Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-(3-Fluorophenyl)-1,3,4-thiadiazol-2amine

Yao Wang, Rong Wan,* Feng Han and Peng Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China Correspondence e-mail: rwan@njut.edu.cn

Received 14 May 2009; accepted 21 May 2009

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \mathrm{~A}$; R factor $=0.047 ; w R$ factor $=0.124 ;$ data-to-parameter ratio $=13.4$.

The title compound, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{FN}_{3} \mathrm{~S}$, was synthesized by the reaction of 3-fluorobenzoic acid and thiosemicarbazide. The dihedral angle between the planes of the thiadiazole and benzene rings is $37.3(2)^{\circ}$. In the structure, two crystallographically independent molecules form a centrosymmetric dimer, in which two intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds generate an $R_{2}^{2}(8)$ motif.

Related literature

For the biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999). For a similar structure, see: Wan et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{FN}_{3} \mathrm{~S}$
$M_{r}=195.23$
Monoclinic, $P 2_{\mathrm{o}} / c$
$a=11.345$ (2) A
$b=7.3130$ (15) \AA
$c=11.269$ (2) A
$\beta=111.64$ (3) ${ }^{\circ}$
$V=869.0(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

$$
\mu=0.34 \mathrm{~mm}^{-1}
$$

$$
T=293 \mathrm{~K}
$$

Data collection
Enraf-Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968)
$T_{\min }=0.935, T_{\text {max }}=0.967$
1667 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.124$
$S=1.01$
1584 reflections
118 parameters
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$

1584 independent reflections
1177 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
3 standard reflections every 200 reflections intensity decay: 1%

13 restraints
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.86	2.14	$2.981(5)$	165

Symmetry code: (i) $-x+2,-y+1,-z+1$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf-Nonius CAD-4 diffractometer for this research project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2787).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. \& Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wan, R., Han, F., Wu, F., Zhang, J.-J. \& Wang, J.-T. (2006). Acta Cryst. E62, o5547-o5548.
Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. \& Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.

supporting information

Acta Cryst. (2009). E65, o1425 [doi:10.1107/S1600536809019333]

5-(3-Fluorophenyl)-1,3,4-thiadiazol-2-amine

Yao Wang, Rong Wan, Feng Han and Peng Wang

S1. Comment

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang et al., 1999). We are focusing our synthetic and structural studies on thiadiazole derivatives and have published the structure of 5-(4-fluoro-phenyl)-[1,3,4]thiadiazol-2-ylamine (Wan et al., 2006). Here we report the crystal structure, (I).
In the title molecule (I), (Fig. 1), the dihedral angle between the thiadiazole and benzene ring is $37.3(2)^{\circ}$, which is bigger than the angle in the structure of 5-(4-fluoro-phenyl)-[1,3,4]thiadiazol-2-ylamine (Wan et al., 2006), which is $30.1(2)^{\circ}$. In the structure, two crystallographically independent molecules form a dimer structure, in which two intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds generate a motif $R_{2}{ }^{2}(8)$ (Fig. 2).

S2. Experimental

3-Fluoro-benzoic acid (2 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 363 K for 6 h . After cooling, the crude product (I) precipitated and was filted. Pure compound (I) was obtained by crystallization from ethanol (20 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

S3. Refinement

All H atoms were placed geometrically with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and included in the refinement in riding motion approximation with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atom.

Figure 1
A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view of a dimer structure, in which two intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds generate a motif $R_{2}{ }^{2}(8)$.

5-(3-Fluorophenyl)-1,3,4-thiadiazol-2-amine

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{FN}_{3} \mathrm{~S}$

$M_{r}=195.23$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=11.345$ (2) \AA
$b=7.3130(15) \AA$
$c=11.269$ (2) \AA
$\beta=111.64(3)^{\circ}$
$V=869.0(3) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.935, T_{\text {max }}=0.967$
1667 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.124$
$S=1.01$
1584 reflections
118 parameters
13 restraints
Primary atom site location: structure-invariant direct methods

$$
F(000)=400
$$

$D_{\mathrm{x}}=1.492 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 515 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10-13^{\circ}$
$\mu=0.34 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$

$$
\begin{aligned}
& 1584 \text { independent reflections } \\
& 1177 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.021 \\
& \theta_{\max }=25.3^{\circ}, \theta_{\min }=1.9^{\circ} \\
& h=-13 \rightarrow 0 \\
& k=0 \rightarrow 8 \\
& l=-12 \rightarrow 13 \\
& 3 \text { standard reflections every } 200 \text { reflections } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.06 P)^{2}\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.37 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.25 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
S	$0.82144(7)$	$0.08639(11)$	$0.55908(6)$	$0.0548(3)$
F	$0.5162(3)$	$-0.2428(3)$	$0.0198(2)$	$0.1125(9)$
N 1	$0.8658(2)$	$0.1443(3)$	$0.3566(2)$	$0.0523(6)$
C1	$0.7322(3)$	$-0.2918(5)$	$0.3984(3)$	$0.0713(9)$
H1B	0.7804	-0.3036	0.4850	0.086^{*}
N2	$0.9262(2)$	$0.2841(3)$	$0.4381(2)$	$0.0551(6)$
C2	$0.6592(4)$	$-0.4354(5)$	$0.3322(4)$	$0.0817(11)$
H2B	0.6585	-0.5443	0.3746	0.098^{*}
N3	$0.9606(3)$	$0.3931(4)$	$0.6429(2)$	$0.0733(9)$
H3A	1.0043	0.4846	0.6340	0.088^{*}
H3B	0.9481	0.3787	0.7131	0.088^{*}
C3	$0.5871(4)$	$-0.4202(5)$	$0.2040(4)$	$0.0822(12)$
H3C	0.5378	-0.5175	0.1592	0.099^{*}
C4	$0.5898(3)$	$-0.2597(6)$	$0.1447(3)$	$0.0741(10)$
C5	$0.6637(3)$	$-0.1132(4)$	$0.2071(3)$	$0.0639(9)$
H5A	0.6658	-0.0066	0.1628	0.077^{*}
C6	$0.7338(3)$	$-0.1272(4)$	$0.3350(3)$	$0.0516(7)$
C7	$0.8082(3)$	$0.0307(4)$	$0.4039(2)$	$0.0475(7)$
C8	$0.9121(3)$	$0.2733(4)$	$0.5476(2)$	$0.0499(7)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	$0.0686(5)$	$0.0626(5)$	$0.0402(4)$	$-0.0130(4)$	$0.0282(3)$	$0.0002(3)$
F	$0.1200(19)$	$0.122(2)$	$0.0888(16)$	$-0.0253(16)$	$0.0307(14)$	$-0.0193(15)$
N1	$0.0646(15)$	$0.0583(14)$	$0.0421(12)$	$-0.0113(12)$	$0.0293(11)$	$-0.0079(11)$
C1	$0.070(2)$	$0.068(2)$	$0.073(2)$	$-0.0121(18)$	$0.0235(17)$	$0.0023(18)$
N2	$0.0753(16)$	$0.0580(15)$	$0.0433(12)$	$-0.0172(13)$	$0.0353(12)$	$-0.0097(11)$
C2	$0.074(2)$	$0.060(2)$	$0.112(3)$	$-0.0081(19)$	$0.035(2)$	$0.001(2)$
N3	$0.110(2)$	$0.0800(19)$	$0.0452(14)$	$-0.0379(17)$	$0.0462(15)$	$-0.0191(13)$
C3	$0.074(2)$	$0.079(3)$	$0.104(3)$	$-0.020(2)$	$0.045(2)$	$-0.040(2)$
C4	$0.075(2)$	$0.091(3)$	$0.062(2)$	$-0.024(2)$	$0.0319(18)$	$-0.0344(19)$
C5	$0.075(2)$	$0.068(2)$	$0.0514(17)$	$-0.0144(17)$	$0.0271(16)$	$-0.0140(16)$
C6	$0.0557(17)$	$0.0533(17)$	$0.0519(16)$	$0.0000(13)$	$0.0270(14)$	$-0.0051(13)$
C7	$0.0541(16)$	$0.0513(16)$	$0.0421(14)$	$0.0000(13)$	$0.0236(13)$	$-0.0013(12)$
C8	$0.0634(18)$	$0.0556(17)$	$0.0374(13)$	$-0.0068(14)$	$0.0265(13)$	$-0.0025(13)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{S}-\mathrm{C} 8$	$1.744(3)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9300
$\mathrm{~S}-\mathrm{C} 7$	$1.747(3)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.338(3)$
$\mathrm{F}-\mathrm{C} 4$	$1.351(4)$	$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A}$	0.8600
$\mathrm{~N} 1-\mathrm{C} 7$	$1.288(3)$	$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	0.8600
$\mathrm{~N} 1-\mathrm{N} 2$	$1.377(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.357(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.375(5)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9300

C1-C6	1.403 (4)
C1-H1B	0.9300
N2-C8	1.303 (3)
C2-C3	1.378 (5)
C8-S-C7	86.76 (13)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	114.0 (2)
C2- $\mathrm{C} 1-\mathrm{C} 6$	119.8 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	120.1
C6- $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	120.1
C8-N2-N1	112.5 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	120.9 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	119.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	119.6
C8-N3-H3A	120.0
C8-N3-H3B	120.0
H3A-N3-H3B	120.0
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	118.3 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	120.9
C2-C3-H3C	120.9
C7-N1-N2-C8	-0.2 (4)
C6-C1-C2-C3	-0.1 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.1 (6)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{F}$	-178.1 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	1.3 (6)
$\mathrm{F}-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	177.0 (3)
C3-C4-C5-C6	-2.4 (5)
C4-C5-C6-C1	2.2 (5)
C4-C5-C6-C7	-177.2 (3)
C2- $21-\mathrm{C} 6-\mathrm{C} 5$	-1.0 (5)
C2- $21-\mathrm{C} 6-\mathrm{C} 7$	178.4 (3)
N2-N1-C7-C6	178.1 (2)

$\mathrm{C} 4-\mathrm{C} 5$	$1.382(4)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.369(4)$
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9300
$\mathrm{C} 6-\mathrm{C} 7$	$1.472(4)$
$\mathrm{F}-\mathrm{C} 4-\mathrm{C} 3$	$118.3(3)$
$\mathrm{F}-\mathrm{C} 4-\mathrm{C} 5$	$119.0(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$122.7(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.0(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.5
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$119.3(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$119.6(3)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$121.1(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$124.6(2)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{S}$	$113.2(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{S}$	$122.1(2)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 3$	$124.3(3)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{S}$	$113.5(2)$
$\mathrm{N} 3-\mathrm{C} 8-\mathrm{S}$	$122.19(19)$

$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{S} \quad 0.5$ (3)
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1 \quad-36.0(4)$
C1—C6-C7-N1 144.6 (3)
C5-C6-C7-S 141.4 (3)
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{S} \quad-37.9$ (4)
$\mathrm{C} 8-\mathrm{S}-\mathrm{C} 7-\mathrm{N} 1 \quad-0.4$ (2)
C8—S—C7-C6 -178.2 (2)
N1—N2—C8—N3 -179.5 (3)
N1—N2-C8-S
C7-S-C8-N2
-0.1 (3)
0.3 (2)
179.7 (3)

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.86	2.14	$2.981(5)$	165

Symmetry code: (i) $-x+2,-y+1,-z+1$.

