: Flack (1983),
2341 reflections	952 Friedel pairs
160 parameters	Flack parameter: 0.04 (5)
Only H-atom coordinates refined	

8562 measured reflections

 $D \cdot \cdot \cdot A$

3.2443 (16)

 $D - H \cdot \cdot \cdot A$

175.6 (16)

 $R_{\rm int} = 0.018$

2341 independent reflections

2278 reflections with $I > 2\sigma(I)$

Table 1

 $D - H \cdot \cdot \cdot A$

 $\frac{\text{C7}-\text{H71}\cdots\text{O2}^{\text{i}} \quad 0.880 \text{ (18)} \quad 2.366 \text{ (18)}}{\text{Symmetry code: (i) } -x + \frac{3}{2}, -y + 1, z + \frac{1}{2}.}$

D - H

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

 $H \cdot \cdot \cdot A$

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2480).

References

- Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Džolić, Z., Krištafor, V., Cetina, M., Nagl, A., Hergold-Brundić, A., Mrvoš-Sermek, D., Burgemeister, T., Grdiša, M., Slade, N., Pavelic, K., Balzarini, J., De Clercq, E. & Mintas, M. (2003). *Nucleosides Nucleotides Nucleic Acids*, 22, 373–389.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Lin, W. & Charette, A. B. (2005). Adv. Synth. Catal. 347, 1547-1552.
- Milewska, M. J., Gdaniec, M. & Poloński, T. (1996). *Tetrahedron Asymmetry*, 7, 3169–3180.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tsuji, T., Onishi, T. & Sakata, K. (1999). Tetrahedron Asymmetry, 10, 3819– 3825.

supporting information

Acta Cryst. (2009). E65, o686 [doi:10.1107/S1600536809007533]

(1*S*,5*R*)-1-(3,4-Dichlorophenyl)-3-oxabicyclo[3.1.0]hexan-2-one

Carl Henrik Görbitz, Tore Hansen and Kristian Vestli

S1. Comment

The title compound was prepared as an intermediate in the search for potential triple neurotransmittor reuptake inhibitors (Milewska *et al.*, 1996; Lin & Charette, 2005; Tsuji *et al.*, 1999; Džolić *et al.*, 2003); details will be published elsewhere.

The molecular structure is shown in Fig. 1. The five-membered ring of the molecule is best described as a flat envelope conformation with C1 located 0.208 (2) Å below the plane constituted by C2, C4, C5 and O1, on the opposite side of C3. In the crystal structure the weak C—H···O hydrogen bonding presents between benzene ring and the carbonyl O atom of the neighboring molecule (Table 1).

S2. Experimental

Block-shaped single crystals were obtained from an acetonitrile solution by slow evaporation at room temperature.

S3. Refinement

Positional parameters were refined for all H atoms, $U_{iso}(H)$ values were set to $1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as spheres of arbitrary size.

(1S,5R)-1-(3,4-dichlorophenyl)-3-oxabicyclo[3.1.0]hexan-2-one

Crystal data

 $C_{11}H_8Cl_2O_2$ $M_r = 243.07$ Orthorhombic, $P2_12_12_1$ a = 7.0597 (4) Å *b* = 11.1343 (7) Å c = 12.6756 (8) Å $V = 996.36 (11) \text{ Å}^3$ Z = 4F(000) = 496

Data collection

Bruker APEXII CCD	$T_{\min} = 0.680, \ T_{\max} = 0.894$
diffractometer	8562 measured reflection
Radiation source: fine-focus sealed tube	2341 independent reflecti
Graphite monochromator	2278 reflections with $I > 2$
Detector resolution: 8.3 pixels mm ⁻¹	$R_{\rm int} = 0.018$
Sets of exposures each taken over $0.5^{\circ} \omega$	$\theta_{\rm max} = 27.9^\circ, \ \theta_{\rm min} = 2.4^\circ$
rotation scans	$h = -9 \longrightarrow 8$
Absorption correction: multi-scan	$k = -14 \rightarrow 14$
(SADABS; Sheldrick, 1996)	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.024$	Only H-atom coordinates refined
$wR(F^2) = 0.063$	$w = 1/[\sigma^2(F_o^2) + (0.0387P)^2 + 0.112P]$
S = 1.10	where $P = (F_0^2 + 2F_c^2)/3$
2341 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
160 parameters	$\Delta \rho_{\rm max} = 0.43 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 952 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.04 (5)
map	

Special details

Experimental. Crystallized from acetonitrile solution

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Data were collected by measuring three sets of exposures with the detector set at $2\theta = 29^\circ$, crystal-to-

 $D_{\rm x} = 1.620 {\rm ~Mg} {\rm ~m}^{-3}$

 $\theta = 2.4 - 27.9^{\circ}$

 $\mu = 0.62 \text{ mm}^{-1}$

Block, colourless

 $0.58 \times 0.36 \times 0.18 \text{ mm}$

T = 102 K

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 6286 reflections

> measured reflections independent reflections reflections with $I > 2\sigma(I)$

detector distance 6.00 cm. Refinement of F^2 against ALL reflections.

Fractional atomic coordinates an	d isotropic or	• equivalent	isotropic	displacement	parameters	(A^2))
----------------------------------	----------------	--------------	-----------	--------------	------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.76710 (6)	1.02347 (3)	0.53880 (3)	0.02383 (10)	
Cl2	0.76768 (6)	0.86335 (3)	0.33094 (3)	0.02003 (10)	
01	0.89020 (18)	0.30003 (10)	0.51020 (9)	0.0219 (2)	
O2	0.7597 (2)	0.41878 (9)	0.38886 (8)	0.0258 (3)	

C1	0.9599 (2)	0.30985 (14)	0.61831 (12)	0.0195 (3)
H11	1.095 (3)	0.3243 (17)	0.6145 (14)	0.023*
H12	0.928 (3)	0.2377 (17)	0.6515 (15)	0.023*
C2	0.8628 (2)	0.41790 (14)	0.66439 (13)	0.0162 (3)
H21	0.921 (2)	0.4618 (19)	0.7169 (15)	0.019*
C3	0.6531 (2)	0.41869 (15)	0.65659 (14)	0.0183 (3)
H31	0.586 (3)	0.469 (2)	0.6993 (15)	0.022*
H32	0.590 (3)	0.3471 (17)	0.6365 (14)	0.022*
C4	0.7718 (2)	0.48380 (12)	0.57217 (10)	0.0153 (3)
C5	0.8034 (2)	0.40360 (13)	0.47933 (12)	0.0191 (3)
C6	0.7654 (2)	0.61725 (12)	0.56086 (11)	0.0154 (3)
C7	0.7598 (2)	0.68907 (12)	0.65134 (10)	0.0174 (3)
H71	0.756 (3)	0.6558 (15)	0.7143 (14)	0.021*
C8	0.7586 (2)	0.81285 (12)	0.64365 (11)	0.0183 (3)
H81	0.746 (3)	0.8709 (14)	0.7047 (13)	0.022*
С9	0.7631 (2)	0.86805 (11)	0.54561 (11)	0.0167 (3)
C10	0.7664 (2)	0.79786 (12)	0.45517 (10)	0.0155 (3)
C11	0.7674 (2)	0.67269 (12)	0.46254 (11)	0.0156 (3)
H111	0.776 (3)	0.6262 (14)	0.4035 (14)	0.019*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0310 (2)	0.01352 (15)	0.02696 (19)	0.00112 (17)	-0.00448 (17)	0.00012 (12)
Cl2	0.02456 (18)	0.01897 (16)	0.01656 (16)	-0.00227 (16)	-0.00294 (15)	0.00519 (12)
O1	0.0341 (6)	0.0156 (5)	0.0160 (5)	-0.0008 (5)	0.0016 (5)	-0.0023 (4)
O2	0.0423 (7)	0.0211 (5)	0.0141 (5)	-0.0054 (6)	-0.0031 (6)	-0.0004 (4)
C1	0.0258 (8)	0.0161 (7)	0.0165 (7)	0.0021 (6)	0.0009 (6)	0.0023 (6)
C2	0.0203 (7)	0.0157 (7)	0.0126 (7)	0.0001 (6)	-0.0008 (6)	0.0010 (6)
C3	0.0216 (7)	0.0158 (7)	0.0175 (8)	-0.0008 (6)	0.0022 (6)	0.0030 (6)
C4	0.0186 (7)	0.0153 (6)	0.0120 (6)	-0.0015 (6)	-0.0015 (5)	0.0013 (5)
C5	0.0255 (8)	0.0142 (6)	0.0176 (7)	-0.0050 (6)	0.0003 (6)	-0.0004(5)
C6	0.0142 (6)	0.0156 (6)	0.0165 (6)	-0.0012 (6)	-0.0012 (6)	0.0015 (5)
C7	0.0194 (7)	0.0192 (6)	0.0137 (6)	-0.0003 (7)	-0.0009 (6)	0.0018 (5)
C8	0.0179 (7)	0.0194 (6)	0.0176 (6)	0.0010 (7)	-0.0016 (6)	-0.0029 (5)
C9	0.0157 (6)	0.0129 (6)	0.0215 (7)	-0.0006 (6)	-0.0034 (6)	0.0003 (5)
C10	0.0140 (7)	0.0171 (6)	0.0153 (6)	-0.0010 (6)	-0.0019 (6)	0.0045 (5)
C11	0.0154 (7)	0.0168 (6)	0.0144 (6)	-0.0012 (6)	-0.0010 (6)	0.0003 (5)

Geometric parameters (Å, °)

Cl1—C9	1.7329 (13)	С3—Н32	0.949 (19)
Cl2—C10	1.7353 (13)	C4—C6	1.4934 (18)
01—C5	1.3631 (19)	C4—C5	1.4940 (19)
01—C1	1.4602 (19)	C6—C11	1.3909 (18)
O2—C5	1.1996 (18)	C6—C7	1.3988 (19)
C1—C2	1.503 (2)	C7—C8	1.3817 (19)
C1—H11	0.97 (2)	С7—Н71	0.880 (17)

C1—H12	0.93 (2)	C8—C9	1.3868 (19)
C2—C3	1.484 (2)	C8—H81	1.012 (17)
C2—C4	1.522 (2)	C9—C10	1.3877 (19)
C2—H21	0.92 (2)	C10—C11	1.3968 (19)
C3—C4	1.541 (2)	C11—H111	0.912 (17)
C3—H31	0.91 (2)		
C5—O1—C1	110.94 (12)	C5—C4—C3	110.31 (12)
O1—C1—C2	105.73 (13)	C2—C4—C3	57.96 (9)
O1-C1-H11	107.3 (11)	O2—C5—O1	120.62 (14)
C2—C1—H11	109.6 (12)	O2—C5—C4	129.07 (14)
O1—C1—H12	106.0 (12)	O1—C5—C4	110.28 (13)
C2—C1—H12	113.7 (11)	C11—C6—C7	118.77 (12)
H11—C1—H12	113.8 (16)	C11—C6—C4	121.82 (12)
C3—C2—C1	115.72 (15)	C7—C6—C4	119.40 (12)
C3—C2—C4	61.65 (11)	C8—C7—C6	120.84 (13)
C1—C2—C4	106.25 (13)	C8—C7—H71	118.9 (11)
C3—C2—H21	119.1 (11)	С6—С7—Н71	120.3 (11)
C1—C2—H21	120.2 (12)	C7—C8—C9	120.34 (12)
C4—C2—H21	119.1 (13)	C7—C8—H81	125.7 (9)
C2—C3—C4	60.40 (11)	С9—С8—Н81	113.8 (9)
C2—C3—H31	118.9 (12)	C8—C9—C10	119.42 (12)
C4—C3—H31	113.9 (13)	C8—C9—C11	119.18 (10)
С2—С3—Н32	118.9 (11)	C10—C9—Cl1	121.40 (10)
C4—C3—H32	117.8 (11)	C9—C10—C11	120.45 (12)
H31—C3—H32	115.4 (18)	C9—C10—Cl2	120.87 (10)
C6—C4—C5	121.57 (12)	C11—C10—Cl2	118.68 (10)
C6—C4—C2	124.48 (12)	C6-C11-C10	120.18 (13)
C5—C4—C2	104.70 (11)	C6—C11—H111	118.9 (10)
C6—C4—C3	121.22 (12)	C10—C11—H111	120.8 (10)
C1—C2—C4—C5	5.85 (15)	C3—C4—C5—O1	-57.45 (16)
O1—C1—C2—C4	-12.38 (16)	C2-C4-C6-C11	148.81 (15)
C2-C4-C5-O1	3.36 (16)	C3—C4—C6—C11	-140.85 (15)
C5-C4-C6-C11	7.2 (2)	C5—C4—C6—C7	-171.84 (15)
C5-01-C1-C2	15.19 (17)	C2-C4-C6-C7	-30.3 (2)
O1—C1—C2—C3	53.50 (19)	C3—C4—C6—C7	40.1 (2)
C1—C2—C3—C4	-95.34 (15)	C11—C6—C7—C8	-0.7 (3)
C3—C2—C4—C6	108.17 (17)	C4—C6—C7—C8	178.38 (15)
C1—C2—C4—C6	-140.96 (15)	C6—C7—C8—C9	-0.1 (3)
C3—C2—C4—C5	-105.02 (14)	C7—C8—C9—C10	0.8 (3)
C1—C2—C4—C5	5.85 (15)	C7—C8—C9—Cl1	-178.46 (14)
C1—C2—C4—C3	110.87 (16)	C8—C9—C10—C11	-0.7 (2)
C2—C3—C4—C6	-113.68 (15)	Cl1—C9—C10—C11	178.55 (12)
C2—C3—C4—C5	95.02 (14)	C8—C9—C10—Cl2	178.79 (13)
C1	169.94 (16)	Cl1—C9—C10—Cl2	-1.94 (19)
C1—O1—C5—C4	-11.76 (17)	C7—C6—C11—C10	0.8 (2)
C6—C4—C5—O2	-30.5 (3)	C4—C6—C11—C10	-178.25 (14)

supporting information

C2—C4—C5—O2	-178.54 (17)	C9-C10-C11-C6	-0.1 (2)
C3—C4—C5—O2	120.66 (19)	Cl2—C10—C11—C6	-179.64 (12)
C6—C4—C5—O1	151.37 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C7—H71···O2 ⁱ	0.880 (18)	2.366 (18)	3.2443 (16)	175.6 (16)

Symmetry code: (i) -x+3/2, -y+1, z+1/2.