Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tris[2-(2-pyridyliminomethyl)phenol-ato(0.67-)]europium(III) nitrate

Qi-Hua Zhao,* Hong-Yan Chen, Li-Nan Li and Ming-Jin Xie

School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
Correspondence e-mail: qhzhao@ynu.edu.cn
Received 2 March 2009; accepted 20 May 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; disorder in main residue; R factor $=0.054 ; w R$ factor $=0.128$; data-to-parameter ratio $=16.8$.

The title compound, $\left[\mathrm{Eu}\left(\mathrm{C}_{12} \mathrm{H}_{9.33} \mathrm{~N}_{2} \mathrm{O}\right)_{3}\right] \mathrm{NO}_{3}$, was obtained by the reaction of $\mathrm{Eu}\left(\mathrm{NO}_{3}\right) \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and the Schiff base ligand 2-(2pyridyliminomethyl)phenol. The Eu atom is located on a threefold rotation axis and is nine-coordinated by three tridentate Schiff base ligands in a distorted tricapped trigonalprismatic geometry. The O atom at the phenol hydroxy group is partially deprotonated and the H atoms are modelled with one-third occupancy according to the space group $R \overline{3}$. Offset face-to-face $\pi-\pi$ [centroid-centroid distance $=3.886$ (3) \AA] and edge-to-face $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are found between adjacent molecules. An intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond is also present.

Related literature

For the synthesis, see: Sreenivasulu et al. (2005); Henry et al. (2008). For related structures, see: Li \& Zhang (2004); You et al. (2004).

Experimental

Crystal data
$\left[\mathrm{Eu}\left(\mathrm{C}_{12} \mathrm{H}_{9.33} \mathrm{~N}_{2} \mathrm{O}\right)_{3}\right] \mathrm{NO}_{3}$
$M_{r}=806.61$
Hexagonal, $R \overline{3}$
$a=14.0398$ (12) \AA
$c=28.509$ (5) A
$V=4866.7(11) \AA^{3}$
$Z=6$
Mo $K \alpha$ radiation
$\mu=1.99 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.21 \times 0.15 \times 0.10 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.706, T_{\text {max }}=0.819$
10540 measured reflections 2599 independent reflections 1711 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.092$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.128$
$S=1.00$
2599 reflections
155 parameters

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=1.11 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.90 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Eu1-O1	$2.334(4)$	Eu1-N1	$2.680(5)$
Eu1-N2	$2.539(5)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1B $\cdots \mathrm{N} 2$	$0.89(14)$	$2.09(14)$	$2.783(6)$	$134(11)$
C12-H12A $\cdots C g 1^{\mathrm{iii}}$	0.93	2.88	$3.788(9)$	167

Symmetry code: (iii) $x-y+\frac{2}{3}, x-\frac{2}{3},-z+\frac{1}{3} . C g 1$ is the centroid of the $\mathrm{C} 7-\mathrm{C} 12$ benzene ring.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2130).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Henry, N., Lagrenée, M. \& Abraham, F. (2008). Inorg. Chem. Commun. 11, 1071-1074.
Li, Z.-X. \& Zhang, X.-L. (2004). Acta Cryst. E60, m1017-m1019.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany..
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. \& Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635-4645.

You, Z.-L., Chen, B., Zhu, H.-L. \& Liu, W.-S. (2004). Acta Cryst. E60, m884-
m886.

supporting information

Acta Cryst. (2009). E65, m697 [doi:10.1107/S1600536809017206]

Tris[2-(2-pyridyliminomethyl)phenolato(0.67-)]europium(III) nitrate

Qi-Hua Zhao, Hong-Yan Chen, Li-Nan Li and Ming-Jin Xie

S1. Comment

During the last decades, considerable amount of work was devoted to the synthesis, structure and properties of transition metal complexes derived from Schiff bases because of their potential applications in catalysis and enzymatic reactions, magnetism and molecular architecture (Henry et al. 2008; Li \& Zhang, 2004). Herein, we report the Schiff base complex mentioned in the title by solvent evaporation method (Sreenivasulu et al., 2005).
As shown in Fig. 1, the central Eu of the title compound is nine-coordinated. The coordination environment is defined by six N atoms and three O atoms from the three different N-Salicylidene-2-aminopyride ligands. (You et al., 2004). The bond length of $\mathrm{Eu}(1)-\mathrm{N}(1)(2.681(5) \AA)$ and $\mathrm{Eu}(1)-\mathrm{N}(2)(2.540(5) \AA)$ are longer than $\mathrm{Eu}(1)-\mathrm{O}(1)(2.332(4) \AA)$. The bond angle of $\mathrm{O}(1) \# 1-\mathrm{Eu}(1)-\mathrm{N}(2) \# 2\left(69.37(14)^{\circ}\right)$ is larger than $\mathrm{N}(2) \# 2-\mathrm{Eu}(1)-\mathrm{N}(1)\left(51.11(15)^{\circ}\right)$.
In one schiff base ligand, all of the atoms are almost in one plane. The most evident distortion is associated with the C12 atom, which is 0.2017 (3) \AA away from the mean plane. Meanwhile, the two aromatic rings of the same ligand form a dihedral angle of $14.072(4)^{\circ}$, and between every two neighbour ligands coordinated to the Eu, the schiff bases appear an angle of $80.768(3), 80.292(4), 80.933(3)^{\circ}$, respectively. The phenyl ring and pyridine ring of adjacent molecules exist the offset face-to-face pi-pi stacking interactions, with a distance of $3.886(3) \AA\left(13.245(4)^{\circ}\right)$ and the edge-to-face C-Hpi interactions were founded between the two phenyl rings of adjacent molecules with the distance of 3.785 (5) \AA. The intramolecular hydrogen-bonding was also found between O 1 and N 2 atoms with the $\mathrm{N} \cdots \mathrm{O}$ separation of 2.783 (6) \AA.

S2. Experimental

All chemicals used (reagent grade) were commercially available. Salicylaldehyde ($0.122 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-aminomethylpyridine $(0.108 \mathrm{~g}, 1 \mathrm{mmol})$ were dissolved in ethanol $(5 \mathrm{ml})$ respectively at room temperature. Then the two solutions were mixed and stirred slowly for about 30 min . Finally, the yellow ligand was synthesized. Then $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.400$ $\mathrm{g}, 1 \mathrm{mmol}$) in ethanol (5 ml) was added to it with stirring homogeneously. Yellow crystals suitable for X-ray ananlysis were obtained by slow evaporation at room temperature over several days.

S3. Refinement

H atoms bonded to C atoms were calculated geometrically and allowed to ride on the C atoms with distance restraints of $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The H atom bonded to atom O 1 was located in a difference map and refined with the distance restraints $\mathrm{O}-\mathrm{H}=0.89(14) \AA$ and the H atoms was modelled with one-third occupancy.

Figure 1

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Tris[2-(2-pyridyliminomethyl)phenolato(0.67-)]europium(III) nitrate

Crystal data

$\left[\mathrm{Eu}\left(\mathrm{C}_{12} \mathrm{H}_{9.33} \mathrm{~N}_{2} \mathrm{O}\right)_{3}\right] \mathrm{NO}_{3}$
$M_{r}=806.61$
Hexagonal, $R \overline{3}$
Hall symbol: -R 3
$a=14.0398$ (12) \AA
$c=28.509$ (5) \AA
$V=4866.7(11) \AA^{3}$
$Z=6$

Data collection

Bruker APEXII 1K CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.706, T_{\text {max }}=0.819$
$F(000)=2424$
$D_{\mathrm{x}}=1.651 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$\theta=1.9-28.4^{\circ}$
$\mu=1.99 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, yellow
$0.21 \times 0.15 \times 0.10 \mathrm{~mm}$

10540 measured reflections
2599 independent reflections
1711 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.092$
$\theta_{\text {max }}=28.4^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-13 \rightarrow 18$
$k=-18 \rightarrow 18$
$l=-37 \rightarrow 35$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.128$
$S=1.00$
2599 reflections
155 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} / U_{\mathrm{eq}}$	Occ. (<1)
Eu1	1.0000	0.0000	$0.16281(2)$	$0.0373(2)$	
O1	$1.0522(4)$	$0.1495(3)$	$0.21296(15)$	$0.0466(11)$	
H1B	$1.108(11)$	$0.139(10)$	$0.206(4)$	$0.05(3)^{*}$	0.33
O2	$0.977(3)$	$0.068(2)$	$0.3090(13)$	$0.558(19)$	
N1	$1.1365(4)$	$0.0071(4)$	$0.09543(18)$	$0.0450(12)$	
N2	$1.1941(4)$	$0.1521(4)$	$0.14418(17)$	$0.0404(12)$	
N3	1.0000	0.0000	$0.3159(6)$	$0.142(7)$	$0.062(2)$
C1	$1.1473(6)$	$-0.0492(6)$	$0.0603(2)$	0.075^{*}	
H1A	1.0877	-0.1170	0.0520	$0.068(2)$	0.081^{*}
C2	$1.2458(7)$	$-0.0091(7)$	$0.0357(3)$	$0.0623(19)$	
H2A	1.2515	-0.0495	0.0111	0.075^{*}	
C3	$1.3364(6)$	$0.0926(6)$	$0.0483(2)$	$0.0505(16)$	
H3A	1.4029	0.1202	0.0324	0.061^{*}	
C4	$1.3251(5)$	$0.1502(5)$	$0.0842(2)$	$0.0453(15)$	
H4A	1.3841	0.2173	0.0936	$0.0460(16)$	
C5	$1.2233(5)$	$0.1064(5)$	$0.1066(2)$	0.055^{*}	
C6	$1.2517(5)$	$0.2543(5)$	$0.1551(2)$	$0.0404(14)$	
H6A	1.3151	0.2975	0.1377	$0.0398(14)$	
C7	$1.2259(5)$	$0.3067(5)$	$0.1920(2)$	$0.0536(17)$	0.064^{*}
C8	$1.1301(5)$	$0.2504(5)$	$0.2202(2)$	$0.070(2)$	0.084^{*}

C11	$1.2886(6)$	$0.4749(6)$	$0.2370(3)$	$0.070(2)$
H11A	1.3391	0.5488	0.2420	0.084^{*}
C12	$1.3017(5)$	$0.4186(5)$	$0.2009(3)$	$0.0581(18)$
H12A	1.3626	0.4553	0.1814	0.070^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Eu1	$0.0340(2)$	$0.0340(2)$	$0.0438(3)$	$0.01701(11)$	0.000	0.000
O1	$0.041(2)$	$0.040(2)$	$0.055(3)$	$0.018(2)$	$0.008(2)$	$-0.001(2)$
O2	$0.46(3)$	$0.34(3)$	$1.02(6)$	$0.30(2)$	$-0.05(5)$	$0.03(4)$
N1	$0.040(3)$	$0.047(3)$	$0.045(3)$	$0.019(3)$	$0.005(2)$	$-0.006(2)$
N2	$0.033(3)$	$0.036(3)$	$0.050(3)$	$0.016(2)$	$0.002(2)$	$-0.006(2)$
N3	$0.180(12)$	$0.180(12)$	$0.065(9)$	$0.090(6)$	0.000	0.000
C1	$0.066(5)$	$0.054(4)$	$0.060(5)$	$0.024(4)$	$0.004(4)$	$-0.018(4)$
C2	$0.086(6)$	$0.087(6)$	$0.048(4)$	$0.055(5)$	$0.000(4)$	$-0.014(4)$
C3	$0.061(5)$	$0.069(5)$	$0.063(5)$	$0.036(4)$	$0.008(4)$	$-0.001(4)$
C4	$0.047(4)$	$0.053(4)$	$0.056(4)$	$0.029(3)$	$0.000(3)$	$0.001(3)$
C5	$0.041(4)$	$0.049(4)$	$0.052(4)$	$0.027(3)$	$0.001(3)$	$0.000(3)$
C6	$0.034(3)$	$0.035(3)$	$0.062(4)$	$0.012(3)$	$0.001(3)$	$0.000(3)$
C7	$0.040(3)$	$0.033(3)$	$0.047(4)$	$0.018(3)$	$-0.002(3)$	$-0.003(3)$
C8	$0.038(3)$	$0.039(3)$	$0.046(4)$	$0.022(3)$	$-0.003(3)$	$0.000(3)$
C9	$0.049(4)$	$0.060(4)$	$0.053(4)$	$0.028(4)$	$-0.001(3)$	$-0.018(3)$
C10	$0.060(5)$	$0.061(5)$	$0.086(6)$	$0.029(4)$	$-0.009(4)$	$-0.035(4)$
C11	$0.057(5)$	$0.042(4)$	$0.098(6)$	$0.016(4)$	$-0.004(4)$	$-0.021(4)$
C12	$0.043(4)$	$0.042(4)$	$0.078(5)$	$0.013(3)$	$-0.004(4)$	$-0.011(4)$

Geometric parameters $\left(A,{ }^{\circ}\right)$

Eu1-O1	2.334 (4)	$\mathrm{C} 1-\mathrm{C} 2$	1.395 (10)
Eul-O1 ${ }^{\text {i }}$	2.334 (4)	C1-H1A	0.9300
Eu1-O1 ${ }^{\text {ii }}$	2.334 (4)	$\mathrm{C} 2-\mathrm{C} 3$	1.403 (10)
Eu1-N2 ${ }^{\text {i }}$	2.539 (5)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
Eu1-N2 ${ }^{\text {ii }}$	2.539 (5)	C3-C4	1.361 (9)
Eu1-N2	2.539 (5)	C3-H3A	0.9300
Eul-N1 ${ }^{\text {ii }}$	2.680 (5)	C4-C5	1.397 (9)
Eul-N1 ${ }^{\text {i }}$	2.680 (5)	C4-H4A	0.9300
Eu1-N1	2.680 (5)	C6-C7	1.430 (8)
Eu1-C5 ${ }^{\text {ii }}$	3.154 (6)	C6-H6A	0.9300
Eu1-C5 ${ }^{\text {i }}$	3.154 (6)	C7-C12	1.412 (8)
Eu1-C5	3.154 (6)	C7-C8	1.420 (8)
O1-C8	1.302 (7)	C8-C9	1.418 (8)
O1-H1B	0.89 (14)	C9-C10	1.372 (9)
$\mathrm{O} 2-\mathrm{N} 3$	1.167 (16)	C9-H9A	0.9300
N1-C1	1.330 (8)	C10-C11	1.389 (10)
N1-C5	1.353 (8)	C10-H10A	0.9300
N2-C6	1.285 (7)	C11-C12	1.365 (9)
N2-C5	1.411 (7)	C11-H11A	0.9300

$\mathrm{N} 3-\mathrm{O} 2{ }^{\text {i }}$
$\mathrm{N} 3-\mathrm{O} 2^{\text {ii }}$
O1-Eu1-O1 ${ }^{\text {i }}$
$\mathrm{O} 1-\mathrm{Eu} 1-\mathrm{O} 1^{\text {ii }}$
O1-Eu1-O1ii
O1-Eu1-N2 ${ }^{\text {i }}$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Eu} 1-\mathrm{N} 2^{\text {i }}$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Eu} 1-\mathrm{N} 2^{\text {i }}$
O1-Eu1-N2 ${ }^{\text {ii }}$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Eu} 1-\mathrm{N} 2^{\text {ii }}$
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Eu} 1-\mathrm{N} 2{ }^{\text {ii }}$
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Eu} 1-\mathrm{N} 2^{\text {ii }}$
O1-Eu1-N2
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Eu} 1-\mathrm{N} 2$
$\mathrm{O} 1{ }^{\text {ii }}$-Eu1-N2
N2 ${ }^{\text {i }}$-Eu1-N2
N2ii-Eu1-N2
O1-Eu1-N1 ${ }^{\text {ii }}$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Eu} 1-\mathrm{N} 1^{\text {ii }}$
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Eu} 1-\mathrm{N} 1{ }^{\text {ii }}$
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Eu} 1-\mathrm{N} 1^{\text {ii }}$
$\mathrm{N} 2{ }^{\text {ii }}$-Eu1- ${ }^{\text {1i }}$
N2-Eu1-N1 ${ }^{\text {ii }}$
O1-Eu1-N1 ${ }^{\text {i }}$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Eu} 1-\mathrm{N} 1^{\mathrm{i}}$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Eu} 1-\mathrm{N} 1^{\mathrm{i}}$
N2 ${ }^{\text {i }}$-Eu1-N1 ${ }^{\text {i }}$
$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{Eu} 1-\mathrm{N} 1^{\text {i }}$
N2-Eu1-N1 ${ }^{\text {i }}$
N1 ${ }^{\text {ii }}-\mathrm{Eu} 1-\mathrm{N} 1^{\mathrm{i}}$
O1-Eu1-N1
O1-Eu1-N1
$\mathrm{O} 1{ }^{\text {ii }}$-Eu1-N1
N2 ${ }^{\text {i }}$-Eu1-N1
N2i--Eu1-N1
N2-Eu1-N1
N1 ${ }^{\text {ii }}-\mathrm{Eu} 1-\mathrm{N} 1$
N1--Eu1-N1
O1-Eu1-C5 ${ }^{\text {ii }}$
O1-Eu1-C5 ${ }^{\text {ii }}$
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Eu} 1-\mathrm{C} 5{ }^{\text {ii }}$
N2 ${ }^{\text {i }}$-Eu1-C5 ${ }^{\text {ii }}$
$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{Eu} 1-\mathrm{C} 5{ }^{\text {ii }}$
N2-Eu1-C5 ${ }^{\text {ii }}$
N1 ${ }^{\text {iii-Eu1-C5 }}{ }^{\text {ii }}$
N1-Eu1-C5 ${ }^{\text {ii }}$
N1-Eu1-C5 ${ }^{\text {ii }}$

1.167 (16)
1.167 (16)
86.41 (15)
86.41 (15)
86.41 (15)
80.87 (15)
69.51 (15)
153.28 (16)
153.28 (16)
80.87 (15)
69.51 (15)
115.74 (7)
69.51 (15)
153.28 (16)
80.87 (15)
115.74 (8)
115.74 (7)
151.37 (16)
86.02 (16)
120.57 (15)
70.61 (15)
51.09 (15)
120.68 (15)
86.02 (16)
120.57 (15)
151.37 (16)
51.09 (15)
120.68 (15)
70.61 (15)
74.31 (17)
120.57 (15)
151.37 (16)
86.02 (16)
120.68 (15)
70.61 (15)
51.09 (15)
74.31 (17)
74.31 (17)
168.10 (15)
81.98 (16)
95.44 (15)
92.55 (15)
25.94 (15)
122.40 (15)
25.18 (15)
97.61 (16)
71.32 (15)

C12—H12A 0.9300

101 (4)
71 (3)
102 (4)
140 (3)
52 (4)
167 (3)
92 (3)
102 (4)
166 (4)
97 (3)
77 (4)
142.2 (4)

83 (8)
68 (8)
118.6 (6)
144.0 (4)
97.4 (4)
121.9 (5)
134.4 (4)
102.1 (3)
117.2 (12)
117.2 (12)
117.2 (12)
121.5 (7)
119.2
119.2
119.6 (6)
120.2
120.2
118.8 (7)
120.6
120.6
118.7 (6)
120.7
120.7
122.8 (6)
109.3 (5)
127.9 (6)
57.4 (3)
175.7 (5)
51.9 (3)
125.0 (6)
117.5
117.5
119.7 (6)
supporting information

O1-Eu1-C5 ${ }^{\text {i }}$	81.98 (16)
O1-Eu1-C5 ${ }^{\text {i }}$	95.44 (16)
O1 ${ }^{\text {ii- }}$ Eu1-C5 ${ }^{\text {i }}$	168.10 (15)
N2 ${ }^{\text {i }}$-Eu1-C5 ${ }^{\text {i }}$	25.94 (15)
N2 ${ }^{\text {ii- }}$ Eu1-C5 ${ }^{\text {i }}$	122.40 (15)
N2-Eu1-C5 ${ }^{\text {i }}$	92.55 (15)
N1 $1^{\text {ii- }}$ Eu1-C5 ${ }^{\text {i }}$	71.32 (15)
N1 ${ }^{\text {i }}$-Eu1-C5 ${ }^{\text {i }}$	25.18 (15)
N1-Eu1-C5 ${ }^{\text {i }}$	97.61 (16)
C5ii-Eu1-C5 ${ }^{\text {i }}$	96.46 (15)
O1-Eu1-C5	95.44 (16)
O1-ELu1-C5	168.10 (15)
O1i--Eu1-C5	81.98 (16)
N2 ${ }^{\text {i }}$-Eu1-C5	122.40 (15)
N2 ${ }^{\text {ii- }}$ Eu1-C5	92.55 (15)
N2-Eu1-C5	25.94 (15)
N1ii-Eu1-C5	97.61 (16)
N1-EEu1-C5	71.32 (15)
N1-Eu1-C5	25.18 (15)
C5ii-Eu1-C5	96.46 (15)
C5i-Eu1-C5	96.46 (15)

$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 6$	$117.4(6)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$122.9(5)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9$	$119.5(6)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 7$	$124.2(5)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$116.3(5)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{H} 1 \mathrm{~B}$	$36(5)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 1 \mathrm{~B}$	$143(5)$
C7-C8-H1B	$94(5)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$121.9(7)$
C10-C9-H9A	119.0
C8-C9-H9A	119.0
C9-C10-C11	$121.4(7)$
C9-C10-H10A	119.3
C11-C10-H10A	119.3
C12-C11-C10	$118.2(6)$
C12-C11-H11A	120.9
C10-C11-H11A	120.9
C11-C12-C7	$122.3(7)$
C11-C12-H12A	118.8
C7-C12-H12A	118.8

Symmetry codes: (i) $-y+1, x-y-1, z$; (ii) $-x+y+2,-x+1, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
O1—H1 $B \cdots \mathrm{~N} 2$	$0.89(14)$	$2.09(14)$	$2.783(6)$	$134(11)$
$\mathrm{C} 12 — \mathrm{H} 12 A \cdots C g 1^{\mathrm{iii}}$	0.93	2.88	$3.788(9)$	167

Symmetry code: (iii) $x-y+2 / 3, x-2 / 3,-z+1 / 3$.

