Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Di-tert-butyl (1,1'-binaphthyl-2,2'-dioxy)diacetate

Asra Mustafa,^a Muhammad Raza Shah,^a Maimoona Khatoon^a and Seik Weng Ng^{b*}

^aHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 20 March 2009; accepted 24 March 2009

Key indicators: single-crystal X-ray study; T = 133 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.121; data-to-parameter ratio = 18.3.

In the crystal structure of the title compound, $C_{32}H_{34}O_6$, the molecule is located on a twofold rotation axis. The two naphthyl fused-ring systems are aligned at $72.6 (1)^{\circ}$. Weak intermolecular $C-H \cdots O$ hydrogen bonding is present in the crystal structure.

Related literature

For the crystal structure of the parent carboxylic acid, see: Wu et al. (2007).

Experimental

Crystal data

β

	° 2
$C_{32}H_{34}O_6$	V = 2774.37 (9) A ³
$M_r = 514.59$	Z = 4
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 18.7604 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 14.3204 (3) Å	T = 133 K
c = 10.9997 (2) Å	$0.30 \times 0.15 \times 0.10 \text{ mm}$
$\beta = 110.144 \ (1)^{\circ}$	

Data collection

Bruker SMART APEX diffractometer Absorption correction: none 12968 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	175 parameters
$wR(F^2) = 0.121$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
3198 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

3198 independent reflections

 $R_{\rm int} = 0.035$

2514 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C9-H9\cdots O2^i$	0.95	2.38	3.226 (2)	149
Symmetry code: (i)	$r - v \perp 1 = \tau \perp \frac{1}{2}$			

metry code: (i) $x, -y + 1, z + \frac{1}{2}$

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2499).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

Wu, Y.-M., Cao, G.-Q., Qian, M.-Y. & Zhu, H.-J. (2007). Acta Cryst. E63, 03446

supporting information

Acta Cryst. (2009). E65, o912 [doi:10.1107/S1600536809010836]

Di-tert-butyl (1,1'-binaphthyl-2,2'-dioxy)diacetate

Asra Mustafa, Muhammad Raza Shah, Maimoona Khatoon and Seik Weng Ng

S1. Experimental

Potassium carbonate (0.97 g, 7 mmol) and 1,1'-binaphthyl-2,2'-diol (0.57 mg, 2 mmol) in acetone (20 ml) were stirred for 15 minutes. *tert*-Butyl 2-bromoacetate (1.95 g, 10 mmol) was added and the mixture was stirred at 323 K for 2 h. The solvent was removed and the residue was dissolved in a mixture of water (50 ml) and dichloromethane (50 ml). The two phases were separated and the aqueous layer was extracted with dichloromethane. The combined organic phases were dried and the solvent evaporated. The residue was dissolved recrysstallized from dichloromethane (0.82 mg, 80% yield).

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Figure 1

Thermal ellipsoid plot (Barbour, 2001) plot of $C_{32}H_{34}O_6$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Di-tert-butyl (1,1'-binaphthyl-2,2'-dioxy)diacetate

Crystal data	
$C_{32}H_{34}O_6$	a = 18.7604 (3) Å
$M_r = 514.59$	b = 14.3204 (3) Å
Monoclinic, C2/c	c = 10.9997 (2) Å
Hall symbol: -C 2yc	$\beta = 110.144 \ (1)^{\circ}$

 $V = 2774.37 (9) \text{ Å}^3$ Z = 4 F(000) = 1096 $D_x = 1.232 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3672 reflections

Data collection

Bruker SMART APEX	2514 reflections with $I > 2\sigma(I)$ $R_{\rm eff} = 0.035$
Radiation source: fine focus sealed tube	$A_{\text{int}} = 27.5^{\circ} A_{\perp} = 1.8^{\circ}$
Crambite manachromator	$U_{\text{max}} = 27.3$, $U_{\text{min}} = 1.8$
Graphite monochromator	$n = -24 \rightarrow 24$
ω scans	$k = -18 \rightarrow 18$
12968 measured reflections	$l = -14 \rightarrow 14$
3198 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.121$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
3198 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0548P)^2 + 1.9389P]$
175 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.30 \ m e \ m \AA^{-3}$
direct methods	$\Delta ho_{ m min} = -0.20 \ m e \ { m \AA}^{-3}$

 $\theta = 2.3 - 28.2^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

Block, colorless

 $0.30 \times 0.15 \times 0.10 \text{ mm}$

T = 133 K

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	7.	Uina*/Una
01	0 38962 (5)	0 53557 (7)	0 23963 (9)	0.0278 (2)
02	0.38702(5)	0.55557(1) 0.45195(10)	0.23903(9)	0.0531(4)
03	0.19998 (5)	0.45848(7)	0.14254 (9)	0.0292(2)
C1	0.19990(3) 0.49788(7)	0.63074 (9)	0.14254(9) 0.31656(11)	0.0292(2)
C2	0.55167 (7)	0.68166 (9)	0.41843 (12)	0.0255 (3)
C3	0.61052 (8)	0.73495 (10)	0.39965 (14)	0.0326 (3)
Н3	0.6162	0.7352	0.3171	0.039*
C4	0.65937 (10)	0.78615 (12)	0.49836 (16)	0.0441 (4)
H4	0.6980	0.8223	0.4833	0.053*
C5	0.65281 (11)	0.78558 (13)	0.62268 (16)	0.0503 (5)
Н5	0.6869	0.8213	0.6908	0.060*
C6	0.59820 (10)	0.73436 (12)	0.64444 (15)	0.0437 (4)
H6	0.5948	0.7336	0.7286	0.052*
C7	0.54571 (8)	0.68154 (10)	0.54431 (13)	0.0314 (3)
C8	0.48693 (8)	0.62974 (12)	0.56391 (13)	0.0350 (3)
H8	0.4833	0.6283	0.6479	0.042*
С9	0.43514 (8)	0.58162 (11)	0.46649 (13)	0.0310 (3)
H9	0.3958	0.5474	0.4824	0.037*
C10	0.44042 (7)	0.58301 (9)	0.34153 (12)	0.0242 (3)
C11	0.32140 (7)	0.50678 (11)	0.25672 (13)	0.0291 (3)
H11A	0.2979	0.5603	0.2857	0.035*

H11B	0.3324	0.4575	0.3238	0.035*
C12	0.26778 (8)	0.46984 (10)	0.13024 (14)	0.0304 (3)
C13	0.13800 (8)	0.40721 (10)	0.04369 (14)	0.0315 (3)
C14	0.16385 (11)	0.30839 (13)	0.0342 (2)	0.0556 (5)
H14A	0.1856	0.2817	0.1213	0.083*
H14B	0.2023	0.3087	-0.0075	0.083*
H14C	0.1204	0.2706	-0.0173	0.083*
C15	0.11375 (9)	0.45879 (14)	-0.08469 (15)	0.0439 (4)
H15A	0.1028	0.5241	-0.0710	0.066*
H15B	0.0681	0.4294	-0.1451	0.066*
H15C	0.1547	0.4562	-0.1208	0.066*
C16	0.07523 (8)	0.40965 (12)	0.10104 (15)	0.0394 (4)
H16A	0.0930	0.3799	0.1865	0.059*
H16B	0.0308	0.3760	0.0440	0.059*
H16C	0.0613	0.4746	0.1097	0.059*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	<i>U</i> ¹³	U ²³
01	0.0218 (5)	0.0396 (6)	0.0254 (5)	-0.0038 (4)	0.0123 (4)	-0.0006 (4)
O2	0.0342 (6)	0.0883 (10)	0.0461 (7)	-0.0154 (6)	0.0255 (5)	-0.0245 (6)
03	0.0220 (5)	0.0364 (5)	0.0321 (5)	-0.0025 (4)	0.0131 (4)	-0.0021 (4)
C1	0.0220 (6)	0.0255 (6)	0.0194 (6)	0.0059 (5)	0.0088 (5)	0.0020 (5)
C2	0.0265 (7)	0.0256 (6)	0.0225 (6)	0.0064 (5)	0.0062 (5)	-0.0007 (5)
C3	0.0345 (7)	0.0302 (7)	0.0292 (7)	-0.0021 (6)	0.0061 (6)	-0.0016 (6)
C4	0.0416 (9)	0.0373 (8)	0.0456 (9)	-0.0091 (7)	0.0050 (7)	-0.0067 (7)
C5	0.0545 (10)	0.0477 (10)	0.0339 (8)	-0.0049 (8)	-0.0037 (8)	-0.0146 (7)
C6	0.0508 (10)	0.0487 (9)	0.0261 (7)	0.0031 (8)	0.0060 (7)	-0.0089 (7)
C7	0.0340 (7)	0.0357 (7)	0.0214 (6)	0.0105 (6)	0.0054 (6)	-0.0029 (5)
C8	0.0367 (8)	0.0513 (9)	0.0199 (6)	0.0129 (7)	0.0134 (6)	0.0035 (6)
C9	0.0282 (7)	0.0447 (8)	0.0241 (7)	0.0072 (6)	0.0142 (6)	0.0064 (6)
C10	0.0218 (6)	0.0310 (7)	0.0213 (6)	0.0062 (5)	0.0094 (5)	0.0035 (5)
C11	0.0223 (6)	0.0385 (8)	0.0310 (7)	0.0016 (5)	0.0150 (6)	0.0050 (6)
C12	0.0249 (7)	0.0345 (7)	0.0359 (7)	-0.0004 (6)	0.0157 (6)	-0.0007 (6)
C13	0.0240 (6)	0.0332 (7)	0.0377 (8)	-0.0051 (6)	0.0110 (6)	-0.0043 (6)
C14	0.0443 (10)	0.0366 (9)	0.0848 (14)	-0.0032 (8)	0.0207 (10)	-0.0131 (9)
C15	0.0359 (8)	0.0621 (11)	0.0335 (8)	-0.0065 (8)	0.0118 (7)	0.0006 (7)
C16	0.0262 (7)	0.0516 (10)	0.0419 (9)	-0.0063 (7)	0.0138 (6)	0.0024 (7)

Geometric parameters (Å, °)

O1—C10	1.3749 (16)	С8—С9	1.360 (2)	
01—C11	1.4174 (15)	C8—H8	0.9500	
O2—C12	1.1966 (17)	C9—C10	1.4118 (17)	
O3—C12	1.3347 (15)	С9—Н9	0.9500	
O3—C13	1.4842 (16)	C11—C12	1.504 (2)	
C1-C10	1.3815 (17)	C11—H11A	0.9900	
C1—C2	1.4237 (18)	C11—H11B	0.9900	

$C1 - C1^{i}$	1 494 (2)	C13—C14	1.511(2)
$C^2 - C^3$	1.131(2) 1.415(2)	C_{13} C_{16}	1.511(2)
$C_2 = C_7$	1.413(2) 1 4270(18)	C_{13} C_{15}	1.518(2)
$C_2 = C_1$	1.4270(10)	C14 $H14A$	0.0800
$C_3 = U_4$	0.0500	C14 $H14P$	0.9800
C_{3}	1.415(2)	C14 $H14C$	0.9800
C4 - C3	1.413(2)	C15 = U15 A	0.9800
	0.9300		0.9800
C5—C6	1.347 (3)	СІЗ—НІЗВ	0.9800
C5—H5	0.9500		0.9800
C6-C/	1.417 (2)	CI6—HI6A	0.9800
С6—Н6	0.9500	С16—Н16В	0.9800
С7—С8	1.406 (2)	C16—H16C	0.9800
C10—O1—C11	116.08 (10)	01—C11—H11A	109.9
C12—O3—C13	121.30 (11)	C12—C11—H11A	109.9
C10—C1—C2	119.15 (11)	O1—C11—H11B	109.9
C10-C1-C1 ⁱ	120.24 (12)	C12—C11—H11B	109.9
C2-C1-C1 ⁱ	120.60 (12)	H11A—C11—H11B	108.3
C3—C2—C1	122.59 (12)	O2—C12—O3	126.15 (14)
$C_3 - C_2 - C_7$	117.92 (13)	02-C12-C11	126.00 (13)
C1-C2-C7	119.47 (12)	03-C12-C11	107.83 (11)
C4-C3-C2	121.09(14)	03-C13-C14	108 95 (12)
C4—C3—H3	119.5	03-C13-C16	100.99(12) 102.04(11)
$C_2 C_3 H_3$	119.5	C_{14} C_{13} C_{16}	102.04(11) 111.35(14)
$C_2 = C_3 = C_4 = C_5$	119.5	$C_{14} = C_{13} = C_{10}$	111.33(14) 110.43(12)
$C_3 = C_4 = C_3$	120.45 (10)	$C_{14} = C_{13} = C_{15}$	110.43(12) 113.00(15)
C_{5} C_{4} H_{4}	119.0	C14 - C13 - C13	113.09(13)
С3—С4—П4	119.8	C10 - C13 - C13	110.45 (15)
$C_{0} - C_{3} - C_{4}$	119.97 (15)	C13—C14—H14A	109.5
C6	120.0	C13-C14-H14B	109.5
C4—C5—H5	120.0	HI4A—CI4—HI4B	109.5
C5—C6—C7	121.34 (15)	C13—C14—H14C	109.5
С5—С6—Н6	119.3	HI4A—CI4—HI4C	109.5
С7—С6—Н6	119.3	H14B—C14—H14C	109.5
C8—C7—C6	122.29 (13)	C13—C15—H15A	109.5
C8—C7—C2	118.50 (13)	C13—C15—H15B	109.5
C6—C7—C2	119.20 (14)	H15A—C15—H15B	109.5
C9—C8—C7	122.11 (12)	C13—C15—H15C	109.5
С9—С8—Н8	118.9	H15A—C15—H15C	109.5
С7—С8—Н8	118.9	H15B—C15—H15C	109.5
C8—C9—C10	119.30 (13)	C13—C16—H16A	109.5
С8—С9—Н9	120.3	C13—C16—H16B	109.5
С10—С9—Н9	120.3	H16A—C16—H16B	109.5
O1—C10—C1	116.85 (10)	C13—C16—H16C	109.5
O1—C10—C9	121.70 (12)	H16A—C16—H16C	109.5
C1—C10—C9	121.44 (12)	H16B—C16—H16C	109.5
O1—C11—C12	109.05 (10)		
C10—C1—C2—C3	-177.72 (12)	C7—C8—C9—C10	0.3 (2)

C1 ⁱ —C1—C2—C3	0.71 (18)	C11—O1—C10—C1	-164.92 (11)
C10—C1—C2—C7	0.70 (18)	C11—O1—C10—C9	16.29 (18)
C1 ⁱ —C1—C2—C7	179.14 (11)	C2-C1-C10-O1	179.49 (11)
C1—C2—C3—C4	177.29 (13)	C1 ⁱ C1C10O1	1.05 (16)
C7—C2—C3—C4	-1.2 (2)	C2-C1-C10-C9	-1.72 (19)
C2—C3—C4—C5	1.1 (2)	C1 ⁱ C1C9	179.83 (11)
C3—C4—C5—C6	0.0 (3)	C8—C9—C10—O1	179.96 (12)
C4—C5—C6—C7	-1.0 (3)	C8—C9—C10—C1	1.2 (2)
C5—C6—C7—C8	-178.13 (16)	C10-01-C11-C12	171.26 (11)
C5—C6—C7—C2	0.9 (2)	C13—O3—C12—O2	9.7 (2)
C3—C2—C7—C8	179.26 (13)	C13—O3—C12—C11	-168.85 (11)
C1—C2—C7—C8	0.76 (19)	O1—C11—C12—O2	12.1 (2)
C3—C2—C7—C6	0.2 (2)	O1—C11—C12—O3	-169.43 (11)
C1—C2—C7—C6	-178.34 (13)	C12-03-C13-C14	60.23 (17)
C6—C7—C8—C9	177.77 (14)	C12—O3—C13—C16	178.05 (13)
C2—C7—C8—C9	-1.3 (2)	C12—O3—C13—C15	-64.54 (16)

Symmetry code: (i) -x+1, *y*, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
С9—Н9…О2 ^{іі}	0.95	2.38	3.226 (2)	149

Symmetry code: (ii) x, -y+1, z+1/2.