Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[1-(4-Cyanobenzyl)-1*H*-benzimidazol-2-yl]benzonitrile

Reza Kia,^a Hoong-Kun Fun^a* and Hadi Kargar^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran Correspondence e-mail: hkfun@usm.my

Received 15 January 2009; accepted 25 February 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.079; wR factor = 0.169; data-to-parameter ratio = 12.3.

In the title compound, $C_{22}H_{14}N_4$, a new substituted benzimidazole, three intermolecular C-H···N interactions link neighbouring molecules into different dimers with $R_2^2(12)$, $R_2^2(8)$ and $R_2^2(24)$ ring motifs. A fourth C-H···N interaction links neighbouring molecules along the c axis. There is also a short intermolecular contact between the azomethine (C=N) segment of the benzimidazole ring and one of the C atoms of a neighbouring benzene ring $[N \cdot \cdot \cdot C = 3.191(5), C \cdot \cdot \cdot C =$ 3.364 (6) Å], which links the molecules along the *a* axis. The two cyanobenzene rings are almost perpendicular to each other, with an interplanar angle of $87.70(7)^{\circ}$. The dihedral angles between the mean planes of the benzimidazole ring and the two outer benzene rings are 36.27 (16) and $86.70 (16)^{\circ}$. In the crystal structure, molecules are stacked down the a axis with centroid-centroid distances of 3.906 (2)-3.912 (2) Å and interplanar distances of 3.5040 (17) and 3.6235 (17) Å.

Related literature

For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For benzimidazole chemistry, reaction mechanisms and their bioactivity, see, for example: Latif *et al.* (1983); Craigo *et al.* (1999); Gudmundsson *et al.* (2000); Trivedi *et al.* (2006); Kim *et al.* (1996); Ramla *et al.* (2006). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

V = 1706.1 (2) Å³

Mo $K\alpha$ radiation

 $0.45 \times 0.09 \times 0.04 \text{ mm}$

15641 measured reflections

2906 independent reflections

1490 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.08 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.153$

236 parameters

 $\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.35$ e Å⁻³

Z = 4

Experimental

Crystal data

 $\begin{array}{l} C_{22}H_{14}N_4 \\ M_r = 334.37 \\ \text{Monoclinic, } P2_1/n \\ a = 5.0553 (4) \\ b = 17.3437 (10) \\ c = 19.6339 (14) \\ \beta = 97.653 (5)^{\circ} \end{array}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.965, T_{max} = 0.997$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.079$ $wR(F^2) = 0.169$ S = 1.072906 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$C12-H12A\cdots N1^{i}$ $C19-H19A\cdots N4^{ii}$ $C9-H9A\cdots N4^{iii}$ $C14-H14A-N2^{iii}$	0.93 0.93 0.93	2.62 2.57 2.71	3.425 (5) 3.502 (6) 3.361 (5)	146 175 128
$C14 = H14A \cdots N3$	0.97	2.57	3.302 (3)	162

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x, -y, -z; (iii) -x + 1, -y, -z; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/ PFIZIK/811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2173).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Craigo, W. A., LeSueur, B. W. & Skibo, E. B. (1999). J. Med. Chem. 42, 3324– 3333.
- Gudmundsson, K. S., Tidwell, J., Lippa, N., Koszalka, G. W., van Draanen, N., Ptak, R. G., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2464– 2472.
- Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & LaVoie, E. J. (1996). J. Med. Chem. 39, 992–998.
- Latif, N., Mishriky, N. & F. M. Assad (1983). *Recl Trav. Chim. Pays-Bas*, **102**, 73–77.
- Ramla, M. M., Omer, M. A., El-Khamry, A. M. & El-Diwani, H. I. (2006). Bioorg. Med. Chem. 14, 7324–7332.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Trivedi, R., De, S. K. & Gibbs, R. A. (2006). J. Mol. Catal. A Chem. 245, 8-11.

supporting information

Acta Cryst. (2009). E65, o660-o661 [doi:10.1107/S1600536809006989]

4-[1-(4-Cyanobenzyl)-1H-benzimidazol-2-yl]benzonitrile

Reza Kia, Hoong-Kun Fun and Hadi Kargar

S1. Comment

Benzimidazoles are used widely in biological applications and as pharmaceutical agents (Craigo *et al.*, 1999; Gudmundsson *et al.*, 2000; Trivedi *et al.*, 2006). They are also used as topoisomerase I inhibitors (Kim *et al.*, 1996) and for antitumor activity (Ramla *et al.*, 2006). Due to these important applications, many synthetic routes towards benzimidazoles have been developed. They can, for example, be synthesized by the reaction of phenolic aldehydes with *o*-phenylenediamine (Latif *et al.*, 1983). Based on this route the title compound was synthesized and its crystal structure is reported here.

The title compound, Fig.1, comprises a single molecule in the asymmetric unit. Three intermolecular C—H···N interactions link neighbouring molecules into different dimers with $R_2^2(12)$, $R_2^2(8)$ and $R_2^2(24)$ ring motifs (Bernstein *et al.*, 1995). A fourth C—H···N interaction links neighbouring molecules along the *c* axis. The two cyanobenzene rings are almost perpendicular to each other, with an interplanar angle of 87.70 (7)°. The dihedral angles between the the mean planes of the benzimidazole ring and the two outer benzene rings are 36.27 (16) and 86.70 (16)°. There is also a short intermolecular contact between the azomethine (C1=N1) segment of the benzimidazole ring and one of the carbon atoms (C13) of the neighbouring benzene rings which links the molecules along the *a* axis (N1···C13^v = 3.191 (5) C1···C13^v = 3.364 (6), symmetry code: (v) x-1, y, z). In the crystal structure, the molecules are stacked down the *a* axis with centroid to centroid distances of 3.906 (2)–3.912 (2) Å and interplanar distances of 3.5040 (17) and 3.6235 (17) Å [*Cg*1···*Cg*2^{vi} = 3.906 (2); (vi) 1 + *x*, *y*, *z* and *Cg*1···*Cg*3^{vii} = 3.912 (2) Å; (vii) -1 + *x*, *y*, *z*: *Cg*1, *Cg*2 and *Cg*3 are the centroids of the N1/C1/C6/N2/C7, C1–C6, and C8–C13 benzene rings] (Fig. 2).

S2. Experimental

An ethanolic solution (50 ml) of 4-cyanobenzaldehyde (2 mmol, 263 mg) was added to 1,2-phenylenediamine (1 mmol, 217 mg). The mixture was refluxed for 2 h, and cooled to room temperature. The resulting colourless powder was filtered, washed with cooled ethanol and dried in *vacuo*. Single crystals suitable for *X*-ray diffraction were obtained from an ethanol solution at room temperature.

S3. Refinement

All hydrogen atoms were positioned gemetrically and refined in a riding model approximation with C—H = 0.93–0.97 Å and U_{iso} (H) = 1.2 U_{eq} (C).

Figure 1

The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.

Figure 2

The crystal packing of the title compound, viewed down the *a*-axis showing infinite stacks of molecules along the *a*-axis and also linking of molecules through C—H···N interactions along the *c*-axis. Intermolecular hydrogen bonds are shown as dashed lines.

4-[1-(4-Cyanobenzyl)-1H-benzimidazol-2-yl]benzonitrile

Crystal data

C₂₂H₁₄N₄ $M_r = 334.37$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 5.0553 (4) Å b = 17.3437 (10) Å c = 19.6339 (14) Å $\beta = 97.653$ (5)° V = 1706.1 (2) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.965, T_{\max} = 0.997$ F(000) = 696 $D_x = 1.302 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3931 reflections $\theta = 2.4-30.2^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.45 \times 0.09 \times 0.04 \text{ mm}$

15641 measured reflections 2906 independent reflections 1490 reflections with $I > 2\sigma(I)$ $R_{int} = 0.153$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.6^{\circ}$ $h = -6 \rightarrow 6$ $k = -20 \rightarrow 20$ $l = -23 \rightarrow 22$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.079$	H-atom parameters constrained
$wR(F^2) = 0.169$	$w = 1/[\sigma^2(F_o^2) + (0.0473P)^2 + 1.9898P]$
S = 1.07	where $P = (F_o^2 + 2F_c^2)/3$
2906 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
236 parameters	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0124 (18)
map	

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.7041 (7)	0.41520 (18)	0.10705 (18)	0.0222 (9)
N2	0.8001 (6)	0.29462 (17)	0.14467 (17)	0.0196 (9)
N3	1.5730 (8)	0.3343 (2)	-0.1704 (2)	0.0366 (11)
N4	0.1768 (8)	-0.0990 (2)	0.05749 (19)	0.0328 (10)
C1	0.5702 (8)	0.3997 (2)	0.1633 (2)	0.0205 (10)
C2	0.3933 (8)	0.4456 (2)	0.1943 (2)	0.0250 (11)
H2A	0.3510	0.4953	0.1787	0.030*
C3	0.2841 (8)	0.4148 (2)	0.2487 (2)	0.0271 (11)
H3A	0.1639	0.4441	0.2697	0.033*
C4	0.3485 (8)	0.3408 (2)	0.2733 (2)	0.0272 (11)
H4A	0.2719	0.3223	0.3105	0.033*
C5	0.5240 (8)	0.2944 (2)	0.2434 (2)	0.0240 (11)
H5A	0.5681	0.2451	0.2597	0.029*
C6	0.6310 (8)	0.3255 (2)	0.1876 (2)	0.0197 (10)
C7	0.8349 (8)	0.3516 (2)	0.0971 (2)	0.0196 (10)
C8	0.9937 (8)	0.3425 (2)	0.0400 (2)	0.0183 (10)
C9	1.0085 (8)	0.2747 (2)	0.0032 (2)	0.0206 (11)
H9A	0.9193	0.2310	0.0153	0.025*
C10	1.1554 (8)	0.2718 (2)	-0.0515 (2)	0.0248 (11)
H10A	1.1656	0.2262	-0.0758	0.030*
C11	1.2870 (8)	0.3372 (2)	-0.0697 (2)	0.0207 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C12	1.2703 (8)	0.4059 (2)	-0.0344 (2)	0.0228 (11)
H12A	1.3561	0.4499	-0.0473	0.027*
C13	1.1248 (8)	0.4079 (2)	0.0200 (2)	0.0229 (11)
H13A	1.1135	0.4538	0.0439	0.027*
C14	0.9363 (8)	0.2212 (2)	0.1570 (2)	0.0221 (11)
H14A	0.9987	0.2167	0.2057	0.026*
H14B	1.0918	0.2209	0.1329	0.026*
C15	0.7667 (8)	0.1513 (2)	0.1346 (2)	0.0193 (10)
C16	0.8439 (8)	0.0795 (2)	0.1615 (2)	0.0232 (11)
H16A	0.9962	0.0751	0.1935	0.028*
C17	0.6958 (8)	0.0145 (2)	0.1410 (2)	0.0256 (11)
H17A	0.7492	-0.0336	0.1589	0.031*
C18	0.4669 (8)	0.0212 (2)	0.0936 (2)	0.0217 (11)
C19	0.3883 (8)	0.0931 (2)	0.0667 (2)	0.0228 (11)
H19A	0.2349	0.0978	0.0351	0.027*
C20	0.5388 (8)	0.1572 (2)	0.0871 (2)	0.0208 (10)
H20A	0.4869	0.2052	0.0687	0.025*
C21	1.4437 (9)	0.3350 (2)	-0.1261 (3)	0.0281 (12)
C22	0.3071 (9)	-0.0458 (2)	0.0734 (2)	0.0256 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
N1	0.028 (2)	0.016 (2)	0.023 (2)	0.0017 (16)	0.0025 (19)	-0.0006 (16)
N2	0.026 (2)	0.0127 (19)	0.019 (2)	0.0003 (15)	0.0024 (18)	-0.0026 (16)
N3	0.043 (3)	0.031 (2)	0.036 (3)	-0.0030 (19)	0.006 (2)	-0.001 (2)
N4	0.045 (3)	0.027 (2)	0.027 (2)	-0.006(2)	0.006 (2)	-0.0006 (18)
C1	0.026 (2)	0.016 (3)	0.019 (3)	-0.0022 (19)	0.003 (2)	-0.003 (2)
C2	0.029 (3)	0.015 (2)	0.030 (3)	0.003 (2)	0.000 (2)	-0.006(2)
C3	0.025 (2)	0.031 (3)	0.027 (3)	-0.004 (2)	0.007 (2)	-0.006 (2)
C4	0.032 (3)	0.026 (3)	0.026 (3)	-0.008(2)	0.008 (2)	-0.006 (2)
C5	0.028 (3)	0.019 (2)	0.024 (3)	-0.003 (2)	-0.002(2)	-0.003 (2)
C6	0.024 (2)	0.016 (2)	0.018 (3)	-0.0035 (19)	0.001 (2)	-0.005 (2)
C7	0.021 (2)	0.017 (2)	0.019 (3)	-0.0054 (19)	-0.005 (2)	0.000 (2)
C8	0.021 (2)	0.015 (2)	0.019 (3)	0.0019 (18)	0.001 (2)	0.003 (2)
C9	0.023 (2)	0.016 (3)	0.023 (3)	-0.0008 (18)	0.003 (2)	0.004 (2)
C10	0.032 (3)	0.022 (3)	0.019 (3)	0.002 (2)	-0.001(2)	-0.001 (2)
C11	0.022 (2)	0.021 (3)	0.020 (3)	0.0000 (19)	0.004 (2)	0.005 (2)
C12	0.031 (3)	0.017 (3)	0.021 (3)	-0.0037 (19)	0.004 (2)	-0.002 (2)
C13	0.031 (3)	0.015 (2)	0.022 (3)	0.002 (2)	0.002 (2)	-0.002 (2)
C14	0.023 (2)	0.021 (2)	0.023 (3)	0.0009 (19)	0.003 (2)	0.0011 (19)
C15	0.023 (3)	0.016 (2)	0.019 (3)	0.0013 (18)	0.005 (2)	-0.0030 (19)
C16	0.026 (2)	0.020 (2)	0.024 (3)	-0.001 (2)	0.004 (2)	0.001 (2)
C17	0.026 (3)	0.019 (2)	0.032 (3)	0.003 (2)	0.004 (3)	0.001 (2)
C18	0.026 (3)	0.017 (2)	0.024 (3)	-0.0035 (19)	0.010 (2)	-0.004 (2)
C19	0.021 (2)	0.024 (3)	0.022 (3)	0.000 (2)	0.001 (2)	0.001 (2)
C20	0.027 (3)	0.015 (2)	0.021 (3)	0.0006 (19)	0.004 (2)	-0.0002 (19)
C21	0.035 (3)	0.019 (3)	0.030 (3)	-0.003 (2)	0.003 (3)	0.000 (2)

					suppor	ting information
C22	0.033 (3)	0.023 (3)	0.022 (3)	-0.001 (2)	0.007 (2)	0.002 (2)
Geometri	c parameters ((Å, °)				
N1—C7		1.314 (5	5)	C10—C11		1.385 (5)
N1-C1		1.397 (5	5)	C10—H10A		0.9300
N2—C6		1.385 (5	5)	C11—C12		1.387 (5)
N2—C7		1.387 (5	5)	C11—C21		1.446 (6)
N2-C14	ŀ	1.453 (5	5)	C12—C13		1.376 (5)
N3-C21	l	1.155 (5	5)	C12—H12A		0.9300
N4—C22	2	1.152 (5	5)	C13—H13A		0.9300
C1—C6		1.391 (5	5)	C14—C15		1.515 (5)
C1—C2		1.397 (5	5)	C14—H14A		0.9700
C2—C3		1.375 (6	5)	C14—H14B		0.9700
C2—H2A	4	0.9300		C15—C20		1.386 (5)
C3—C4		1.393 (6	5)	C15—C16		1.388 (5)
С3—НЗА	4	0.9300	·	C16—C17		1.384 (5)
C4—C5		1.385 (6	5)	C16—H16A		0.9300
C4—H4A	A	0.9300	/	C17—C18		1.390 (5)
С5—С6		1.394 (6	5)	C17—H17A		0.9300
С5—Н5А	4	0.9300	/	C18—C19		1.391 (5)
С7—С8		1.472 (6	5)	C18—C22		1.440 (6)
С8—С9		1.387 (5	5)	C19—C20		1.377 (5)
C8—C13	1	1.397 (5	5)	C19—H19A		0.9300
C9-C10)	1.385 (5	5)	C20—H20A		0.9300
С9—Н9А	A	0.9300	,			
C7—N1-	C1	105.2 (3)	C10—C11—C21		120.6 (4)
C6-N2-	—C7	106.1 (3)	C12—C11—C21		118.8 (4)
C6-N2-	C14	123.7 (3)	C13—C12—C11		119.0 (4)
C7—N2-	C14	129.6 (3	5)	С13—С12—Н12А	4	120.5
C6-C1-	C2	120.2 (4	•)	C11—C12—H12A	4	120.5
C6-C1-	N1	109.9 (4	-)	C12—C13—C8		121.3 (4)
C2-C1-	N1	129.8 (4	·)	С12—С13—Н13А	4	119.3
С3—С2-	C1	117.6 (4	•)	C8—C13—H13A		119.3
С3—С2-	—H2A	121.2		N2-C14-C15		114.6 (3)
C1-C2-	–H2A	121.2		N2—C14—H14A		108.6
С2—С3-	C4	121.8 (4	·)	C15—C14—H14A	4	108.6
С2—С3-	—H3A	119.1		N2—C14—H14B		108.6
C4—C3-	-H3A	119.1		C15—C14—H14H	3	108.6
C5-C4-	C3	121.5 (4	•)	H14A—C14—H1	4B	107.6
C5—C4-	-H4A	119.3		C20—C15—C16		119.3 (4)
C3—C4-	—H4A	119.3		C20—C15—C14		121.6 (3)
C4—C5-	C6	116.4 (4	·)	C16—C15—C14		119.2 (4)
C4—C5-	-H5A	121.8		C17—C16—C15		120.4 (4)
C6—C5-	-H5A	121.8		C17—C16—H16A	4	119.8
N2-C6-	C1	106.0 (4	·)	C15—C16—H16A	4	119.8
N2-C6-	C5	131.6 (4	·)	C16—C17—C18		119.7 (4)

C1—C6—C5	122.4 (4)	C16—C17—H17A	120.1
N1—C7—N2	112.7 (4)	C18—C17—H17A	120.1
N1—C7—C8	122.6 (4)	C17—C18—C19	120.0 (4)
N2—C7—C8	124.6 (4)	C17—C18—C22	120.2 (4)
C9—C8—C13	118.8 (4)	C19—C18—C22	119.8 (4)
C9—C8—C7	124.0 (4)	C20—C19—C18	119.6 (4)
C13—C8—C7	117.1 (4)	C20—C19—H19A	120.2
C10—C9—C8	120.4 (4)	C18—C19—H19A	120.2
С10—С9—Н9А	119.8	C19—C20—C15	120.9 (4)
С8—С9—Н9А	119.8	C19—C20—H20A	119.6
C9—C10—C11	119.8 (4)	C15—C20—H20A	119.6
C9-C10-H10A	120.1	N3—C21—C11	178.5 (5)
C11—C10—H10A	120.1	N4—C22—C18	179.2 (5)
C10-C11-C12	120.7 (4)		
C7—N1—C1—C6	1.5 (4)	N2-C7-C8-C13	-147.4 (4)
C7—N1—C1—C2	-177.1 (4)	C13—C8—C9—C10	1.3 (6)
C6—C1—C2—C3	-0.1 (6)	C7—C8—C9—C10	177.7 (4)
N1—C1—C2—C3	178.4 (4)	C8—C9—C10—C11	-0.3 (6)
C1—C2—C3—C4	0.9 (6)	C9—C10—C11—C12	-0.9 (6)
C2—C3—C4—C5	-0.7 (6)	C9-C10-C11-C21	179.3 (4)
C3—C4—C5—C6	-0.3 (6)	C10-C11-C12-C13	1.2 (6)
C7—N2—C6—C1	0.4 (4)	C21—C11—C12—C13	-179.0 (4)
C14—N2—C6—C1	172.4 (3)	C11—C12—C13—C8	-0.2 (6)
C7—N2—C6—C5	178.7 (4)	C9—C8—C13—C12	-1.0 (6)
C14—N2—C6—C5	-9.3 (6)	C7—C8—C13—C12	-177.7 (4)
C2-C1-C6-N2	177.5 (3)	C6—N2—C14—C15	81.2 (5)
N1-C1-C6-N2	-1.2 (4)	C7—N2—C14—C15	-108.9 (4)
C2-C1-C6-C5	-1.0 (6)	N2-C14-C15-C20	20.2 (5)
N1-C1-C6-C5	-179.7 (4)	N2-C14-C15-C16	-160.9 (4)
C4—C5—C6—N2	-177.0 (4)	C20-C15-C16-C17	0.2 (6)
C4—C5—C6—C1	1.1 (6)	C14—C15—C16—C17	-178.7 (4)
C1—N1—C7—N2	-1.3 (4)	C15—C16—C17—C18	-0.6 (6)
C1—N1—C7—C8	177.1 (3)	C16—C17—C18—C19	0.4 (6)
C6—N2—C7—N1	0.5 (4)	C16—C17—C18—C22	-178.2 (4)
C14—N2—C7—N1	-170.8 (4)	C17—C18—C19—C20	0.2 (6)
C6—N2—C7—C8	-177.8 (4)	C22-C18-C19-C20	178.7 (4)
C14—N2—C7—C8	10.9 (6)	C18—C19—C20—C15	-0.6 (6)
N1—C7—C8—C9	-142.1 (4)	C16—C15—C20—C19	0.3 (6)
N2—C7—C8—C9	36.1 (6)	C14—C15—C20—C19	179.3 (4)
N1—C7—C8—C13	34.4 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C12—H12A…N1 ⁱ	0.93	2.62	3.425 (5)	146
C19—H19A…N4 ⁱⁱ	0.93	2.57	3.502 (6)	175

			supporting informatio		
C9—H9A····N4 ⁱⁱⁱ	0.93	2.71	3.361 (5)	128	
C14—H14A…N3 ^{iv}	0.97	2.57	3.502 (5)	162	

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) -*x*, -*y*, -*z*; (iii) -*x*+1, -*y*, -*z*; (iv) *x*-1/2, -*y*+1/2, *z*+1/2.