organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2'-{1,1'-[Pentane-1,5-divlbis(oxynitrilo)]diethylidyne}di-1-naphthol

Yin-Xia Sun, Jian-Chao Wu, Wen-Kui Dong,* Shang-sheng Gong and Jun-Feng Tong

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China Correspondence e-mail: dongwk@mail.lzjtu.cn

Received 30 April 2009; accepted 4 May 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.043; wR factor = 0.111; data-to-parameter ratio = 7.7.

The title compound, $C_{29}H_{30}N_2O_4$, adopts a distorted Z configuration with respect to the oxime group, which is almost coplanar with the adjacent naphthalene ring [dihedral angle = 4.11 (2) $^{\circ}$]. There is one half-molecule in the asymmetric unit, with a crystallographic twofold rotation axis passing through the central C atom of the -CH=N-O-(CH)₅-O-N=CHbridge. Within the molecule, the dihedral angle formed by the two naphthalene rings is $79.08 (3)^{\circ}$, and there are two intramolecular $O-H \cdots N$ hydrogen bonds.

Related literature

The condensation of primary amines with active carbonyl compounds can vield Schiff bases, see: Atwood & Harvey (2001); Casellato & Vigato (1977). For related structures, see: Dong et al. (2008a,b,c, 2009); Shi et al. (2007); Yeap et al. (2008).

Experimental

Crystal data C29H30N2O4 $M_r = 470.55$

Monoclinic, C2 a = 14.0683 (12) Å

b = 4.5659 (7) Å	
c = 19.048 (2) Å	
$\beta = 97.321 \ (1)^{\circ}$	
V = 1213.6 (2) Å ³	
Z = 2	

Data collection

Bruker SMART CCD area-detector	3170 measured reflections
diffractometer	1218 independent reflections
Absorption correction: multi-scan	814 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.034$
$T_{\min} = 0.959, \ T_{\max} = 0.982$	

Refinement

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.043 \\ wR(F^2) = 0.111 \end{array}$ 1 restraint H-atom parameters constrained $\Delta \rho_{\rm max} = 0.11 \text{ e } \text{\AA}^{-3}$ S = 1.02 $\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$ 1218 reflections 159 parameters

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

 $0.49 \times 0.45 \times 0.21 \text{ mm}$

T = 298 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O2−H2···N1	0.82	1.83	2.552 (3)	145

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the 'Jing Lan' Talent Engineering Fund of Lanzhou Jiaotong University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2776).

References

- Atwood, D. A. & Harvey, M. J. (2001). Chem. Rev. 101, 37-52.
- Casellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31-50.
- Dong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008a). Acta Cryst. E64. o1600-o1601
- Dong, W.-K., He, X.-N., Sun, Y.-X., Xu, L. & Guan, Y.-H. (2008c). Acta Cryst. E64. o1917.
- Dong, W.-K., Lv, Z.-W., He, X.-N., Guan, Y.-H. & Tong, J.-F. (2008b). Acta Cryst. E64, o2059.
- Dong, W.-K., Sun, Y.-X., Zhang, Y.-P., Li, L., He, X.-N. & Tang, X.-L. (2009). Inorg. Chim. Acta, 362, 117-124.
- Sheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, J., Dong, W., Zhang, Y. & Gao, S. (2007). Acta Cryst. E63, 04080.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Yeap, C. S., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, 01854.

supporting information

Acta Cryst. (2009). E65, o1238 [doi:10.1107/S1600536809016584]

2,2'-{1,1'-[Pentane-1,5-diylbis(oxynitrilo)]diethylidyne}di-1-naphthol

Yin-Xia Sun, Jian-Chao Wu, Wen-Kui Dong, Shang-sheng Gong and Jun-Feng Tong

S1. Comment

The condensation of primary amines with active carbonyl compounds can yield Schiff bases (Casellato & Vigato, 1977; Atwood & Harvey, 2001) that are still now regarded as one of the most potential group of chelators for facile preparations of metallo-organic hybrid materials (Yeap *et al.*, 2008). Many Schiff base complexes have been structurally characterized, but at present, a new class of salen-type bisoxime compounds have been synthesized by using an *O*-alkyloxime unit (– $CH=N-O-(CH)_n-O-N=CH-$) instead of the (– $CH=N-(CH)_n-N=CH-$) group (Dong *et al.*, 2008*a*,*b*), the large electronegativity of O atoms is expected to affect strongly the electronic properties of N₂O₂ coordination sphere. Herein, we report on the synthesis and crystal structure of 2,2'-{1,1'-[pentane-1,5-diylbis(oxynitrilo)]diethylidyne}dinaphthol, (I), (Fig. 1).

The single-crystal structure of the title compound (I) is built up by only the $C_{29}H_{30}N_2O_4$ molecule, in which all bond lengths are in normal ranges. It adopts a distorted *Z* configuration with respect to the bisoxime group which is coplanar with the adjacent naphthalene ring (Dong *et al.*, 2008*c*). The structure of (I) reveals the C1, C2, C3, C2# and C1# atoms in the (-CH=N-O-(CH)₅-O-N=CH-) bridge lying on a plane. The dihedral angle formed by the two naphthalene rings in each molecule of the title compound is about 79.08°. Within each half of the molecule, the dihedral angle formed by the plane of the (-(CH)₅-) bridge and the adjacent naphthalene ring is about 62.74°. There are two intramolecular hydrogen bonds, O2-H2···N1 (Table 1), indicating a strong hydrogen-bonding interaction.

S2. Experimental

2,2'-{1,1'-[Pentane-1,5-diylbis(oxynitrilo)]diethylidyne}dinaphthol was synthesized according to an analogous method reported earlier (Shi *et al.*, 2007; Dong *et al.*, 2009). To an ethanol solution (5 ml) of 2-acetyl-1-naphthol (374.7 mg, 2.02 mmol) was added dropwise an ethanol solution (3 ml) of 1,5-bis(aminooxy)pentane (133.5 mg, 0.94 mmol). The mixture solution was stirred at 328–333 K for 70 h. After cooling to room temperature, the precipitate was filtered off, and washed successively three times with ethanol. The product was dried *in vacuo* and purified by recrystallization from ethanol to yield 367.5 mg (yield, 83.1%) of solid; m.p. 394–396 K. Colourless needle-like single crystals suitable for Xray diffraction studies were obtained by slow evaporation from a solution of chloroform/methanol (1:1) of $2,2'-{1,1'-[pentane-1,5-diylbis(oxynitrilo)]diethylidyne}dinaphthol at room temperature for about three weeks. Analysis$ calculated for C₂₉H₃₀N₂O₄: C 74.02, H 6.43, N 5.99 (%); Found: C 74.05, H 6.39, N 6.07(%).

S3. Refinement

H atoms were treated as riding atoms with distances C—H = 0.96 (CH₃), C—H = 0.97 (CH₂), 0.93 Å (CH), O—H = 0.82 Å [U_{iso} (H) = 1.2 U_{eq} (C) and 1.5 U_{eq} (C,O)].

Figure 1

The molecular structure of the title compound with atom-numbering scheme [symmetry code: (#1) - x, y, -z]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

2,2'-{1,1'-[Pentane-1,5-diylbis(oxynitrilo)]diethylidyne}di-1-naphthol

Crystal data	
$C_{29}H_{30}N_{2}O_{4}$ $M_{r} = 470.55$ Monoclinic, C2 Hall symbol: C 2y $a = 14.0683 (12) \text{ Å}$ $b = 4.5659 (7) \text{ Å}$ $c = 19.048 (2) \text{ Å}$ $\beta = 97.321 (1)^{\circ}$ $V = 1213.6 (2) \text{ Å}^{3}$ $Z = 2$	F(000) = 500 $D_x = 1.288 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 907 reflections $\theta = 2.9-22.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 298 K Block-like, yellow $0.49 \times 0.45 \times 0.21 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.959, T_{\max} = 0.982$	3170 measured reflections 1218 independent reflections 814 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -16 \rightarrow 9$ $k = -5 \rightarrow 5$ $l = -21 \rightarrow 22$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.111$ S = 1.02 1218 reflections 159 parameters 1 restraint Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.057P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.11$ e Å ⁻³ $\Delta\rho_{min} = -0.13$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

N1 0.2185 (2) -0.0996 (7) 0.16024 (12) 0.0654 (8)	
O1 0.24369 (16) -0.2609 (7) 0.10176 (10) 0.0807 (7)	
O2 0.09872 (13) 0.1007 (6) 0.23812 (10) 0.0734 (7)	
H2 0.1157 0.0056 0.2054 0.110*	
C1 0.1626 (2) -0.4239 (10) 0.07147 (17) 0.0768 (10)	
H1A 0.1376 -0.5343 0.1086 0.092*	
H1B 0.1829 -0.5633 0.0379 0.092*	
C2 0.0834 (2) -0.2382 (10) 0.03427 (15) 0.0700 (9)	
H2A 0.1085 -0.1218 -0.0018 0.084*	
H2B 0.0606 -0.1049 0.0681 0.084*	
C3 0.0000 -0.4226 (13) 0.0000 0.0661 (13)	
H3A -0.0223 -0.5478 0.0357 0.079* 0.	.50
H3B 0.0223 -0.5478 -0.0357 0.079* 0.	.50
C4 0.3854 (2) 0.0583 (12) 0.16832 (16) 0.0890 (13)	
H4A 0.3863 -0.0668 0.1279 0.134*	
H4B 0.4321 -0.0087 0.2061 0.134*	
H4C 0.4004 0.2552 0.1559 0.134*	
C5 0.2876 (2) 0.0510 (9) 0.19192 (15) 0.0621 (9)	
C6 0.1752 (2) 0.2479 (9) 0.27207 (14) 0.0543 (8)	
C7 0.2658 (2) 0.2281 (8) 0.25198 (13) 0.0527 (8)	
C8 0.3400 (2) 0.3899 (9) 0.29307 (16) 0.0673 (10)	
H8 0.4022 0.3771 0.2816 0.081*	
C9 0.3230 (2) 0.5610 (10) 0.34806 (16) 0.0710 (10)	
H9 0.3731 0.6660 0.3728 0.085*	
C10 0.2308 (2) 0.5826 (8) 0.36834 (14) 0.0575 (8)	
C11 0.1552 (2) 0.4251 (8) 0.32992 (14) 0.0533 (7)	
C12 0.0631 (2) 0.4448 (10) 0.35059 (15) 0.0704 (10)	
H12 0.0128 0.3420 0.3255 0.084*	
C13 0.0467 (3) 0.6102 (10) 0.40623 (17) 0.0794 (11)	
H13 -0.0145 0.6170 0.4198 0.095*	
C14 0.1205 (3) 0.7717 (11) 0.44378 (16) 0.0804 (11)	
H14 0.1083 0.8883 0.4817 0.097*	
C15 0.2101 (3) 0.7583 (10) 0.42496 (17) 0.0722 (10)	
H15 0.2589 0.8676 0.4501 0.087*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0693 (18)	0.071 (2)	0.0551 (13)	0.0114 (18)	0.0037 (13)	0.0008 (16)
01	0.0745 (15)	0.0976 (19)	0.0678 (13)	0.0151 (17)	0.0001 (12)	-0.0131 (16)
O2	0.0503 (12)	0.0963 (19)	0.0721 (13)	-0.0068 (14)	0.0014 (10)	-0.0109 (14)
C1	0.090 (2)	0.067 (2)	0.0693 (19)	0.015 (3)	-0.0063 (19)	-0.006(2)
C2	0.080(2)	0.066 (2)	0.0609 (17)	0.006 (2)	-0.0040 (16)	-0.003 (2)
C3	0.081 (3)	0.061 (3)	0.057 (2)	0.000	0.012 (2)	0.000
C4	0.066 (2)	0.132 (4)	0.071 (2)	0.001 (3)	0.0156 (17)	-0.012 (3)
C5	0.0552 (19)	0.077 (2)	0.0519 (17)	0.010 (2)	-0.0001 (15)	0.0130 (19)
C6	0.0465 (17)	0.065 (2)	0.0489 (15)	0.0020 (19)	-0.0041 (13)	0.0072 (18)
C7	0.0489 (18)	0.062 (2)	0.0458 (15)	0.0028 (18)	-0.0001 (13)	0.0135 (17)
C8	0.0472 (18)	0.088 (3)	0.0649 (19)	-0.006 (2)	0.0019 (15)	0.007 (2)
C9	0.054 (2)	0.090 (3)	0.0660 (19)	-0.014 (2)	-0.0010 (16)	0.000(2)
C10	0.0544 (18)	0.065 (2)	0.0518 (16)	0.0001 (19)	0.0018 (15)	0.0119 (19)
C11	0.0501 (17)	0.060 (2)	0.0490 (15)	0.0016 (17)	0.0035 (13)	0.0130 (18)
C12	0.055 (2)	0.095 (3)	0.0608 (18)	-0.001(2)	0.0049 (15)	0.001 (2)
C13	0.067 (2)	0.100 (3)	0.073 (2)	0.008 (2)	0.0121 (19)	0.002 (2)
C14	0.089 (3)	0.090 (3)	0.0620 (19)	0.008 (3)	0.011 (2)	-0.003 (2)
C15	0.074 (2)	0.077 (3)	0.0620 (18)	-0.009(2)	-0.0031 (17)	0.004 (2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

N1—C5	1.278 (4)	С5—С7	1.465 (5)
N101	1.417 (3)	C6—C7	1.380 (4)
01—C1	1.422 (4)	C6—C11	1.424 (4)
O2—C6	1.360 (3)	C7—C8	1.428 (4)
O2—H2	0.8200	C8—C9	1.352 (4)
C1—C2	1.503 (4)	C8—H8	0.9300
C1—H1A	0.9700	C9—C10	1.402 (4)
C1—H1B	0.9700	С9—Н9	0.9300
С2—С3	1.522 (5)	C10—C15	1.404 (5)
C2—H2A	0.9700	C10—C11	1.410 (4)
C2—H2B	0.9700	C11—C12	1.404 (4)
$C3-C2^i$	1.522 (5)	C12—C13	1.345 (5)
С3—НЗА	0.9700	C12—H12	0.9300
С3—Н3В	0.9700	C13—C14	1.395 (5)
C4—C5	1.501 (4)	C13—H13	0.9300
C4—H4A	0.9600	C14—C15	1.355 (4)
C4—H4B	0.9600	C14—H14	0.9300
C4—H4C	0.9600	C15—H15	0.9300
C5—N1—O1	113.5 (3)	O2—C6—C7	122.6 (3)
N1-01-C1	108.8 (2)	O2—C6—C11	115.3 (2)
С6—О2—Н2	109.5	C7—C6—C11	122.2 (3)
01—C1—C2	113.8 (3)	C6—C7—C8	116.8 (3)
01—C1—H1A	108.8	C6—C7—C5	123.1 (3)

C2—C1—H1A	108.8	C8—C7—C5	120.1 (3)
O1—C1—H1B	108.8	C9—C8—C7	122.3 (3)
C2—C1—H1B	108.8	С9—С8—Н8	118.9
H1A—C1—H1B	107.7	С7—С8—Н8	118.9
C1—C2—C3	112.0 (3)	C8—C9—C10	121.0 (3)
C1—C2—H2A	109.2	С8—С9—Н9	119.5
C3—C2—H2A	109.2	С10—С9—Н9	119.5
C1—C2—H2B	109.2	C9—C10—C15	122.8 (3)
С3—С2—Н2В	109.2	C9—C10—C11	119.0 (3)
H2A—C2—H2B	107.9	C15—C10—C11	118.2 (3)
$C2-C3-C2^{i}$	112.9 (5)	C12—C11—C10	119.0 (3)
С2—С3—НЗА	109.0	C12—C11—C6	122.3 (3)
C2 ⁱ —C3—H3A	109.0	C10—C11—C6	118.8 (3)
С2—С3—Н3В	109.0	C13—C12—C11	121.0 (3)
C2 ⁱ —C3—H3B	109.0	C13—C12—H12	119.5
НЗА—СЗ—НЗВ	107.8	C11—C12—H12	119.5
C5—C4—H4A	109.5	C12—C13—C14	120.6 (3)
C5—C4—H4B	109.5	C12—C13—H13	119.7
H4A—C4—H4B	109.5	C14—C13—H13	119.7
C5—C4—H4C	109.5	C15—C14—C13	119.8 (4)
H4A—C4—H4C	109.5	C15—C14—H14	120.1
H4B—C4—H4C	109.5	C13—C14—H14	120.1
N1—C5—C7	116.3 (3)	C14—C15—C10	121.4 (4)
N1—C5—C4	122.8 (3)	C14—C15—H15	119.3
C7—C5—C4	120.9 (3)	C10-C15-H15	119.3
C5—N1—O1—C1	178.9 (3)	C8—C9—C10—C15	-179.8 (4)
N1-01-C1-C2	69.9 (4)	C8—C9—C10—C11	-0.7 (5)
O1—C1—C2—C3	177.5 (2)	C9-C10-C11-C12	179.5 (3)
$C1-C2-C3-C2^{i}$	176.6 (3)	C15-C10-C11-C12	-1.4 (5)
O1—N1—C5—C7	178.7 (3)	C9—C10—C11—C6	0.4 (4)
O1—N1—C5—C4	0.9 (5)	C15—C10—C11—C6	179.5 (3)
O2—C6—C7—C8	-178.8 (3)	O2—C6—C11—C12	0.3 (5)
C11—C6—C7—C8	1.3 (5)	C7—C6—C11—C12	-179.8 (3)
O2—C6—C7—C5	0.9 (5)	O2—C6—C11—C10	179.4 (3)
C11—C6—C7—C5	-179.0 (3)	C7—C6—C11—C10	-0.7 (5)
N1—C5—C7—C6	-3.4 (5)	C10-C11-C12-C13	-0.2 (5)
C4—C5—C7—C6	174.5 (4)	C6-C11-C12-C13	178.9 (3)
N1C5C7C8	176.3 (3)	C11—C12—C13—C14	1.5 (6)
C4—C5—C7—C8	-5.8 (5)	C12—C13—C14—C15	-1.2 (6)
C6—C7—C8—C9	-1.6 (5)	C13—C14—C15—C10	-0.4 (6)
C5—C7—C8—C9	178.6 (3)	C9—C10—C15—C14	-179.2 (4)
C7—C8—C9—C10	1.4 (5)	C11-C10-C15-C14	1.7 (6)

Symmetry code: (i) -x, y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O2—H2…N1	0.82	1.83	2.552 (3)	145