organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl 3-carboxypropanoate

Piotr Kuś,^a Marcin Rojkiewicz,^a Grzegorz Zięba,^a Monika Witoszek^a and Peter G. Jones^{b*}

^aDepartment of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland, and ^bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany Correspondence e-mail: p.jones@tu-bs.de

Received 22 April 2009; accepted 23 April 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.051; wR factor = 0.125; data-to-parameter ratio = 14.8.

In the title compound, $C_{10}H_{16}O_6$, the five-membered ring has an envelope conformation. The packing involves hydrogenbonded carboxylic acid inversion dimers and three $C-H \cdots O$ interactions.

Related literature

For related literature, see: Osanai et al. (1997); Scriba (1993, 1995). The structure of a related derivative is reported in the preceeding paper, see: Kuś et al. (2009).

Experimental

Crystal data

 $C_{10}H_{16}O_{6}$ $M_r = 232.23$ Monoclinic, $P2_1/c$ a = 20.7650 (12) Åb = 5.7007 (3) Å c = 9.6964 (7) Å $\beta = 98.658 \ (5)^{\circ}$

V = 1134.73 (12) Å³ Z = 4Cu Ka radiation $\mu = 0.96 \text{ mm}^{-1}$ $T=100~{\rm K}$ $0.2 \times 0.1 \times 0.1 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur	$T_{\min} =$
diffractometer with an Atlas	(expec
(Nova) detector	10581 me
Absorption correction: multi-scan	2304 ind
(CrysAlis RED; Oxford	2170 refl
Diffraction, 2008)	$R_{\rm int} = 0.0$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms
$wR(F^2) = 0.125$	indepe

S = 1.142304 reflections 156 parameters 4 restraints

0.880, $T_{\rm max} = 1.000$ cted range = 0.799 - 0.908) easured reflections ependent reflections lections with $I > 2\sigma(I)$ 028

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D1 - H01 \cdots O2^{i}$ $C3 - H3A \cdots O3^{ii}$ $C2 - H2B \cdots O4^{iii}$ $C7 - H7B \cdots O5^{iv}$	0.80 (3) 0.99 0.99 0.99	1.86 (3) 2.36 2.57 2.60	2.6582 (19) 3.211 (2) 3.489 (2) 3.506 (3)	175 (3) 144 155 152

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) x, y - 1, z; (iv) $x, -y + \frac{3}{2}, z - \frac{1}{2}$

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support by the Polish State Committee for Scientific Research (grant No. R0504303) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2936).

References

- Kuś, P., Rojkiewicz, M., Zięba, G., Witoszek, M. & Jones, P. G. (2009). Acta Cryst. E65, 01191
- Osanai, S., Higami, M., Ono, Y. & Ohta, E. (1997). J. Mater. Chem. 7, 1405-1408
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.
- Scriba, G. K. E. (1993). Arch. Pharm. (Weinheim), 326, 477-481.
- Scriba, G. K. E. (1995). Arch. Pharm. (Weinheim), 328, 271-276.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2009). E65, o1192 [doi:10.1107/S1600536809015190]

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl 3-carboxypropanoate

Piotr Kuś, Marcin Rojkiewicz, Grzegorz Zięba, Monika Witoszek and Peter G. Jones

S1. Comment

Isopropylidene groups are often used as protecting or activating units in polyhydroxyalkyl compounds used for synthesis of sugar-like derivatives; for a brief introduction and the structure of a related derivative, see the accompanying paper (Kuś *et al.*, 2009).

Hemi-esters of succinic acid are often used for the synthesis of amphiphilic compounds with well organized structure (Osanai *et al.*, 1997). Non-symmetrical esters of succinic acid have been used for the synthesis of prodrugs that release the corresponding drugs very slowly; *e.g.* steroid drugs (Scriba, 1995) or Phenytoin (Scriba, 1993). Solketal (*D*,*L*-iso-propylideneglycerol, Aldrich) was used for the synthesis of compound 1.

The molecule of compound 1 is shown in Fig. 1. Bond lengths and angles may be regarded as normal. The chain C2 through to C7 has an approximately extended conformation (absolute torsion angles between 158 and 174°). The five-membered ring displays an envelope conformation, with local mirror symmetry about C8 and the midpoint of C6–C7.

The molecular packing (Fig. 2) is dominated by the formation of the well known carboxylic acid dimers *via* classical hydrogen bonding. Three further contacts, of the type C—H···O, link the molecules to a three-dimensional pattern.

S2. Experimental

Compound 1 was obtained from solketal and succinic anhydride as described by Scriba (1993). Slow crystallization from petroleum ether gave crystals suitable for X-ray analysis. The analytical and spectroscopic data are consistent with the literature. M.p. 60° C. ¹H NMR (CDCl3, 400 MHz): δ 4.32 (q, 1H), 4.21–4.05 (m, 3H), 3.75–3.72 (dd, 1H), 2.67 (t, 4H), 1.43 (s, 3H), 1.36 (s, 3H). ¹³C NMR (100 MHz): δ 207.34, 172.10, 110.03, 73.62, 66.39, 65.13, 31.03, 28.97, 26.78, 25.46. MS (ESI): m/z (%) = 231 (100) [M—H]⁻. IR: C=O at 1724, 1711 and 1694 cm⁻¹ (*s*), C—O at 1234 cm⁻¹ (*m*), 1,3-dioxalone at 975 cm⁻¹ (*s*).

S3. Refinement

The OH hydrogen was refined freely. Methyl H atoms were identified in difference syntheses and refined as idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip. Other H atoms were included at calculated positions and refined using a riding model, with fixed C—H bond lengths of 0.95 Å (CH, aromatic), 0.99 Å (CH₂) and 1.00 Å (CH, sp^3); U_{iso} (H) values were fixed at 1.2 U_{eq} of the parent C atom (1.2 U_{eq} for methyl H).

The atom C6 is disordered over two sites with occupancy ratio 0.9:0.1, corresponding to a second conformation of the five-membered ring. An appropriate set of similarity restraints was used to ensure stability of refinement.

Figure 1

The title compound in the crystal structure. Displacement ellipsoids represent 50% probability levels.

Figure 2

Packing diagram of the title compound. H atoms not involved in H bonding (thick dashed lines) are omitted for clarity. The interaction $H7B\cdots O5$, which links the five-membered rings parallel to the **c** axis (the view direction), is not shown.

2,2-Dimethyl-1,3-dioxolan-4-ylmethyl 3-carboxypropanoate

Crystal data	
$C_{10}H_{16}O_{6}$	Z = 4
$M_r = 232.23$	F(000) = 496
Monoclinic, $P2_1/c$	$D_{\rm x} = 1.359 { m Mg} { m m}^{-3}$
a = 20.7650 (12) Å	Melting point: 333 K
b = 5.7007 (3) Å	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
c = 9.6964 (7) Å	Cell parameters from 7029 reflections
$\beta = 98.658 \ (5)^{\circ}$	$\theta = 4.3 - 75.7^{\circ}$
$V = 1134.73 (12) Å^3$	$\mu = 0.96 \text{ mm}^{-1}$

T = 100 KBlock, colourless

Data collection

Oxford Diffraction Xcalibur diffractometer with an Atlas (Nova) detector Radiation source: Nova (Cu) X-ray Source	10581 measured reflections 2304 independent reflections 2170 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.028$
Detector resolution: 10.3543 pixels mm ⁻¹ ω scans	$\theta_{\text{max}} = 74.5^\circ, \ \theta_{\text{min}} = 4.3^\circ$ $h = -25 \rightarrow 25$
Absorption correction: multi-scan	$k = -7 \longrightarrow 6$
(CrysAlis RED; Oxford Diffraction, 2008)	$l = -10 \rightarrow 12$
$T_{\min} = 0.880, \ T_{\max} = 1.000$	
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.051$ wR(F ²) = 0.125	Hydrogen site location: inferred from neighbouring sites
S = 1.14	H atoms treated by a mixture of independent
2304 reflections	and constrained refinement
156 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0399P)^2 + 1.0966P]$
4 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.015$
direct methods	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
	$\Delta ho_{ m min} = -0.25 \ { m e} \ { m \AA}^{-3}$

 $0.2 \times 0.1 \times 0.1 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.44071 (7)	-0.1502 (2)	0.58989 (15)	0.0287 (3)	
H01	0.4643 (14)	-0.164 (5)	0.533 (3)	0.047 (8)*	
O2	0.47778 (6)	0.2189 (2)	0.59298 (14)	0.0278 (3)	
C1	0.44377 (9)	0.0675 (3)	0.63543 (19)	0.0243 (4)	
C2	0.40364 (9)	0.1107 (3)	0.7496 (2)	0.0265 (4)	
H2A	0.4299	0.0701	0.8403	0.032*	
H2B	0.3653	0.0055	0.7356	0.032*	
C3	0.38031 (9)	0.3632 (3)	0.75537 (19)	0.0258 (4)	
H3A	0.3599	0.3849	0.8405	0.031*	
H3B	0.4183	0.4697	0.7620	0.031*	
C4	0.33223 (9)	0.4289 (3)	0.6303 (2)	0.0258 (4)	
O3	0.32078 (7)	0.3156 (3)	0.52376 (14)	0.0340 (4)	
O4	0.30257 (6)	0.6315 (2)	0.65113 (14)	0.0295 (3)	

C5	0.26115 (10)	0.7325 (4)	0.5323 (2)	0.0339 (5)	
H5A	0.2372	0.6073	0.4752	0.041*	0.893 (8)
H5B	0.2877	0.8205	0.4731	0.041*	0.893 (8)
H5C	0.2798	0.8886	0.5170	0.041*	0.107 (8)
H5D	0.2675	0.6354	0.4508	0.041*	0.107 (8)
O5	0.16891 (7)	0.7592 (3)	0.65090 (18)	0.0426 (4)	
O6	0.10733 (7)	0.9607 (3)	0.48082 (18)	0.0453 (4)	
C6	0.21452 (11)	0.8932 (4)	0.5879 (3)	0.0318 (7)	0.893 (8)
H6	0.2385	1.0041	0.6573	0.038*	0.893 (8)
C7	0.17233 (11)	1.0302 (5)	0.4709 (3)	0.0459 (6)	
H7A	0.1779	1.2014	0.4852	0.055*	0.893 (8)
H7B	0.1839	0.9886	0.3786	0.055*	0.893 (8)
H7C	0.1896	1.1553	0.5371	0.055*	0.107 (8)
H7D	0.1801	1.0664	0.3749	0.055*	0.107 (8)
C6′	0.1934 (9)	0.766 (4)	0.523 (2)	0.069 (10)*	0.107 (8)
H6′	0.1699	0.6485	0.4572	0.083*	0.107 (8)
C8	0.10751 (10)	0.8735 (4)	0.6185 (2)	0.0388 (5)	
C9	0.10142 (14)	1.0693 (5)	0.7197 (3)	0.0568 (7)	
H9A	0.1050	1.0054	0.8144	0.085*	
H9B	0.0590	1.1461	0.6952	0.085*	
H9C	0.1362	1.1841	0.7156	0.085*	
C10	0.05421 (12)	0.6939 (5)	0.6160 (3)	0.0532 (7)	
H10A	0.0609	0.5680	0.5508	0.080*	
H10B	0.0119	0.7686	0.5861	0.080*	
H10C	0.0552	0.6282	0.7097	0.080*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0314 (7)	0.0253 (7)	0.0316 (7)	-0.0017 (6)	0.0123 (6)	-0.0010 (6)
O2	0.0279 (7)	0.0250 (7)	0.0322 (7)	-0.0018 (5)	0.0100 (5)	-0.0003 (6)
C1	0.0223 (8)	0.0241 (9)	0.0256 (9)	0.0016 (7)	0.0007 (7)	0.0022 (7)
C2	0.0272 (9)	0.0277 (10)	0.0254 (9)	-0.0004 (7)	0.0062 (7)	0.0022 (8)
C3	0.0266 (9)	0.0265 (10)	0.0247 (9)	0.0005 (7)	0.0055 (7)	-0.0011 (7)
C4	0.0233 (9)	0.0273 (10)	0.0285 (9)	-0.0009 (7)	0.0097 (7)	0.0007 (8)
O3	0.0374 (8)	0.0391 (8)	0.0256 (7)	0.0069 (6)	0.0048 (6)	-0.0039 (6)
O4	0.0263 (7)	0.0284 (7)	0.0337 (7)	0.0036 (6)	0.0043 (5)	0.0010 (6)
C5	0.0313 (10)	0.0355 (11)	0.0351 (11)	0.0064 (9)	0.0060 (8)	0.0049 (9)
05	0.0274 (7)	0.0484 (10)	0.0538 (10)	0.0046 (7)	0.0119 (7)	0.0075 (8)
O6	0.0294 (8)	0.0545 (11)	0.0509 (10)	0.0047 (7)	0.0020 (7)	0.0003 (8)
C6	0.0259 (12)	0.0271 (12)	0.0427 (14)	-0.0002 (9)	0.0058 (9)	-0.0001 (10)
C7	0.0337 (11)	0.0421 (13)	0.0610 (16)	0.0041 (10)	0.0038 (10)	0.0111 (12)
C8	0.0279 (10)	0.0437 (13)	0.0449 (12)	0.0028 (9)	0.0057 (9)	-0.0062 (10)
C9	0.0505 (15)	0.0572 (17)	0.0653 (17)	0.0003 (13)	0.0173 (13)	-0.0208 (14)
C10	0.0335 (12)	0.0614 (17)	0.0661 (17)	-0.0081 (12)	0.0118 (11)	-0.0125 (14)

Geometric parameters (Å, °)

01—C1	1.316 (2)	C2—H2A	0.9900
O2—C1	1.225 (2)	C2—H2B	0.9900
C1—C2	1.502 (3)	С3—НЗА	0.9900
C2—C3	1.523 (3)	С3—Н3В	0.9900
C3—C4	1.498 (3)	С5—Н5А	0.9900
C4—O3	1.211 (2)	С5—Н5В	0.9900
C4—O4	1.338 (2)	С5—Н5С	0.9900
04—C5	1.449 (2)	C5—H5D	0.9900
C5—C6′	1.408 (16)	С6—Н6	1.0000
C5—C6	1.492 (3)	C7—H7A	0.9900
05—C6′	1409(17)	С7—Н7В	0.9900
05-08	1 424 (3)	C7—H7C	0.9900
05—C6	1 424 (3)	C7—H7D	0.9900
06—C7	1.121(3) 1.424(3)	Сб'—Нб'	1 0000
06-C8	1.121(3) 1 424(3)	C9—H9A	0.9800
C6C7	1.127(3)	C9—H9B	0.9800
C7—C6′	1.537(5)	C9H9C	0.9800
C_{1}^{2}	1.029(17) 1.505(3)		0.9800
$C_8 = C_9$	1.505(3)	C10 H10B	0.9800
O_1 H01	0.80(3)		0.9800
01—1101	0.00 (3)		0.9800
02 - C1 - 01	123 58 (17)	C6'	122.2
$0^{2}-C^{1}-C^{2}$	122.95(17)	O4-C5-H5B	110.3
01 - C1 - C2	113 42 (16)	C6-C5-H5B	110.3
C1 - C2 - C3	113.12 (16)	H_{5A} C_{5} H_{5B}	108.5
C4-C3-C2	112 54 (16)	C6' - C5 - H5C	106.1
03-C4-04	123 59 (18)	O4-C5-H5C	106.1
03-C4-C3	125.36 (18)	H_{5A} C_{5} H_{5C}	137.6
04 - C4 - C3	111.05 (16)	C6' - C5 - H5D	106.1
$C_{4}^{-} O_{4}^{-} C_{5}^{-}$	117.01 (16)	O4-C5-H5D	106.1
C6' - C5 - 04	124.8(7)	H5CC5H5D	106.3
04 C5 C6	124.0(7) 107.25(17)	05 C6 H6	110.3
$C_{4}^{}C_{5}^{}C_{6$	107.23(17) 102.9(7)	$C_{5} = C_{6} = H_{6}$	110.3
$C_{0} = 0_{0} = 0_{0}$	102.9(7) 106.00(17)	$C_{2}^{$	110.3
C_{7} C_{6} C_{8}	106.95(17)	$O_{1}^{2} = C_{1}^{2} = H_{1}^{2}$	110.0
$C_{1} = 00 = 00$	100.95(17) 100.58(10)	C_{6} C_{7} H_{7A}	110.9
05 C6 C7	109.38(19) 104.30(19)	C_{0} C_{7} H_{7} H_{7}	110.9
$C_{5} = C_{6} = C_{7}$	104.30(10) 112.0(2)	C_{0} C_{7} H_{7} H_{7} H_{7}	110.9
C_{3}	112.0(2)		10.9
00 - 07 - 00	104.48(19)	H/A - C / - H/B	108.9
06 - 07 - 06	80.3(7)	06—C/—H/C	114.5
$C_{5} = C_{6} = 0_{5}$	115.5 (14)	$C_0 - C_1 - H_1 C_1$	//.1
$C_{2} = C_{1} = C_{1}$	111.3(13) 100.5(11)	$C_0 - C_1 - H_1 C_1$	114.5
05-05	100.5 (11)	$U_0 - U - H / D$	114.5
$U_0 - U_8 - U_5$	104.06 (17)	CO - C / - H / D	130.1
05 69 69	111.5 (2)		114.5
05-08-09	110.8 (2)	H/C - C/ - H/D	111.4

O6—C8—C10	109.0 (2)	С5—С6'—Н6'	109.7
O5—C8—C10	108.9 (2)	O5—C6′—H6′	109.7
C9—C8—C10	112.4 (2)	С7—С6'—Н6'	109.7
C1	109 (2)	С8—С9—Н9А	109.5
C1—C2—H2A	108.9	С8—С9—Н9В	109.5
C3—C2—H2A	108.9	H9A—C9—H9B	109.5
C1—C2—H2B	108.9	С8—С9—Н9С	109.5
С3—С2—Н2В	108.9	Н9А—С9—Н9С	109.5
H2A—C2—H2B	107.7	Н9В—С9—Н9С	109.5
С4—С3—НЗА	109.1	C8-C10-H10A	109.5
С2—С3—НЗА	109.1	C8-C10-H10B	109.5
С4—С3—Н3В	109.1	H10A—C10—H10B	109.5
С2—С3—Н3В	109.1	C8—C10—H10C	109.5
НЗА—СЗ—НЗВ	107.8	H10A—C10—H10C	109.5
O4—C5—H5A	110.3	H10B-C10-H10C	109.5
С6—С5—Н5А	110.3		
O2—C1—C2—C3	30.0 (3)	C5—C6—C7—C6′	55.6 (9)
O1—C1—C2—C3	-152.49 (16)	O4—C5—C6′—O5	18 (2)
C1—C2—C3—C4	67.0 (2)	C6—C5—C6′—O5	-57.7 (14)
C2—C3—C4—O3	-12.7 (3)	O4—C5—C6′—C7	131.5 (8)
C2—C3—C4—O4	167.00 (15)	C6—C5—C6′—C7	56.1 (12)
O3—C4—O4—C5	-8.3 (3)	C8—O5—C6′—C5	160.9 (13)
C3—C4—O4—C5	172.00 (16)	C6—O5—C6′—C5	59.9 (15)
C4—O4—C5—C6′	116.4 (12)	C8—O5—C6′—C7	41.0 (13)
C4—O4—C5—C6	157.92 (17)	C6—O5—C6′—C7	-60.0 (10)
C6'—O5—C6—C5	-51.5 (9)	O6—C7—C6′—C5	179.6 (14)
C8—O5—C6—C5	-142.17 (19)	C6—C7—C6′—C5	-60.5 (13)
C6'—O5—C6—C7	68.5 (9)	O6—C7—C6′—O5	-57.5 (11)
C8—O5—C6—C7	-22.1 (2)	C6—C7—C6′—O5	62.4 (11)
C6'—C5—C6—O5	53.2 (10)	C7—O6—C8—O5	-35.5 (2)
O4—C5—C6—O5	-70.5 (2)	C7—O6—C8—C9	83.9 (2)
C6'—C5—C6—C7	-62.0 (10)	C7—O6—C8—C10	-151.6 (2)
O4—C5—C6—C7	174.27 (18)	C6′—O5—C8—O6	-7.5 (11)
C8—O6—C7—C6	21.4 (3)	C6—O5—C8—O6	35.9 (2)
C8—O6—C7—C6′	54.2 (8)	C6′—O5—C8—C9	-127.2 (11)
O5—C6—C7—O6	0.5 (3)	C6—O5—C8—C9	-83.9 (2)
C5—C6—C7—O6	118.9 (2)	C6'—O5—C8—C10	108.6 (11)
O5—C6—C7—C6′	-62.8 (9)	C6—O5—C8—C10	152.0 (2)
	· ·		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
01—H01…O2 ⁱ	0.80 (3)	1.86 (3)	2.6582 (19)	175 (3)
C3—H3 <i>A</i> ···O3 ⁱⁱ	0.99	2.36	3.211 (2)	144

			supporting informatior		
C2—H2 <i>B</i> ···O4 ⁱⁱⁱ	0.99	2.57	3.489 (2)	155	
C7—H7 <i>B</i> ···O5 ^{iv}	0.99	2.60	3.506 (3)	152	

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*, -*y*+1/2, *z*+1/2; (iii) *x*, *y*-1, *z*; (iv) *x*, -*y*+3/2, *z*-1/2.