

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

S-5-Amino-2-(dimethylammonio)phenyl sulfothioate

Gordana Pavlović, Livio Racané and Vesna Tralić-Kulenović*

Faculty of Textile Technology, Laboratory of Applied Chemistry, University of Zagreb, Prilaz baruna Filipovića 28a, HR-10000 Zagreb, Croatia Correspondence e-mail: gpavlov@ttf.hr

Received 28 April 2009; accepted 5 May 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.131; data-to-parameter ratio = 16.3.

The title compound, $C_8H_{12}N_2O_3S_2$, has been isolated as a byproduct in the synthesis of methylene blue dye. The compound crystallizes with four independent molecules in the unit cell (Z'= 4). The zwitterionic form of the molecule was established on the basis of the hydrogen atom located at the dimethylamino group. The crystal structure is dominated by intermolecular hydrogen bonds of the N-H···O type formed between amino and ammonio N-H groups and O atoms from the sulfothioate group. There are in addition two weak intermolecular N-H···N interactions and some non-conventional C-H···O hydrogen bonds.

Related literature

For the preparation, see: Bennett & Bell (1943); Bogert & Updike (1927); Leventis *et al.* (1997). For information on methylene blue see: Hunger (2003); Zollinger (1991). For bond-length data, see: Allen *et al.* (1987); Bertolasi *et al.* (1999); Trinajstić (1968).

Experimental

Crystal data $C_8H_{12}N_2O_3S_2$ $M_r = 248.32$ Triclinic, $P\overline{1}$ a = 10.4173 (2) Å b = 14.1160 (4) Å c = 15.3048 (4) Å $\alpha = 93.474$ (2)° $\beta = 101.0918$ (19)°

 $\gamma = 93.0199 (19)^{\circ}$ $V = 2199.73 (10) \text{ Å}^3$ Z = 8Mo K\alpha radiation $\mu = 0.47 \text{ mm}^{-1}$ T = 296 K $0.67 \times 0.44 \times 0.28 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur
diffractometer with Sapphire 3
CCD detector
Absorption correction: multi-scan
CrysAlis RED (Oxford

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.131$ S = 0.969530 reflections 585 parameters 2 restraints Diffraction, 2006). $T_{\min} = 0.66, T_{\max} = 0.88$ 39152 measured reflections 9530 independent reflections 6061 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.97 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1A - H1AA \cdots O2A^{i}$	0.86 (3)	2.40 (3)	3.204 (3)	157 (3)
$N1A - H1AB \cdots O3B^{i}$	0.89 (3)	2.38 (3)	3.189 (3)	152 (3)
$N2A - H2A \cdots O3A$	0.81(3)	2.31 (2)	2.983 (3)	141 (2)
$N2A - H2A \cdots O3B^{ii}$	0.81(2)	2.48 (2)	3.003 (3)	124 (3)
$N1B - H1B \cdots O1B$	0.86(2)	2.28 (3)	2.940 (3)	134 (2)
$N1B - H1B \cdots O1A^{ii}$	0.86(2)	2.45 (2)	3.016 (3)	124 (1)
$N2B - H2BA \cdots O2B^{iii}$	0.86(2)	2.48 (2)	3.266 (3)	153 (3)
$N2B - H2BB \cdots O1A^{i}$	0.87 (3)	2.39 (3)	3.237 (3)	163 (3)
$N1C - H1CA \cdots O2C^{iv}$	0.81(3)	2.44 (3)	3.149 (3)	147 (3)
$N1C - H1CB \cdots O3D^{v}$	0.83 (3)	2.55 (3)	3.349 (3)	162 (3)
$N2C - H2C \cdots O2C$	0.82(3)	2.41 (3)	2.982 (3)	128 (3)
$N2C-H2C\cdots N2D^{vi}$	0.82(2)	2.44 (3)	3.122 (4)	143 (3)
$N1D - H1D \cdot \cdot \cdot N1C^{vii}$	0.81(3)	2.31 (3)	3.013 (3)	146 (3)
$N2D - H2DA \cdots O1D^{viii}$	0.79 (3)	2.30 (3)	3.040 (4)	155 (3)
$N2D - H2DB \cdots O3C^{ix}$	0.99 (3)	2.40 (3)	3.314 (4)	154 (2)
$C8A - H8AA \cdots O2D^{i}$	0.96	2.37	3.273 (3)	157
$C8B - H8BA \cdots O3D^{i}$	0.96	2.54	3.437 (4)	155
$C7D - H7DA \cdots O2B^{x}$	0.96	2.51	3.370 (4)	149

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXL97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

This research was supported by the Ministry of Science and Technology of the Republic of Croatia (grant Nos. 117–0000000–3283 and 098–1191344–2943).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2255).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bennett, G. M. & Bell, E. V. (1943). Organic Syntheses, Coll. Vol. 2, p. 223. New York, John Wiley & Sons.
- Bertolasi, V., Gilli, P., Ferretti, V., Gilli, G. & Fernàndez-Castaño, C. (1999). Acta Cryst. B55, 985–993.

Bogert, M. T. & Updike, I. A. (1927). J. Am. Chem. Soc. 49, 1373-1382.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Hunger, K. (2003). Industrial Dyes: Chemistry, Properties, Application. Winheim: Wiley-VCH.
- Leventis, N., Chen, M. & Sortiriou-Leventis, C. (1997). Tetrahedron, 53, 10083–10092.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Trinajstić, N. (1968). Tetrahedron Lett., 12, 1529-1532.
- Zollinger, H. (1991). Color Chemistry, 2nd ed. Weinheim: VCH.

supporting information

Acta Cryst. (2009). E65, o1263-o1264 [doi:10.1107/S1600536809016912]

S-5-Amino-2-(dimethylammonio)phenyl sulfothioate

Gordana Pavlović, Livio Racané and Vesna Tralić-Kulenović

S1. Comment

Phenothiazine dyes, from which methylene blue is the best known (Zollinger, 1991; Hunger, 2003) are a class of colorants with application in various fields. Methylene blue is commercially produced by oxidation of 4-N,N-dimethyl-aminoaniline with Na₂Cr₂O₇ in the presence of Na₂S₂O₃, followed by further oxidation in the presence of N,N-dimethyl-aniline, usually without isolation of intermediate 4-N,N-dimethylaminoaniline-2-tiosulfuric acid (Leventis *et al.*, 1997).

Following one of the well known methods for preparation of 4-*N*,*N*-dimethylaminoaniline-2-tiosulfuric acid (Bogert & Updike, 1927), we isolated *S*-5-amino-2-(dimethylammonio)phenyl sulfothioate (I) (Scheme 1), in zwitterionic form as a by-product. The product crystallizes with 4 independent molecules in the asymmetric unit, labelled as A, B, C and D (Fig.1.).

The molecule contains three substituents on the phenyl core (Fig.1.): the amino group, the dimethylammonium cation and the sulfothioate anion with individual geometries in accordance with literature data (Allen *et al.*, 1987).

The S—C bonds span the range 1.769 (2) - 1.777 (2) Å reflecting aproximately 20% of π bond character (Trinajstić, 1968). The C_{ar}—N bonds formed by amino groups have significant π character (1.367 (3), 1.363 (3), 1.379 (3),1.392 (4)Å in A, B, C and D respectively). Finally, C—N bonds in the *N*,*N*-dimethylammono moieties are essentially single bonds, with a 1.468 (3) - 1.500 (4) Å span. The C—S—S and O—S—S angles span the range 99.12 (8) - 100.37 (8)° and 100.32 (9) - 107.73 (9)°, respectively.

A molecular overlap of all four units (Fig.2.) indicates that the largest conformational difference between them arises in the spatial orientation of the dimethylammonio units relative to the phenyl rings, as well as in the sulfothioate part of the molecule While the conformations of molecules A (in green in fig. 2) and B (blue) are almost identical, molecule D (yellow) exhibits some conformational differences and molecule C (red) has a completely different spatial orientation of the mentioned substitutents. (See the Supplementary Material for torsion angles defining their geometries)

The rather complex hydrogen bonding network includes three fairly strong N—H···O intramolecular H-bonds and a number of N—H···O, N—H···N and a few non-conventional C—H···O intermolecular H-bonds (Fig. 3 and Table 1). All amino as well as ammonio NH's participate in N—H···O H-bond formation, with almost all nitrogens acting as double proton donors and many oxygens as double proton acceptors (Table 1). There are a couple of homonuclear N—H···N intermolecular interactions with N···N values in the range 3.013 (3)—3.122 (4) Å which compares fairly well with the mean value N···N = 2.97 (10) Å found by Bertolasi and co-workers for non-resonant N—H···N intermolecular hydrogen bonds in pyrazoles (Bertolasi *et al.*,1999). Finally, there are some non-conventional C—H···O bonds linking Car-H groups and S—SO₃⁻ fragments (Table 1, three final entries).

S2. Experimental

N,*N*-dimethylaniline was dissolved in aqueous HCl and nitrosilated with NaNO₂ (Bennett & Bell, 1943). The resulting crude 4-nitroso-*N*,*N*-dimethylaniline hydrochloride was isolated and dissolved in aqueous acetic acid. The cold water

solution of Na₂S₂O₃ was added and the reaction mixture was stirred at 273 - 278 K for several hours (Bogert & Updike, 1927), and left for two days at room temperature. The crude product was filtered off, and crystallized from water. The *S*-2-amino-5-(dimethylammonio)phenyl sulfothioate has been isolated, but after standing of mother liquor in refrigerator for several weeks *S*-5-amino-2-(dimethylammonio)phenyl sulfothioate (1 b) has been crystallized in the form of gray-greenish prism, as well. Spectroscopic analysis, IR (ATR, cm⁻¹): 3455 (w), 3403 (w), 3360 (w), 3328 (w), 3079 (w), 1631 (*m*), 1600 (*m*), 1496 (*m*), 1465 (*m*), 1369 (w), 1296 (w), 1211 (*s*), 1228 (*m*), 1049 (*m*), 1012 (*s*), 985 (*m*), 893 (w), 870 (*m*), 822 (*s*), 613 (*s*), 494 (*s*). ¹H NMR (600 MHz, DMSO-d₆): δ 9.62 (br s, 1H), 7.55 (d, 1H, J = 8.8 Hz), 6.96 (s, 1H), 6.75 (d, 1H, J = 8.8 Hz), 5.85 (br s, 2H), 3.13 (s, 6H). Analysis, calculated for C₈H₁₂N₂O₃S₂: C 38.69, H 4.87, N 11.28%; found: C 38.42, H 4.96, N 11.13%.

S3. Refinement

Hydrogen atoms bonded to amino and ammonio nitrogens were found in the difference Fourier electron-density maps and freely refined . The exceptions were the H's attached to N2B which N-H distances wouldn't refie properly and were accordingly restrained to the target value of 0.87 (1) Å. In all cases U_{iso} (H) = 1.2 U_{eq} (N). All hydrogens attached to carbon atoms were located at calculated positions and refined by applying the riding model (U_{iso} (H) = 1.2 U_{eq} (C) and Csp2-H distance 0.93 Å; Csp3-H 0.96 Å and U_{iso} (H) = 1.5 U_{eq} (C).

Figure 1

The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Each molecule is denoted by letters A, B, C and D.

Figure 2

Molecular overlap of the four crystallographically independent molecules A, B, C and D in (I) (molecule A shown in green, B in blue, C in red and D in yellow).

Figure 3

Crystal structure of (I).

S-5-amino-2-(dimethylammonio)phenyl sulfothioate

Crystal data

 $C_{8}H_{12}N_{2}O_{3}S_{2}$ $M_{r} = 248.32$ Triclinic, *P*1 Hall symbol: -P 1 a = 10.4173 (2) Å b = 14.1160 (4) Å c = 15.3048 (4) Å a = 93.474 (2)° $\beta = 101.0918$ (19)° $\gamma = 93.0199$ (19)° V = 2199.73 (10) Å³

Data collection

Enhance (Mo) X-ray Source
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω–scan
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2006).
$T_{\min} = 0.66, \ T_{\max} = 0.88$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.131$	neighbouring sites
S = 0.96	H atoms treated by a mixture of independent
9530 reflections	and constrained refinement
585 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0861P)^2]$
2 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.97 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1A	0.27663 (7)	0.24900 (4)	0.55734 (4)	0.04401 (17)	
S2A	0.17068 (6)	0.27335 (4)	0.42951 (4)	0.03945 (16)	
S1B	0.17849 (6)	0.77005 (4)	0.44199 (4)	0.04073 (16)	
S2B	0.28071 (7)	0.74990 (4)	0.57259 (4)	0.04367 (17)	
S1C	0.90558 (6)	0.91691 (4)	1.04578 (4)	0.04246 (17)	
S2C	0.81879 (6)	0.81735 (5)	1.11966 (4)	0.04335 (17)	
S1D	0.61090 (7)	0.40268 (5)	0.03857 (5)	0.05126 (19)	
S2D	0.74027 (6)	0.32095 (5)	0.12351 (4)	0.04467 (17)	
O1A	0.10076 (19)	0.18205 (13)	0.40364 (13)	0.0593 (5)	
O2A	0.2658 (2)	0.29550 (14)	0.37611 (12)	0.0605 (5)	
O3A	0.09201 (19)	0.35090 (14)	0.44440 (13)	0.0616 (5)	
O1B	0.09958 (19)	0.84839 (14)	0.45331 (13)	0.0618 (5)	

Z = 8

F(000) = 1040

 $\theta = 4.1 - 34.9^{\circ}$

 $\mu = 0.47 \text{ mm}^{-1}$

T = 296 K

Prism, green

 $R_{\rm int} = 0.029$

 $h = -13 \rightarrow 13$ $k = -18 \rightarrow 18$

 $l = -19 \rightarrow 19$

 $0.67 \times 0.44 \times 0.28 \text{ mm}$

 $\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 4.1^{\circ}$

39152 measured reflections 9530 independent reflections 6061 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.500 {\rm Mg} {\rm m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 16121 reflections

O2B	0.2759 (2)	0.78960 (15)	0.38979 (13)	0.0622 (5)
O3B	0.1079 (2)	0.67865 (13)	0.41843 (14)	0.0637 (6)
O1C	0.7534 (2)	0.86953 (15)	1.17901 (13)	0.0648 (6)
O2C	0.72798 (19)	0.75774 (13)	1.05336 (13)	0.0568 (5)
O3C	0.9318 (2)	0.77085 (16)	1.15941 (15)	0.0755 (7)
O1D	0.79910 (18)	0.26208 (13)	0.06400 (13)	0.0570 (5)
O2D	0.8338 (2)	0.38584 (16)	0.18086 (13)	0.0723 (6)
O3D	0.64858 (19)	0.27025 (16)	0.16585 (14)	0.0708 (6)
N1A	0.6882 (2)	0.4774 (2)	0.60426 (19)	0.0580 (7)
HIAA	0.724 (3)	0.534 (2)	0.611 (2)	0.070*
HIAB	0.730(3)	0.434(2)	0.578 (2)	0.070*
N2A	0.16030 (19)	0.42056(14)	0.63661(13)	0.0346 (4)
H2A	0.123(3)	0.3825(18)	0.5971 (17)	0.042*
NIR	0.123(3) 0.16318(18)	0.92695 (14)	0.5971(17) 0.64003(13)	0.012 0.0342(4)
HIB	0.125(2)	0.8810 (18)	0.6033(17)	0.0312(1)
N2B	0.123(2)	0.97876 (18)	0.60693(18)	0.0574 (6)
	0.0713(2) 0.728(3)	1.0353(11)	0.600000000000000000000000000000000000	0.0574 (0)
H2BR	0.728(3) 0.740(3)	0.0344(16)	0.011(2) 0.502(2)	0.009
N1C	0.740(3)	1.14041(16)	0.392(2)	0.009
	0.3430(2)	1.14941(10) 1.155(2)	0.90755(10)	0.0450 (5)
	0.408(3)	1.133(2) 1.167(2)	0.9449(19)	0.055*
NIC	0.307(3)	1.107(2)	1.021(2)	0.033
N2C	0.7012(2)	0.80939(13)	0.87200(14)	0.0408 (3)
H2C	0.802(3)	0.7874 (19)	0.9172 (19)	0.049*
NID	0.6621(2)	0.29835 (17)	-0.13159 (15)	0.0514 (6)
HID	0.641(3)	0.277(2)	-0.088(2)	0.062*
N2D	0.9370 (3)	0.65/04 (18)	-0.0356 (2)	0.0590 (7)
H2DA	0.998 (3)	0.669 (2)	-0.058 (2)	0.071*
H2DB	0.956 (3)	0.676 (2)	0.029 (2)	0.071*
CIA	0.3592 (2)	0.36262 (15)	0.58949 (14)	0.0329 (5)
C2A	0.2975 (2)	0.43572 (15)	0.62711 (14)	0.0335 (5)
C3A	0.3675 (2)	0.52188 (17)	0.65689 (16)	0.0410 (6)
H3A	0.3273	0.5706	0.6828	0.049*
C4A	0.4955 (2)	0.53522 (17)	0.64817 (17)	0.0438 (6)
H4A	0.5410	0.5934	0.6680	0.053*
C5A	0.5594 (2)	0.46343 (17)	0.61024 (16)	0.0395 (5)
C6A	0.4886 (2)	0.37750 (17)	0.58151 (15)	0.0383 (5)
H6A	0.5292	0.3287	0.5562	0.046*
C7A	0.1503 (3)	0.3849 (2)	0.72493 (18)	0.0560 (7)
H7AA	0.1939	0.3268	0.7321	0.084*
H7AB	0.0597	0.3733	0.7279	0.084*
H7AC	0.1909	0.4316	0.7716	0.084*
C8A	0.0830 (2)	0.50585 (17)	0.61936 (17)	0.0429 (6)
H8AA	0.1103	0.5533	0.6680	0.064*
H8AB	-0.0085	0.4880	0.6140	0.064*
H8AC	0.0976	0.5311	0.5650	0.064*
C1B	0.3640 (2)	0.86418 (15)	0.59945 (14)	0.0328 (5)
C2B	0.2993 (2)	0.94133 (15)	0.62723 (14)	0.0314 (5)
C3B	0.3651 (2)	1.03014 (16)	0.64587 (15)	0.0351 (5)
	× /			~ /

H3B	0.3223	1.0816	0.6645	0.042*
C4B	0.4937 (2)	1.04259 (17)	0.63691 (16)	0.0397 (6)
H4B	0.5362	1.1030	0.6483	0.048*
C5B	0.5620(2)	0.96619 (18)	0.61100 (15)	0.0389 (5)
C6B	0.4939 (2)	0.87747 (17)	0.59219 (16)	0.0389 (5)
H6B	0.5369	0.8258	0.5743	0.047*
C7B	0.0834 (2)	1.01044 (18)	0.61966 (19)	0.0477 (6)
H7BA	0.1103	1.0601	0.6663	0.072*
H7BB	-0.0076	0.9918	0.6156	0.072*
H7BC	0.0963	1.0332	0.5639	0.072*
C8B	0.1591 (3)	0.8972 (2)	0.73143 (17)	0.0510(7)
H8BA	0.2066	0.8412	0.7416	0.076*
H8BB	0.0696	0.8839	0.7366	0.076*
H8BC	0.1984	0.9475	0.7749	0.076*
C1C	0.7619 (2)	0.95106 (16)	0.97633 (15)	0.0350 (5)
C2C	0.7015 (2)	0.89590 (16)	0.89877 (15)	0.0363 (5)
C3C	0.5886 (3)	0.92509 (19)	0.84673 (16)	0.0458 (6)
H3C	0.5486	0.8886	0.7951	0.055*
C4C	0.5352 (2)	1.00708 (18)	0.87041 (16)	0.0434 (6)
H4C	0.4588	1.0251	0.8349	0.052*
C5C	0.5937 (2)	1.06415 (17)	0.94707 (16)	0.0395 (6)
C6C	0.7070 (2)	1.03473 (16)	0.99900 (15)	0.0385 (5)
H6C	0.7473	1.0718	1.0502	0.046*
C7C	0.6643 (3)	0.7310(2)	0.8276 (2)	0.0587 (8)
H7CA	0.6000	0.7194	0.8637	0.088*
H7CB	0.7091	0.6742	0.8201	0.088*
H7CC	0.6218	0.7490	0.7703	0.088*
C8C	0.8610 (3)	0.8316(2)	0.8170(2)	0.0637 (8)
H8CA	0.8189	0.8569	0.7628	0.096*
H8CB	0.9013	0.7745	0.8030	0.096*
H8CC	0.9267	0.8776	0.8497	0.096*
C1D	0.7193 (2)	0.44478 (18)	-0.02904 (17)	0.0418 (6)
C2D	0.7337 (2)	0.39226 (18)	-0.10609 (16)	0.0431 (6)
C3D	0.8142 (3)	0.4285 (2)	-0.15952 (19)	0.0560 (7)
H3D	0.8221	0.3940	-0.2117	0.067*
C4D	0.8823 (3)	0.5146 (2)	-0.1365 (2)	0.0570 (7)
H4D	0.9362	0.5381	-0.1732	0.068*
C5D	0.8720 (3)	0.56763 (18)	-0.05842 (19)	0.0477 (6)
C6D	0.7879 (2)	0.53183 (18)	-0.00654 (18)	0.0464 (6)
H6D	0.7775	0.5673	0.0446	0.056*
C7D	0.7421 (4)	0.2254 (2)	-0.1671 (2)	0.0863 (12)
H7DA	0.7604	0.2431	-0.2233	0.129*
H7DB	0.6941	0.1645	-0.1754	0.129*
H7DC	0.8230	0.2218	-0.1255	0.129*
C8D	0.5332 (4)	0.3075 (3)	-0.1930 (3)	0.1163 (18)
H8DA	0.4854	0.3544	-0.1672	0.174*
H8DB	0.4833	0.2474	-0.2016	0.174*
H8DC	0.5484	0.3266	-0.2495	0.174*

Atomic displacement parameters $(Å^2)$

	<i>U</i> ¹¹	<i>U</i> ²²	<i>U</i> ³³	U^{12}	U^{13}	<i>U</i> ²³
S1A	0.0557 (4)	0.0249 (3)	0.0488 (4)	0.0009 (3)	0.0044 (3)	0.0018 (3)
S2A	0.0402 (3)	0.0342 (3)	0.0421 (3)	-0.0021 (2)	0.0077 (3)	-0.0067 (3)
S1B	0.0383 (3)	0.0345 (3)	0.0474 (4)	-0.0011 (2)	0.0069 (3)	-0.0054 (3)
S2B	0.0524 (4)	0.0267 (3)	0.0507 (4)	0.0020 (3)	0.0070 (3)	0.0037 (3)
S1C	0.0371 (3)	0.0453 (4)	0.0428 (4)	-0.0040 (3)	0.0024 (3)	0.0083 (3)
S2C	0.0480 (4)	0.0448 (4)	0.0393 (3)	0.0058 (3)	0.0109 (3)	0.0098 (3)
S1D	0.0471 (4)	0.0546 (4)	0.0591 (4)	0.0077 (3)	0.0228 (3)	0.0164 (3)
S2D	0.0464 (4)	0.0473 (4)	0.0400 (3)	-0.0045 (3)	0.0089 (3)	0.0053 (3)
O1A	0.0602 (12)	0.0481 (11)	0.0633 (12)	-0.0190 (9)	0.0083 (10)	-0.0155 (9)
O2A	0.0684 (13)	0.0674 (13)	0.0461 (11)	-0.0160 (10)	0.0207 (10)	-0.0056 (9)
O3A	0.0599 (12)	0.0586 (12)	0.0607 (12)	0.0230 (10)	-0.0036 (10)	-0.0075 (10)
O1B	0.0626 (13)	0.0545 (12)	0.0621 (12)	0.0253 (10)	-0.0056 (10)	-0.0082 (10)
O2B	0.0588 (12)	0.0774 (14)	0.0526 (12)	-0.0061 (10)	0.0193 (10)	0.0036 (10)
O3B	0.0637 (13)	0.0478 (11)	0.0727 (14)	-0.0182 (9)	0.0085 (11)	-0.0149 (10)
O1C	0.0782 (14)	0.0701 (14)	0.0517 (11)	0.0039 (11)	0.0293 (11)	-0.0032 (10)
O2C	0.0680 (13)	0.0452 (11)	0.0577 (11)	-0.0107 (9)	0.0182 (10)	0.0004 (9)
O3C	0.0591 (13)	0.0903 (16)	0.0842 (15)	0.0214 (12)	0.0141 (12)	0.0499 (13)
O1D	0.0537 (11)	0.0524 (11)	0.0653 (12)	0.0077 (9)	0.0130 (10)	-0.0006 (9)
O2D	0.0725 (14)	0.0822 (15)	0.0527 (12)	-0.0187 (12)	0.0004 (11)	-0.0131 (11)
O3D	0.0548 (12)	0.0899 (16)	0.0757 (14)	0.0013 (11)	0.0221 (11)	0.0434 (12)
N1A	0.0433 (14)	0.0511 (15)	0.0812 (18)	-0.0032 (11)	0.0200 (13)	-0.0013 (13)
N2A	0.0359 (11)	0.0301 (10)	0.0359 (11)	0.0014 (8)	0.0034 (9)	0.0002 (8)
N1B	0.0322 (10)	0.0324 (10)	0.0369 (11)	0.0018 (8)	0.0052 (8)	-0.0008 (8)
N2B	0.0412 (14)	0.0536 (15)	0.0800 (18)	-0.0008 (11)	0.0214 (12)	-0.0008 (13)
N1C	0.0443 (13)	0.0454 (13)	0.0461 (13)	0.0043 (11)	0.0045 (11)	0.0080 (11)
N2C	0.0419 (12)	0.0451 (12)	0.0352 (11)	-0.0018 (9)	0.0101 (9)	-0.0019 (9)
N1D	0.0587 (15)	0.0587 (15)	0.0343 (12)	-0.0145 (11)	0.0063 (11)	0.0082 (10)
N2D	0.0496 (15)	0.0496 (14)	0.0814 (19)	-0.0042 (11)	0.0239 (14)	0.0028 (13)
C1A	0.0384 (13)	0.0280 (11)	0.0312 (11)	0.0032 (9)	0.0031 (10)	0.0035 (9)
C2A	0.0363 (12)	0.0305 (12)	0.0326 (12)	0.0012 (9)	0.0043 (10)	0.0033 (9)
C3A	0.0416 (14)	0.0322 (12)	0.0483 (14)	0.0016 (10)	0.0086 (11)	-0.0039 (11)
C4A	0.0462 (15)	0.0325 (13)	0.0500 (15)	-0.0064 (11)	0.0074 (12)	-0.0032 (11)
C5A	0.0390 (14)	0.0418 (14)	0.0371 (13)	0.0014 (11)	0.0061 (11)	0.0046 (11)
C6A	0.0423 (14)	0.0371 (13)	0.0355 (13)	0.0085 (10)	0.0064 (10)	0.0019 (10)
C7A	0.0530 (17)	0.0684 (19)	0.0510 (16)	0.0038 (14)	0.0162 (14)	0.0205 (14)
C8A	0.0401 (14)	0.0372 (13)	0.0472 (14)	0.0105 (11)	-0.0021 (11)	-0.0038 (11)
C1B	0.0387 (13)	0.0260 (11)	0.0323 (12)	0.0040 (9)	0.0032 (10)	0.0030 (9)
C2B	0.0347 (12)	0.0317 (12)	0.0275 (11)	0.0025 (9)	0.0050 (9)	0.0026 (9)
C3B	0.0408 (13)	0.0288 (12)	0.0361 (12)	0.0047 (10)	0.0084 (10)	0.0012 (10)
C4B	0.0424 (14)	0.0339 (13)	0.0412 (13)	-0.0044 (10)	0.0070 (11)	-0.0010 (10)
C5B	0.0361 (13)	0.0462 (14)	0.0342 (12)	0.0013 (11)	0.0069 (10)	0.0016 (11)
C6B	0.0396 (13)	0.0387 (13)	0.0392 (13)	0.0088 (10)	0.0087 (11)	0.0005 (10)
C7B	0.0368 (14)	0.0405 (14)	0.0628 (17)	0.0099 (11)	0.0019 (12)	-0.0007 (12)
C8B	0.0443 (15)	0.0677 (18)	0.0444 (15)	0.0017 (13)	0.0161 (12)	0.0102 (13)
C1C	0.0358 (12)	0.0369 (13)	0.0313 (12)	-0.0034 (10)	0.0043 (10)	0.0063 (10)

C2C	0.0414 (14)	0.0378 (13)	0.0290 (12)	-0.0053 (10)	0.0082 (10)	0.0011 (10)
C3C	0.0508 (16)	0.0537 (16)	0.0285 (12)	-0.0093 (13)	0.0013 (11)	-0.0008 (11)
C4C	0.0411 (14)	0.0478 (15)	0.0390 (13)	-0.0002 (11)	0.0010 (11)	0.0096 (11)
C5C	0.0420 (14)	0.0389 (13)	0.0389 (13)	-0.0006 (11)	0.0096 (11)	0.0106 (11)
C6C	0.0460 (14)	0.0331 (12)	0.0341 (12)	-0.0049 (10)	0.0042 (11)	0.0029 (10)
C7C	0.0556 (18)	0.0495 (17)	0.0652 (18)	-0.0066 (14)	0.0060 (15)	-0.0155 (14)
C8C	0.073 (2)	0.069 (2)	0.0572 (18)	-0.0051 (16)	0.0384 (16)	-0.0039 (15)
C1D	0.0416 (14)	0.0443 (14)	0.0428 (14)	0.0059 (11)	0.0124 (11)	0.0135 (11)
C2D	0.0471 (15)	0.0427 (14)	0.0391 (13)	-0.0023 (11)	0.0071 (11)	0.0100 (11)
C3D	0.0672 (19)	0.0568 (17)	0.0493 (16)	-0.0014 (14)	0.0253 (14)	0.0048 (13)
C4D	0.0582 (18)	0.0557 (17)	0.0645 (18)	-0.0055 (14)	0.0309 (15)	0.0115 (15)
C5D	0.0434 (15)	0.0433 (15)	0.0601 (17)	0.0048 (12)	0.0161 (13)	0.0120 (13)
C6D	0.0512 (16)	0.0407 (14)	0.0510 (15)	0.0083 (12)	0.0169 (13)	0.0074 (12)
C7D	0.126 (3)	0.060 (2)	0.081 (2)	-0.027 (2)	0.059 (2)	-0.0250 (18)
C8D	0.095 (3)	0.128 (4)	0.097 (3)	-0.051 (3)	-0.052 (2)	0.057 (3)

Geometric parameters (Å, °)

S1A—C1A	1.775 (2)	C4A—H4A	0.9300
S1A—S2A	2.1105 (9)	C5A—C6A	1.388 (3)
S2A—O2A	1.4342 (19)	С6А—Н6А	0.9300
S2A—O3A	1.4346 (19)	С7А—Н7АА	0.9600
S2A—O1A	1.4411 (18)	C7A—H7AB	0.9600
S1B—O2B	1.4328 (19)	C7A—H7AC	0.9600
S1B—O1B	1.4339 (19)	C8A—H8AA	0.9600
S1B—O3B	1.4411 (18)	C8A—H8AB	0.9600
S1B—S2B	2.1194 (9)	C8A—H8AC	0.9600
S2B—C1B	1.777 (2)	C1B—C6B	1.383 (3)
S1C—C1C	1.769 (2)	C1B—C2B	1.397 (3)
S1C—S2C	2.1267 (9)	C2B—C3B	1.384 (3)
S2C—O3C	1.428 (2)	C3B—C4B	1.376 (3)
S2C—O1C	1.429 (2)	СЗВ—НЗВ	0.9300
S2C—O2C	1.441 (2)	C4B—C5B	1.402 (3)
S1D—C1D	1.775 (2)	C4B—H4B	0.9300
S1D—S2D	2.1233 (10)	C5B—C6B	1.393 (3)
S2D—O2D	1.428 (2)	С6В—Н6В	0.9300
S2D—O3D	1.4376 (19)	C7B—H7BA	0.9600
S2D—O1D	1.4396 (19)	C7B—H7BB	0.9600
N1A—C5A	1.367 (3)	C7B—H7BC	0.9600
N1A—H1AA	0.86 (3)	C8B—H8BA	0.9600
N1A—H1AB	0.89 (3)	C8B—H8BB	0.9600
N2A—C2A	1.470 (3)	C8B—H8BC	0.9600
N2A—C7A	1.491 (3)	C1C—C6C	1.393 (3)
N2A—C8A	1.492 (3)	C1C—C2C	1.400 (3)
N2A—H2A	0.81 (3)	C2C—C3C	1.385 (3)
N1B—C2B	1.473 (3)	C3C—C4C	1.369 (4)
N1B—C7B	1.492 (3)	СЗС—НЗС	0.9300
N1B—C8B	1.492 (3)	C4C—C5C	1.398 (3)

N1B—H1B	0.86 (2)	C4C—H4C	0.9300
N2B—C5B	1.363 (3)	C5C—C6C	1.388 (3)
N2B—H2BA	0.86 (2)	С6С—Н6С	0.9300
N2B—H2BB	0.87 (3)	C7C—H7CA	0.9600
N1C—C5C	1.379 (3)	C7C—H7CB	0.9600
N1C—H1CA	0.81 (3)	C7C—H7CC	0.9600
N1C—H1CB	0.83 (3)	C8C—H8CA	0.9600
N2C—C2C	1.468 (3)	C8C—H8CB	0.9600
N2C—C8C	1.496 (3)	C8C—H8CC	0.9600
N2C—C7C	1.497 (3)	C1D—C6D	1.379 (3)
N2C—H2C	0.82 (3)	C1D—C2D	1.392 (3)
N1D—C2D	1.479 (3)	C2D—C3D	1.380 (3)
N1D—C8D	1.500 (4)	C3D—C4D	1.366 (4)
N1D—C7D	1.500 (4)	C3D—H3D	0.9300
N1D—H1D	0.82 (3)	C4D—C5D	1.396 (4)
N2D—C5D	1.392 (4)	C4D—H4D	0.9300
N2D—H2DA	0.79(3)	C5D—C6D	1.387 (3)
N2D—H2DB	0.99 (3)	C6D—H6D	0.9300
C1A—C6A	1.383 (3)	C7D—H7DA	0.9600
C1A—C2A	1.396 (3)	C7D—H7DB	0.9600
C2A—C3A	1.389 (3)	C7D—H7DC	0.9600
C3A—C4A	1.370 (3)	C8D—H8DA	0.9600
СЗА—НЗА	0.9300	C8D—H8DB	0.9600
C4A—C5A	1.399 (3)	C8D—H8DC	0.9600
C1A—S1A—S2A	100.38 (8)	Н8АА—С8А—Н8АС	109.5
O2A—S2A—O3A	113.54 (13)	H8AB—C8A—H8AC	109.5
O2A—S2A—O1A	113.29 (11)	C6B—C1B—C2B	119.4 (2)
O3A—S2A—O1A	115.94 (12)	C6B—C1B—S2B	119.89 (17)
O2A—S2A—S1A	106.64 (9)	C2B—C1B—S2B	120.70 (17)
O3A—S2A—S1A	104.90 (9)	C3B - C2B - C1B	1198(2)
O1A—S2A—S1A			117.0 (2)
	100.82 (9)	C3B—C2B—N1B	120.32 (19)
O2B—S1B—O1B	100.82 (9) 113.64 (13)	C3B—C2B—N1B C1B—C2B—N1B	120.32 (19) 119.88 (19)
O2B—S1B—O1B O2B—S1B—O3B	100.82 (9) 113.64 (13) 113.81 (12)	C3B—C2B—N1B C1B—C2B—N1B C4B—C3B—C2B	120.32 (19) 119.88 (19) 120.2 (2)
O2B—S1B—O1B O2B—S1B—O3B O1B—S1B—O3B	100.82 (9) 113.64 (13) 113.81 (12) 115.59 (13)	C3B—C2B—N1B C1B—C2B—N1B C4B—C3B—C2B C4B—C3B—H3B	120.32 (19) 119.88 (19) 120.2 (2) 119.9
O2B—S1B—O1B O2B—S1B—O3B O1B—S1B—O3B O2B—S1B—S2B	100.82 (9) 113.64 (13) 113.81 (12) 115.59 (13) 106.63 (9)	C3B—C2B—N1B C1B—C2B—N1B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B	120.32 (19) 119.88 (19) 120.2 (2) 119.9 119.9
O2B—S1B—O1B O2B—S1B—O3B O1B—S1B—O3B O2B—S1B—S2B O1B—S1B—S2B	100.82 (9) 113.64 (13) 113.81 (12) 115.59 (13) 106.63 (9) 104.64 (9)	C3B—C2B—N1B C1B—C2B—N1B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—C5B	120.32 (19) 119.88 (19) 120.2 (2) 119.9 119.9 119.9 121.4 (2)
O2B—S1B—O1B O2B—S1B—O3B O1B—S1B—O3B O2B—S1B—S2B O1B—S1B—S2B O3B—S1B—S2B	100.82 (9) 113.64 (13) 113.81 (12) 115.59 (13) 106.63 (9) 104.64 (9) 100.73 (9)	C3B—C2B—N1B C1B—C2B—N1B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—C5B C3B—C4B—H4B	120.32 (19) 119.88 (19) 120.2 (2) 119.9 119.9 121.4 (2) 119.3
O2B—S1B—O1B O2B—S1B—O3B O1B—S1B—O3B O2B—S1B—S2B O1B—S1B—S2B O3B—S1B—S2B C1B—S2B—S1B	100.82 (9) 113.64 (13) 113.81 (12) 115.59 (13) 106.63 (9) 104.64 (9) 100.73 (9) 99.21 (8)	C3B—C2B—N1B C1B—C2B—N1B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—C5B C3B—C4B—H4B C5B—C4B—H4B	120.32 (19) 120.32 (19) 119.88 (19) 120.2 (2) 119.9 121.4 (2) 119.3 119.3
O2B—S1B—O1B O2B—S1B—O3B O1B—S1B—O3B O2B—S1B—S2B O1B—S1B—S2B O3B—S1B—S2B C1B—S2B—S1B C1C—S1C—S2C	100.82 (9) 113.64 (13) 113.81 (12) 115.59 (13) 106.63 (9) 104.64 (9) 100.73 (9) 99.21 (8) 99.12 (8)	C3B—C2B—N1B C1B—C2B—N1B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—C5B C3B—C4B—H4B C5B—C4B—H4B N2B—C5B—C6B	120.32 (19) 120.32 (19) 119.88 (19) 120.2 (2) 119.9 119.9 121.4 (2) 119.3 119.3 119.3 121.8 (2)
02B—S1B—O1B 02B—S1B—O3B 01B—S1B—O3B 02B—S1B—S2B 01B—S1B—S2B 03B—S1B—S2B C1B—S2B—S1B C1C—S1C—S2C 03C—S2C—O1C	100.82 (9) 113.64 (13) 113.81 (12) 115.59 (13) 106.63 (9) 104.64 (9) 100.73 (9) 99.21 (8) 99.12 (8) 116.76 (14)	C3B—C2B—N1B C1B—C2B—N1B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—C5B C3B—C4B—H4B C5B—C4B—H4B N2B—C5B—C6B N2B—C5B—C4B	120.32 (19) 120.32 (19) 119.88 (19) 120.2 (2) 119.9 119.9 121.4 (2) 119.3 119.3 121.8 (2) 120.6 (2)
02B—\$1B—01B 02B—\$1B—03B 01B—\$1B—03B 02B—\$1B—\$2B 01B—\$1B—\$2B 03B—\$1B—\$2B C1B—\$2B—\$1B C1C—\$1C—\$2C 03C—\$2C—01C 03C—\$2C—02C	100.82 (9) 113.64 (13) 113.81 (12) 115.59 (13) 106.63 (9) 104.64 (9) 100.73 (9) 99.21 (8) 99.12 (8) 116.76 (14) 113.72 (14)	C3B—C2B—N1B C1B—C2B—N1B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—C5B C3B—C4B—H4B C5B—C4B—H4B N2B—C5B—C6B N2B—C5B—C4B C6B—C5B—C4B	120.32 (19) 120.32 (19) 119.88 (19) 120.2 (2) 119.9 119.9 121.4 (2) 119.3 119.3 121.8 (2) 120.6 (2) 117.5 (2)
02B—S1B—O1B 02B—S1B—O3B 01B—S1B—O3B 02B—S1B—S2B 01B—S1B—S2B 03B—S1B—S2B C1B—S2B—S1B C1C—S1C—S2C 03C—S2C—O1C 03C—S2C—O2C 01C—S2C—O2C	100.82 (9) 113.64 (13) 113.81 (12) 115.59 (13) 106.63 (9) 104.64 (9) 100.73 (9) 99.21 (8) 99.12 (8) 116.76 (14) 113.72 (14) 111.87 (13)	C3B—C2B—N1B C1B—C2B—N1B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—C5B C3B—C4B—H4B C5B—C4B—H4B N2B—C5B—C6B N2B—C5B—C4B C6B—C5B—C4B C1B—C6B—C5B	120.32 (19) 120.32 (19) 119.88 (19) 120.2 (2) 119.9 119.9 121.4 (2) 119.3 119.3 121.8 (2) 120.6 (2) 117.5 (2) 121.7 (2)
02B—S1B—O1B 02B—S1B—O3B 01B—S1B—O3B 02B—S1B—S2B 01B—S1B—S2B 03B—S1B—S2B C1B—S2B—S1B C1C—S1C—S2C 03C—S2C—O1C 03C—S2C—O2C 01C—S2C—O2C 03C—S2C—S1C	100.82 (9) 113.64 (13) 113.81 (12) 115.59 (13) 106.63 (9) 104.64 (9) 100.73 (9) 99.21 (8) 99.12 (8) 116.76 (14) 113.72 (14) 111.87 (13) 100.41 (9)	C3B—C2B—N1B C1B—C2B—N1B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—C5B C3B—C4B—H4B C5B—C4B—H4B N2B—C5B—C6B N2B—C5B—C4B C6B—C5B—C4B C1B—C6B—C5B C1B—C6B—H6B	120.32 (19) 120.32 (19) 119.88 (19) 120.2 (2) 119.9 119.9 121.4 (2) 119.3 119.3 121.8 (2) 120.6 (2) 117.5 (2) 121.7 (2) 119.1
02B—S1B—O1B 02B—S1B—O3B 01B—S1B—O3B 02B—S1B—S2B 01B—S1B—S2B 03B—S1B—S2B C1B—S2B—S1B C1C—S1C—S2C 03C—S2C—O1C 03C—S2C—O2C 01C—S2C—O2C 03C—S2C—S1C 01C—S2C—S1C	100.82 (9) 113.64 (13) 113.81 (12) 115.59 (13) 106.63 (9) 104.64 (9) 100.73 (9) 99.21 (8) 99.12 (8) 116.76 (14) 113.72 (14) 111.87 (13) 100.41 (9) 107.73 (9)	C3B—C2B—N1B C1B—C2B—N1B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—C5B C3B—C4B—H4B C5B—C4B—H4B N2B—C5B—C6B N2B—C5B—C4B C6B—C5B—C4B C1B—C6B—C5B C1B—C6B—H6B C5B—C6B—H6B	120.32 (19) 120.32 (19) 119.88 (19) 120.2 (2) 119.9 119.9 121.4 (2) 119.3 119.3 121.8 (2) 120.6 (2) 117.5 (2) 121.7 (2) 119.1
02B—S1B—O1B 02B—S1B—O3B 01B—S1B—O3B 02B—S1B—S2B 01B—S1B—S2B 03B—S1B—S2B C1B—S2B—S1B C1C—S1C—S2C 03C—S2C—01C 03C—S2C—02C 01C—S2C—02C 01C—S2C—S1C 02C—S2C—S1C	100.82 (9) 113.64 (13) 113.81 (12) 115.59 (13) 106.63 (9) 104.64 (9) 100.73 (9) 99.21 (8) 99.12 (8) 116.76 (14) 113.72 (14) 111.87 (13) 100.41 (9) 107.73 (9) 104.76 (8)	C3B—C2B—N1B C1B—C2B—N1B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—C5B C3B—C4B—H4B C5B—C4B—H4B N2B—C5B—C6B N2B—C5B—C4B C6B—C5B—C4B C1B—C6B—C5B C1B—C6B—H6B C5B—C6B—H6B N1B—C7B—H7BA	120.32 (19) 120.32 (19) 119.88 (19) 120.2 (2) 119.9 119.9 121.4 (2) 119.3 119.3 121.8 (2) 120.6 (2) 117.5 (2) 121.7 (2) 119.1 119.1 109.5
02B—S1B—O1B 02B—S1B—O3B 01B—S1B—O3B 02B—S1B—S2B 01B—S1B—S2B 03B—S1B—S2B C1B—S2B—S1B C1C—S1C—S2C 03C—S2C—01C 03C—S2C—02C 01C—S2C—02C 01C—S2C—S1C 01C—S2C—S1C 02C—S2C—S1C C1D—S1D—S2D	100.82 (9) 113.64 (13) 113.81 (12) 115.59 (13) 106.63 (9) 104.64 (9) 100.73 (9) 99.21 (8) 99.12 (8) 116.76 (14) 113.72 (14) 111.87 (13) 100.41 (9) 104.76 (8) 99.41 (9)	C3B—C2B—N1B C1B—C2B—N1B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—H4B C5B—C4B—H4B C5B—C4B—H4B N2B—C5B—C6B N2B—C5B—C6B N2B—C5B—C4B C1B—C6B—C4B C1B—C6B—H6B C5B—C6B—H6B N1B—C7B—H7BA N1B—C7B—H7BB	120.32 (19) 120.32 (19) 119.88 (19) 120.2 (2) 119.9 119.9 121.4 (2) 119.3 119.3 121.8 (2) 120.6 (2) 117.5 (2) 121.7 (2) 119.1 109.5 109.5
02B—S1B—O1B 02B—S1B—O3B 01B—S1B—O3B 02B—S1B—S2B 01B—S1B—S2B 03B—S1B—S2B C1B—S2B—S1B C1C—S1C—S2C 03C—S2C—O1C 03C—S2C—O2C 01C—S2C—O2C 01C—S2C—S1C 01C—S2C—S1C 02C—S2C—S1C C1D—S1D—S2D 02D—S2D—O3D	100.82 (9) 113.64 (13) 113.81 (12) 115.59 (13) 106.63 (9) 104.64 (9) 100.73 (9) 99.21 (8) 99.12 (8) 116.76 (14) 113.72 (14) 111.87 (13) 100.41 (9) 107.73 (9) 104.76 (8) 99.41 (9) 115.78 (14)	C3B—C2B—N1B C1B—C2B—N1B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—C5B C3B—C4B—H4B C5B—C4B—H4B N2B—C5B—C6B N2B—C5B—C4B C6B—C5B—C4B C1B—C6B—C5B C1B—C6B—H6B C5B—C6B—H6B N1B—C7B—H7BA N1B—C7B—H7BB H7BA—C7B—H7BB	120.32 (19) 120.32 (19) 119.88 (19) 120.2 (2) 119.9 119.9 121.4 (2) 119.3 119.3 121.8 (2) 120.6 (2) 117.5 (2) 121.7 (2) 119.1 109.5 109.5 109.5

O2D—S2D—O1D	112.56 (12)	N1B—C7B—H7BC	109.5
O3D—S2D—O1D	114.26 (13)	H7BA—C7B—H7BC	109.5
O2D—S2D—S1D	107.46 (11)	H7BB—C7B—H7BC	109.5
O3D—S2D—S1D	100.31 (9)	N1B—C8B—H8BA	109.5
01D—S2D—S1D	104.81 (9)	N1B—C8B—H8BB	109.5
C5A—N1A—H1AA	119 (2)	H8BA—C8B—H8BB	109.5
C5A—N1A—H1AB	122 (2)	N1B—C8B—H8BC	109.5
H1AA—N1A—H1AB	116 (3)	H8BA—C8B—H8BC	109.5
C2A—N2A—C7A	111.71 (19)	H8BB—C8B—H8BC	109.5
C2A—N2A—C8A	113.43 (18)	C6C—C1C—C2C	118.9 (2)
C7A—N2A—C8A	111.0 (2)	C6C—C1C—S1C	119.49 (18)
C2A—N2A—H2A	108.8 (19)	C2C—C1C—S1C	121.57 (18)
C7A—N2A—H2A	109.6 (19)	C3C—C2C—C1C	119.6 (2)
C8A—N2A—H2A	101.8 (19)	C3C—C2C—N2C	121.1 (2)
C2B—N1B—C7B	113.76 (18)	C1C—C2C—N2C	119.3 (2)
C2B—N1B—C8B	111.14 (18)	C4C—C3C—C2C	120.8 (2)
C7B—N1B—C8B	111.0 (2)	C4C—C3C—H3C	119.6
C2B—N1B—H1B	108.5 (17)	C2C—C3C—H3C	119.6
C7B—N1B—H1B	105.6 (17)	C3C—C4C—C5C	121.1 (2)
C8B—N1B—H1B	106.4 (17)	C3C—C4C—H4C	119.5
C5B—N2B—H2BA	120 (2)	C5C—C4C—H4C	119.5
C5B—N2B—H2BB	126 (2)	N1C—C5C—C6C	121.3 (2)
H2BA—N2B—H2BB	114 (3)	N1C—C5C—C4C	120.6 (2)
C5C—N1C—H1CA	116 (2)	C6C—C5C—C4C	118.0(2)
C5C—N1C—H1CB	112 (2)	C5C—C6C—C1C	121.7 (2)
H1CA—N1C—H1CB	117 (3)	С5С—С6С—Н6С	119.2
C2C—N2C—C8C	111.0 (2)	С1С—С6С—Н6С	119.2
C2C—N2C—C7C	114.1 (2)	N2C—C7C—H7CA	109.5
C8C—N2C—C7C	111.1 (2)	N2C—C7C—H7CB	109.5
C2C—N2C—H2C	109.4 (19)	H7CA—C7C—H7CB	109.5
C8C—N2C—H2C	105 (2)	N2C—C7C—H7CC	109.5
C7C—N2C—H2C	105 (2)	H7CA—C7C—H7CC	109.5
C2D—N1D—C8D	111.1 (2)	H7CB—C7C—H7CC	109.5
C2D—N1D—C7D	113.7 (2)	N2C—C8C—H8CA	109.5
C8D—N1D—C7D	112.6 (3)	N2C—C8C—H8CB	109.5
C2D—N1D—H1D	110 (2)	H8CA—C8C—H8CB	109.5
C8D—N1D—H1D	103 (2)	N2C—C8C—H8CC	109.5
C7D—N1D—H1D	106 (2)	H8CA—C8C—H8CC	109.5
C5D—N2D—H2DA	118 (2)	H8CB—C8C—H8CC	109.5
C5D—N2D—H2DB	114.4 (18)	C6D-C1D-C2D	119.2 (2)
H2DA—N2D—H2DB	111 (3)	C6D-C1D-S1D	119.8 (2)
C6A—C1A—C2A	119.5 (2)	C2D-C1D-S1D	120.95 (19)
C6A - C1A - S1A	119.55 (17)	C3D - C2D - C1D	119.8 (2)
C2A—C1A—S1A	120.89 (17)	C3D—C2D—N1D	119.8 (2)
C3A—C2A—C1A	119.5 (2)	C1D—C2D—N1D	120.4 (2)
C3A—C2A—N2A	120.5(2)	C4D-C3D-C2D	120.6 (3)
C1A—C2A—N2A	120.00 (19)	C4D—C3D—H3D	119.7
C4A - C3A - C2A	120.1 (2)	C2D-C3D-H3D	119.7

С4А—СЗА—НЗА	120.0	C3D - C4D - C5D	120.7(2)
$C_{2A} = C_{3A} = H_{3A}$	120.0	C3D - C4D - H4D	119.7
$C_{3A} - C_{4A} - C_{5A}$	120.0 121.6(2)	C5D - C4D - H4D	119.7
C_{3A} C_{4A} H_{4A}	119.2	C6D - C5D - N2D	120.2(3)
C_{5A} C_{4A} H_{4A}	119.2	C6D - C5D - C4D	120.2(3) 118.2(2)
N1A C5A C6A	117.2 121.7(2)	N2D C5D C4D	110.2(2) 1214(2)
NIA C5A C4A	121.7(2) 120.7(2)	$N_2D = C_3D = C_4D$	121.4(2) 121.5(2)
MA = C3A = C4A	120.7(2)	C1D = C6D = C5D	121.3(2)
$C_{0A} - C_{5A} - C_{4A}$	117.0(2) 121.7(2)	C1D = C0D = H0D	119.3
CIA - COA - COA	121.7(2)	$C_{2}D - C_{0}D - H_{0}D$	119.5
	119.2	NID = C7D = H7DA	109.5
	119.2		109.5
N2A—C/A—H/AA	109.5	H/DA—C/D—H/DB	109.5
N2A—C/A—H/AB	109.5	NID—C/D—H/DC	109.5
Н7АА—С7А—Н7АВ	109.5	H7DA—C7D—H7DC	109.5
N2A—C7A—H7AC	109.5	H7DB—C7D—H7DC	109.5
Н7АА—С7А—Н7АС	109.5	N1D—C8D—H8DA	109.5
Н7АВ—С7А—Н7АС	109.5	N1D—C8D—H8DB	109.5
N2A—C8A—H8AA	109.5	H8DA—C8D—H8DB	109.5
N2A—C8A—H8AB	109.5	N1D—C8D—H8DC	109.5
Н8АА—С8А—Н8АВ	109.5	H8DA—C8D—H8DC	109.5
N2A—C8A—H8AC	109.5	H8DB—C8D—H8DC	109.5
C1A—S1A—S2A—O2A	62.82 (12)	C3B—C4B—C5B—N2B	-176.6(2)
C1A—S1A—S2A—O3A	-57.91 (12)	C3B—C4B—C5B—C6B	1.7 (3)
C1A—S1A—S2A—O1A	-178.68 (11)	C2B—C1B—C6B—C5B	-0.7 (3)
O2B—S1B—S2B—C1B	61.78 (12)	S2B—C1B—C6B—C5B	178.81 (18)
O1B—S1B—S2B—C1B	-58.93 (12)	N2B—C5B—C6B—C1B	177.6 (2)
O3B—S1B—S2B—C1B	-179.18 (12)	C4B—C5B—C6B—C1B	-0.6 (4)
C1C—S1C—S2C—O3C	165.76 (14)	S2C—S1C—C1C—C6C	98.42 (18)
C1C—\$1C—\$2C—01C	-71.61 (13)	S2C—S1C—C1C—C2C	-81.58(19)
C1C = \$1C = \$2C = 02C	47 64 (12)	C6C - C1C - C2C - C3C	-0.4(3)
C1D = S1D = S2D = O2D	70 29 (13)	S1C-C1C-C2C-C3C	179 58 (18)
C1D = S1D = S2D = O2D	-16834(13)	C6C - C1C - C2C - N2C	177.8 (2)
C1D = S1D = S2D = 000	-49.66(13)	S1C - C1C - C2C - N2C	-22(3)
$S_{24} = S_{14} = C_{14} = C_{64}$	-99.70 (18)	$C_{8}C_{N2}C_{C2}C_{C3$	911(3)
$S_{2A} = S_{1A} = C_{1A} = C_{2A}$	83 71 (18)	C_{12}^{-1}	-353(3)
$C_{6A} = C_{1A} = C_{2A} = C_{3A}$	-0.7(3)	$C_{12}C_{12}C_{22}C_{22}C_{23}C_{2$	-87.1(3)
C_{0A} C_{1A} C_{2A} C_{3A}	0.7(3)	$C_{0}C_{0} = N_{0}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0}C$	$\frac{67.1}{3}$
$C_{A} C_{A} C_{A} C_{A} N_{A}$	173.03(17) 170.5(2)	$C/C = N_2 C = C_2 C = C_1 C$	140.3(2)
COA - CTA - CZA - NZA	-1/9.3(2)	$\begin{array}{c} C1C - C2C - C3C - C4C \\ N2C - C2C - C2C - C4C \end{array}$	-0.2(4)
SIA—CIA—C2A—N2A	-2.9(3)	$N_2 C = C_2 C = C_3 C = C_4 C$	-1/8.4(2)
C/A = N2A = C2A = C3A	-8/.4(3)	$C_2C = C_3C = C_4C = C_5C$	0.7(4)
C8A = N2A = C2A = C3A	39.0 (3)	$C_3C = C_4C = C_5C = N_1C$	1/6.2 (2)
C/A—N2A—C2A—CIA	91.4 (3)	030-040-050-060	-0.6(3)
C8A—N2A—C2A—C1A	-142.3 (2)	NIC-C5C-C6C-C1C	-176.8 (2)
C1A—C2A—C3A—C4A	0.9 (4)	C4C—C5C—C6C—C1C	0.0 (3)
N2A—C2A—C3A—C4A	179.7 (2)	C2C—C1C—C6C—C5C	0.5 (3)
C2A—C3A—C4A—C5A	-0.5 (4)	S1C—C1C—C6C—C5C	-179.46 (17)
C3A—C4A—C5A—N1A	-178.3(3)	S2D—S1D—C1D—C6D	-93.5 (2)

C2A - C1A - C6A - C5A $0.2 (3)$ $C6D - C1D - C2D$ $S1A - C1A - C6A - C5A$ $-176.44 (18)$ $S1D - C1D - C2D$ $N1A - C5A - C6A - C1A$ $178.4 (2)$ $C6D - C1D - C2D$ $C4A - C5A - C6A - C1A$ $0.2 (4)$ $S1D - C1D - C2D$ $S1B - S2B - C1B - C6B$ $-99.62 (19)$ $C8D - N1D - C2D$ $S1B - S2B - C1B - C2B$ $79.84 (18)$ $C7D - N1D - C2D$ $C6B - C1B - C2B - C3B$ $0.9 (3)$ $C8D - N1D - C2D$ $C6B - C1B - C2B - C3B$ $-178.55 (17)$ $C7D - N1D - C2D$ $C6B - C1B - C2B - N1B$ $-176.6 (2)$ $C1D - C2D - C3D$ $S2B - C1B - C2B - N1B$ $-176.6 (2)$ $C1D - C2D - C3D$ $C7B - N1B - C2B - C3B$ $34.7 (3)$ $C2D - C3D - C4D$ $C7B - N1B - C2B - C3B$ $-91.5 (2)$ $C3D - C4D - C5D$ $C7B - N1B - C2B - C1B$ $-147.8 (2)$ $C3D - C4D - C5D$ $C7B - N1B - C2B - C1B$ $86.0 (3)$ $C2D - C1D - C6D$ $C1B - C2B - C3B - C4B$ $0.2 (3)$ $S1D - C1D - C6D$	D = C3D 177.2 (2) $D = N1D$ 179.6 (2) $D = N1D$ -2.1 (3) $D = C3D$ -87.0 (4) $D = C3D$ 41.2 (4) $D = C1D$ 92.3 (3) $D = C1D$ -139.5 (3) $D = C4D$ 1.5 (4) $D = C4D$ -179.2 (3) $D = C5D$ 0.0 (5) $D = C6D$ -1.9 (4) $D = N2D$ -177.6 (3) $D = C5D$ -0.7 (4) $D = C5D$ -179.1 (2)	
C1B—C2B—C3B—C4B 0.2 (3) S1D—C1D—C6D N1B—C2B—C3B—C4B 177.7 (2) N2D—C5D—C6E C2B—C3B—C4B—C5B -1.5 (4) C4D—C5D—C6E	$\begin{array}{ccc}C5D & & -179.1 (2) \\C1D & & 178.0 (3) \\C1D & & 2.2 (4) \end{array}$	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	D—H···A
$N1A$ — $H1AA$ ···· $O2A^{i}$	0.86 (3)	2.40 (3)	3.204 (3)	157 (3)
$N1A$ — $H1AB$ ···O $3B^{i}$	0.89 (3)	2.38 (3)	3.189 (3)	152 (3)
N2 <i>A</i> —H2 <i>A</i> ···O3 <i>A</i>	0.81 (3)	2.31 (2)	2.983 (3)	141 (2)
$N2A$ — $H2A$ ···O $3B^{ii}$	0.81 (2)	2.48 (2)	3.003 (3)	124 (3)
N1 <i>B</i> —H1 <i>B</i> ···O1 <i>B</i>	0.86 (2)	2.28 (3)	2.940 (3)	134 (2)
$N1B$ — $H1B$ ···O1 A^{ii}	0.86 (2)	2.45 (2)	3.016 (3)	124 (1)
$N2B$ — $H2BA$ ···O2 B^{iii}	0.86 (2)	2.48 (2)	3.266 (3)	153 (3)
$N2B$ — $H2BB$ ···O1 A^{i}	0.87 (3)	2.39 (3)	3.237 (3)	163 (3)
$N1C$ — $H1CA$ ···O $2C^{iv}$	0.81 (3)	2.44 (3)	3.149 (3)	147 (3)
$N1C$ — $H1CB$ ···O $3D^{v}$	0.83 (3)	2.55 (3)	3.349 (3)	162 (3)
N2 <i>C</i> —H2 <i>C</i> ···O2 <i>C</i>	0.82 (3)	2.41 (3)	2.982 (3)	128 (3)
$N2C$ — $H2C$ ··· $N2D^{vi}$	0.82 (2)	2.44 (3)	3.122 (4)	143 (3)
N1D— $H1D$ ···· $N1C$ ^{vii}	0.81 (3)	2.31 (3)	3.013 (3)	146 (3)
$N2D$ — $H2DA$ ···O1 D^{viii}	0.79 (3)	2.30 (3)	3.040 (4)	155 (3)
$N2D$ — $H2DB$ ···O3 C^{ix}	0.99 (3)	2.40 (3)	3.314 (4)	154 (2)
$C8A$ — $H8AA$ ···O2 D^{i}	0.96	2.37	3.273 (3)	157
$C8B$ — $H8BA$ ···O3 D^{i}	0.96	2.54	3.437 (4)	155
$C7D$ — $H7DA$ ···O2 B^{x}	0.96	2.51	3.370 (4)	149

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) -x+1, -y+2, -z+2; (v) x, y+1, z+1; (vi) x, y, z+1; (vii) x, y-1, z-1; (viii) -x+2, -y+1, -z; (ix) x, y, z-1; (x) -x+1, -y+1, -z.