

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4-Methoxyphenylsulfonyl)-5-methyl-5-phenylimidazolidine-2,4-dione

Abid Hussain,^a Shahid Hameed^{a*} and Helen Stoeckli-Evans^b

^aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and ^bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland

Correspondence e-mail: shameed@qau.edu.pk

Received 29 April 2009; accepted 29 April 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.029; wR factor = 0.058; data-to-parameter ratio = 13.8.

The title compound, $C_{17}H_{16}N_2O_5S$, crystallized in the chiral monoclinic space group $P2_1$, with two enantiomeric molecules (A and B) in the asymmetric unit. It is composed of a methylimidazolidine-2,4-dione unit substituted with a phenyl group and a 4-methoxyphenylsulfonyl group. The benzene ring mean planes are inclined to one another by 22.20 (14)° in molecule A and by 15.82 (13)° in molecule B. In the crystal structure, the A and B molecules are linked by $N-H\cdots O$ hydrogen bonds, forming centrosymmetric dimers. A number of C-H···O interactions are also present in the crystal structure, leading to the formation of a three-dimensinoal network.

Related literature

For the applications of immidazolidine-2,4-diones, see: Thenmozhiyal et al. (2004); Zhang et al. (2004). For the activity of sulfonylimmidazolidine-2,4-diones, see: Kashif, Ahmad & Hameed (2008); Ahmad et al. (2000, 2002); Murakami et al. (1997). For related crystal structures, see: Hussain et al. (2009); Kashif, Hussain et al. (2008).

Experimental . .

Crystal data	
$C_{17}H_{16}N_2O_5S$	a = 6.2314 (6) Å
$M_r = 360.38$	b = 17.5694 (12) A
Monoclinic, P2 ₁	c = 15.5892 (16) Å

 $\beta = 99.373 \ (12)^{\circ}$ V = 1683.9 (3) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Stoe IPDS diffractometer Absorption correction: none 13521 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.058$ S = 0.816394 reflections 465 parameters 3 restraints

organic compounds

 $\mu = 0.22 \text{ mm}^{-1}$ T = 173 K $0.38 \times 0.30 \times 0.19 \text{ mm}$

6394 independent reflections 4309 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.033$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 2987 Friedel pairs Flack parameter: 0.06 (5)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2N\cdots O8^{i}$	0.91 (2)	1.95 (2)	2.851 (3)	171 (2)
$N4 - H4N \cdot \cdot \cdot O3^{ii}$	0.92 (2)	1.89 (2)	2.800 (3)	171 (2)
$C5-H5\cdots O2^{i}$	0.95	2.36	3.218 (3)	150
C10-H10A···O8	0.98	2.56	3.437 (3)	149
C10−H10B···O2	0.98	2.45	3.055 (3)	120
C12−H12···O2	0.95	2.52	2.905 (3)	104
C13−H13···O9 ⁱⁱⁱ	0.95	2.43	3.287 (3)	150
$C22-H22\cdots O7^{ii}$	0.95	2.42	3.351 (3)	165
$C24-H24\cdots O8^{iv}$	0.95	2.56	3.492 (3)	166
$C27 - H27A \cdots O7$	0.98	2.52	3.126 (4)	120
C29-H29···O7	0.95	2.54	2.916 (3)	104
$C30-H30\cdots O4^{v}$	0.95	2.38	3.159 (3)	138
C34-H34···O8	0.95	2.56	3.291 (3)	134

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) $-x + 1, y + \frac{1}{2}, -z + 1$; (iv) $-x + 1, y - \frac{1}{2}, -z; (v) - x, y - \frac{1}{2}, -z.$

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2000); cell refinement: CELL in IPDS-I; data reduction: INTEGRATE in IPDS-I; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2941).

References

- Ahmad, I., Hameed, S., Duddeck, H., Lenzen, S., Rustenbeck, I. & Ahmad, R. (2002). Z. Naturforsch. Teil B, 57, 349-354.
- Ahmad, R., Jabeen, R., Zia-ul-Haq, M., Nadeem, H., Duddeck, H. & Verspohl, E. J. (2000). Z. Naturforsch. Teil B 55, 203-207.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hussain, A., Hameed, S. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, 0858-0859
- Kashif, M. K., Ahmad, I. & Hameed, S. (2008). ARKIVOC, xvi, 311-317.
- Kashif, M. K., Hussain, A., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2008). Acta Crvst. E64. 0444.
- Murakami, N., Ohta, M., Kato, K., Nakayama, K., Mizota, M., Miwa, I. & Okuda, J. (1997). Arzneim. Forsch. 47, 1222-1225.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2000). IPDS-I. Stoe & Cie, Darmstadt, Germany.

Thenmozhiyal, J. C., Wong, P. T.-H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527–1535.

Zhang, X., Allan, G. F., Sbriscia, T., Linton, O., Lundeen, S. G. & Sui, Z. (2004). Bioorg. Med. Chem. Lett. 14, 6107–6111.

supporting information

Acta Cryst. (2009). E65, o1207-o1208 [doi:10.1107/S1600536809016092]

1-(4-Methoxyphenylsulfonyl)-5-methyl-5-phenylimidazolidine-2,4-dione

Abid Hussain, Shahid Hameed and Helen Stoeckli-Evans

S1. Comment

Imidazolidine-2,4-diones have found applications as androgen receptor antagonists (Zhang *et al.*, 2004) and possess strong anticonvulsant activity (Thenmozhiyal *et al.*, 2004). Sulfonyl derivatives of imidazolidine-2,4-diones on the other hand, are finding utility as inhibitors of aldose reductase (Murakami *et al.*, 1997). The potential of this class of compounds as hypoglycemic agents has already been reported from our laboratory (Kashif, Ahmad & Hameed, 2008; Ahmad *et al.*, 2002, 2000). In continuation of our work on sulfonyl cyclic ureas (Hussain *et al.*, 2009; Kashif, Hussain *et al.*, 2008), the title compound was synthesized taking an imidazolidine-2,4-dione as the scaffold.

The molecular structure of the title compound is illustrated in Fig. 1, and full geometrical details are available in the archived CIF. It crystallized in the chiral monoclinic space group P_{2_1} with two enantiomeric molecues (A and B) in the asymmetric unit. It is composed of a methylimidazolidine-2,4-dione moiety substituted with a phenyl group and a 4-methoxyphenylsulfonyl group. The bond distances and angles of the two independent molecules are very similar to those observed in 1-(4-Chlorophenylsulfonyl)-5-(4-fluorophenyl)-5-methylimidazolidine-2,4-dione (Hussain *et al.*, 2009), which also crystallized with two independent molecules per asymmetric unit but in the centrosymmetric triclinic space group P-1.

Both molecules A and B are U-shaped with slightly different conformations, as can be seen in the auto-fit view, Fig. 2 (Spek, 2009). The best fit was obtained for inverted molecule B on molecule A (25 non-H atoms) with the weighted and unit weight r.m.s. fits being 0.687 and 0.460 Å, respectively. The benzene ring mean planes are inclined to one another by 22.20 (14) $^{\circ}$ in molecule A and 15.82 (13) $^{\circ}$ in molecule B. This is different to the situation in the compound mentioned above where the same angles are 6.07 (8) and 8.67 (8) $^{\circ}$, for molecules A and B, respectively (Hussain *et al.*, 2009).

In the crystal structure of the title compound the A and B molecules are linked by N—H…O hydrogen bonds to form a dimer-like arrangement (Fig. 3 and Table 1). There are also a number of C—H…O interactions present in the crystal structure, which leads to the formation of a three-dimensional network (Fig. 4 and Table 1).

S2. Experimental

5-Methyl-5-phenylimidazolidine-2,4-dione (4.8 mmol) in CH_2Cl_2 was stirred with triethyl amine (4.8 mmol) and catalytic amounts of DMAP. 4-Methoxybenzene sulfonyl chloride (5.8 mmol) in CH_2Cl_2 was added dropwise. The reaction mixture was stirred continually at 298 K until the reaction was complete (monitored by TLC). The reaction mixture was then diluted with 1 N HCl and extracted with CH_2Cl_2 (3 × 25 ml). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in ethyl acetate afforded colourless rodlike crystals of the title compound, suitable for X-ray analysis.

S3. Refinement

The NH H-atoms were located in difference Fourier maps and freely refined. The H-atoms bonded to C were included in calculated positions [C—H = 0.95 - 0.98 Å] and treated as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$.

Figure 1

A view of the molecular structure of the two indepenent molecules of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

An auto-fit view (Spek, 2009) of the two independent molecules (A black; B red) in the title compound.

Figure 3

A view along the *a* axis of the crystal packing in the title compound, showing the N—H…O hydrogen bonds which link the two independent molecules (A and B) to form a dimer-like arrangement (see Table 1 for details).

Figure 4

A perspective view along the *a* axis of the crystal packing in the title compound showing the N—H…O and C—H…O hydrogen bonds, which link the molecules to form a three-dimensional network (see Table 1 for details).

1-(4-Methoxyphenylsulfonyl)-5-methyl-5-phenylimidazolidine-2,4-dione

F(000) = 752
$D_{\rm x} = 1.421 {\rm Mg} {\rm m}^{-3}$
Melting point = $471-473$ K
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 8000 reflections
$\theta = 2.6 - 26.0^{\circ}$
$\mu=0.22~\mathrm{mm}^{-1}$
T = 173 K
Rod, colourless
$0.38 \times 0.30 \times 0.19 \text{ mm}$
φ rotation scans
13521 measured reflections
6394 independent reflections
4309 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.033$
$\theta_{\rm max} = 26.1^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$
$h = -7 \rightarrow 7$

D.C

Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.058$ S = 0.81 6394 reflections 465 parameters	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.024P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.17$ e Å ⁻³ $\Delta\rho_{min} = -0.20$ e Å ⁻³
 3 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites 	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4} Extinction coefficient: 0.0042 (4) Absolute structure: Flack (1983), 2987 Friedel pairs Absolute structure parameter: 0.06 (5)

 $k = -20 \rightarrow 21$ $l = -19 \rightarrow 19$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.49288 (9)	0.27479 (4)	0.41621 (4)	0.0322 (2)	
01	0.5317 (3)	0.19861 (10)	0.39102 (11)	0.0374 (6)	
O2	0.6619 (3)	0.33014 (11)	0.42511 (11)	0.0414 (6)	
O3	0.0791 (3)	0.20334 (11)	0.32063 (11)	0.0388 (6)	
O4	-0.0034 (3)	0.43832 (11)	0.19756 (12)	0.0497 (7)	
05	0.0979 (3)	0.26824 (12)	0.73090 (12)	0.0622 (8)	
N1	0.3022 (3)	0.30995 (11)	0.33861 (12)	0.0273 (7)	
N2	-0.0122 (3)	0.31655 (12)	0.24927 (13)	0.0340 (8)	
C1	0.1190 (4)	0.26883 (16)	0.30444 (15)	0.0299 (8)	
C2	0.0728 (4)	0.38756 (16)	0.24475 (17)	0.0330 (9)	
C3	0.2862 (4)	0.39125 (14)	0.30845 (15)	0.0285 (8)	
C4	0.2584 (4)	0.44517 (15)	0.38246 (15)	0.0289 (8)	
C5	0.0795 (4)	0.43753 (17)	0.42345 (17)	0.0409 (10)	
C6	0.0477 (5)	0.48556 (18)	0.49017 (19)	0.0480 (10)	
C7	0.1927 (5)	0.54235 (18)	0.51559 (19)	0.0519 (11)	
C8	0.3705 (6)	0.55014 (19)	0.4763 (2)	0.0616 (11)	
C9	0.4043 (5)	0.50230 (18)	0.40945 (18)	0.0483 (10)	
C10	0.4663 (4)	0.41178 (16)	0.25751 (18)	0.0419 (10)	
C11	0.3765 (4)	0.27369 (15)	0.51029 (15)	0.0303 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C12	0.4167 (4)	0.33274 (15)	0.56842 (16)	0.0395 (9)
C13	0.3248 (5)	0.33334 (16)	0.64261 (17)	0.0447 (10)
C14	0.1936 (4)	0.27364 (18)	0.65885 (16)	0.0438 (10)
C15	0.1345 (7)	0.32823 (19)	0.7938 (2)	0.0826 (16)
C16	0.1511 (4)	0.21413 (17)	0.60013 (18)	0.0453 (10)
C17	0.2418 (4)	0.21460 (15)	0.52550 (16)	0.0360 (9)
S2	0.17941 (9)	0.16666 (4)	0.07688 (4)	0.0343(2)
06	0.1557(3)	0.24522(10)	0.09316(11)	0.0443(7)
07	0.0040(3)	0.11541(11)	0.07948(12)	0.0434(6)
08	0.5096(3)	0.11311(11) 0.24274(10)	0.07910(12) 0.16846(11)	0.0382(6)
09	0.3770(3)	0.24274(10) 0.00425(10)	0.10040(11) 0.27716(11)	0.0302(0)
010	0.7248(3) 0.5175(3)	0.00423(10) 0.11064(11)	-0.24698(12)	0.0570(0)
N2	0.3173(3) 0.2788(2)	0.11904(11) 0.12476(12)	0.24098(12) 0.15370(13)	0.0323(7)
INJ NA	0.3766(3)	0.13470(12) 0.12065(12)	0.13570(15) 0.22550(12)	0.0283(7)
IN4 C19	0.7039(3)	0.12903(12) 0.17(48(10))	0.25550(12) 0.18420(15)	0.0293(7)
C18	0.5652 (4)	0.1/048 (16)	0.18420 (15)	0.0290 (8)
C19	0.6295 (4)	0.05/19(16)	0.23806 (15)	0.0300 (8)
C20	0.4033 (4)	0.05427 (15)	0.18445 (15)	0.0286 (8)
C21	0.4028 (4)	-0.00248 (14)	0.10977 (15)	0.0284 (8)
C22	0.5752 (4)	-0.00181 (16)	0.06382 (15)	0.0354 (9)
C23	0.5797 (4)	-0.05236 (18)	-0.00387 (17)	0.0442 (10)
C24	0.4127 (5)	-0.10347 (16)	-0.02589 (17)	0.0466 (10)
C25	0.2398 (5)	-0.10367 (18)	0.01867 (19)	0.0488 (11)
C26	0.2350 (4)	-0.05315 (16)	0.08642 (17)	0.0390 (9)
C27	0.2452 (5)	0.03531 (17)	0.24687 (19)	0.0424 (10)
C28	0.2780 (4)	0.15486 (15)	-0.02036 (16)	0.0318 (8)
C29	0.1934 (4)	0.09875 (15)	-0.07862 (16)	0.0338 (8)
C30	0.2755 (4)	0.08912 (15)	-0.15410 (16)	0.0366 (9)
C31	0.4463 (4)	0.13473 (15)	-0.17102 (16)	0.0375 (9)
C32	0.6969 (5)	0.1640 (2)	-0.26728 (19)	0.0633 (13)
C33	0.5329 (4)	0.18981 (17)	-0.11248 (17)	0.0487 (10)
C34	0.4462 (4)	0.19955 (17)	-0.03783 (17)	0.0453 (10)
H2N	-0.143 (3)	0.2979 (16)	0.2234 (17)	0.057 (9)*
Н5	-0.02360	0.39850	0.40540	0.0490*
H6	-0.07520	0.47900	0.51840	0.0580*
H7	0.16960	0.57630	0.56060	0.0620*
H8	0.47330	0.58910	0.49500	0.0740*
H9	0 52860	0 50890	0 38210	0.0580*
H10A	0.47220	0.37370	0.21200	0.0630*
H10R	0.47220	0.41290	0.29690	0.0630*
H10C	0.43690	0.46200	0.23070	0.0630*
н12	0.43020	0.37340	0.55720	0.0050
Ш12 Ш12	0.30000	0.37340	0.55720	0.0470
П15 Ц15 А	0.33120	0.37430	0.06240	0.0340°
111 <i>3A</i> 1115D	0.27030	0.33220	0.01010	0.1240°
	0.06230	0.3/040	0.70030	0.1240^{*}
	0.05580	0.51/10	0.04180	0.1240^{*}
	0.03990	0.17440	0.48450	0.0340*
HI/	0.21190	0.1/440	0.48450	0.0430*
H4N	0.835 (3)	0.1490 (15)	0.2635 (16)	0.053 (9)*

supporting information

H22	0.69070	0.03350	0.07890	0.0420*
H23	0.69830	-0.05180	-0.03520	0.0530*
H24	0.41700	-0.13860	-0.07190	0.0560*
H25	0.12350	-0.13850	0.00300	0.0590*
H26	0.11500	-0.05340	0.11700	0.0470*
H27A	0.09600	0.03590	0.21510	0.0640*
H27B	0.25970	0.07320	0.29360	0.0640*
H27C	0.27880	-0.01530	0.27190	0.0640*
H29	0.07880	0.06710	-0.06620	0.0410*
H30	0.21600	0.05140	-0.19480	0.0440*
H32A	0.82400	0.15630	-0.22210	0.0950*
H32B	0.65720	0.21800	-0.27000	0.0950*
H32C	0.73170	0.14780	-0.32360	0.0950*
H33	0.65070	0.22050	-0.12370	0.0580*
H34	0.50350	0.23790	0.00250	0.0540*

```
Atomic displacement parameters (Å^2)
```

	<i>U</i> ¹¹	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0318 (3)	0.0308 (4)	0.0350 (3)	0.0037 (3)	0.0081 (3)	0.0046 (3)
01	0.0456 (10)	0.0279 (11)	0.0406 (10)	0.0154 (8)	0.0127 (8)	0.0030 (8)
O2	0.0309 (9)	0.0458 (13)	0.0475 (11)	-0.0090 (9)	0.0062 (8)	0.0103 (10)
O3	0.0469 (10)	0.0229 (12)	0.0444 (11)	-0.0020 (8)	0.0006 (8)	-0.0035 (9)
O4	0.0650 (12)	0.0332 (12)	0.0448 (11)	0.0118 (10)	-0.0093 (9)	0.0037 (10)
O5	0.0954 (15)	0.0495 (14)	0.0531 (12)	0.0007 (12)	0.0464 (11)	-0.0022 (11)
N1	0.0297 (10)	0.0221 (13)	0.0300 (11)	0.0007 (8)	0.0046 (9)	-0.0009 (9)
N2	0.0392 (13)	0.0240 (14)	0.0355 (12)	0.0028 (10)	-0.0037 (10)	-0.0047 (10)
C1	0.0356 (13)	0.0231 (16)	0.0305 (13)	0.0035 (13)	0.0038 (10)	-0.0040 (12)
C2	0.0422 (15)	0.0260 (17)	0.0308 (15)	0.0074 (12)	0.0060 (12)	-0.0041 (12)
C3	0.0352 (13)	0.0192 (15)	0.0315 (14)	0.0022 (10)	0.0068 (11)	0.0020 (11)
C4	0.0350 (13)	0.0224 (15)	0.0289 (13)	0.0001 (11)	0.0043 (11)	0.0009 (11)
C5	0.0381 (15)	0.0392 (19)	0.0462 (17)	-0.0060 (13)	0.0092 (13)	-0.0137 (14)
C6	0.0500 (17)	0.055 (2)	0.0410 (16)	0.0091 (15)	0.0136 (13)	-0.0104 (14)
C7	0.083 (2)	0.035 (2)	0.0374 (16)	0.0077 (16)	0.0091 (16)	-0.0062 (14)
C8	0.091 (2)	0.046 (2)	0.0474 (19)	-0.0311 (18)	0.0097 (18)	-0.0166 (16)
C9	0.0581 (17)	0.041 (2)	0.0479 (17)	-0.0172 (15)	0.0152 (14)	-0.0016 (15)
C10	0.0473 (16)	0.0388 (19)	0.0435 (16)	0.0055 (13)	0.0187 (13)	0.0089 (13)
C11	0.0329 (12)	0.0241 (15)	0.0346 (13)	-0.0004 (12)	0.0078 (10)	0.0022 (12)
C12	0.0529 (16)	0.0253 (17)	0.0408 (15)	-0.0063 (12)	0.0091 (13)	0.0031 (13)
C13	0.0721 (19)	0.0257 (17)	0.0390 (15)	-0.0021 (14)	0.0175 (14)	-0.0040 (12)
C14	0.0571 (17)	0.0390 (18)	0.0404 (15)	0.0067 (15)	0.0234 (13)	0.0032 (14)
C15	0.154 (4)	0.048 (2)	0.060 (2)	0.012 (2)	0.060 (2)	-0.0070 (18)
C16	0.0553 (17)	0.0359 (19)	0.0496 (17)	-0.0069 (13)	0.0235 (13)	-0.0008 (14)
C17	0.0407 (14)	0.0306 (17)	0.0384 (14)	-0.0018 (12)	0.0117 (11)	-0.0037 (12)
S2	0.0317 (3)	0.0336 (4)	0.0382 (4)	0.0030 (3)	0.0073 (3)	-0.0010 (3)
O6	0.0518 (11)	0.0318 (13)	0.0487 (11)	0.0145 (9)	0.0062 (9)	-0.0040 (9)
O7	0.0269 (9)	0.0545 (13)	0.0501 (11)	-0.0038 (9)	0.0101 (8)	0.0012 (10)
O8	0.0482 (10)	0.0232 (12)	0.0417 (11)	-0.0054 (8)	0.0026 (8)	-0.0007 (8)

09	0.0500 (10)	0.0287 (12)	0.0367 (10)	0.0005 (9)	0.0024 (8)	0.0032 (9)
O10	0.0612 (12)	0.0570 (15)	0.0427 (11)	-0.0077 (10)	0.0202 (9)	-0.0060 (10)
N3	0.0325 (10)	0.0199 (13)	0.0335 (11)	-0.0013 (8)	0.0064 (9)	-0.0012 (9)
N4	0.0337 (12)	0.0226 (13)	0.0320 (12)	-0.0019 (10)	0.0050 (9)	-0.0015 (9)
C18	0.0330 (13)	0.0269 (17)	0.0284 (13)	0.0023 (12)	0.0085 (10)	-0.0048 (12)
C19	0.0430 (15)	0.0258 (16)	0.0231 (13)	-0.0004 (12)	0.0109 (11)	-0.0014 (11)
C20	0.0325 (13)	0.0228 (15)	0.0325 (14)	-0.0023 (10)	0.0114 (11)	-0.0041 (11)
C21	0.0323 (13)	0.0204 (15)	0.0324 (14)	-0.0014 (11)	0.0050 (11)	-0.0017 (11)
C22	0.0345 (13)	0.0394 (18)	0.0334 (14)	-0.0009 (12)	0.0090 (11)	-0.0068 (12)
C23	0.0547 (17)	0.0437 (19)	0.0353 (15)	0.0077 (15)	0.0105 (13)	-0.0057 (14)
C24	0.077 (2)	0.0272 (18)	0.0341 (15)	0.0070 (15)	0.0050 (15)	-0.0063 (13)
C25	0.0674 (19)	0.0307 (19)	0.0450 (17)	-0.0152 (14)	-0.0007 (15)	-0.0053 (14)
C26	0.0448 (15)	0.0308 (17)	0.0421 (16)	-0.0109 (13)	0.0088 (12)	-0.0017 (13)
C27	0.0479 (16)	0.0352 (19)	0.0494 (18)	-0.0030 (13)	0.0242 (14)	-0.0004 (13)
C28	0.0326 (12)	0.0291 (16)	0.0331 (13)	0.0000 (11)	0.0037 (10)	0.0007 (11)
C29	0.0328 (13)	0.0308 (16)	0.0371 (14)	-0.0056 (11)	0.0033 (11)	0.0006 (12)
C30	0.0426 (15)	0.0297 (17)	0.0360 (15)	-0.0056 (12)	0.0023 (12)	-0.0042 (12)
C31	0.0429 (14)	0.0403 (18)	0.0303 (14)	-0.0028 (13)	0.0088 (11)	0.0005 (12)
C32	0.0559 (18)	0.088 (3)	0.0501 (17)	-0.0130 (19)	0.0212 (14)	0.0026 (18)
C33	0.0520 (16)	0.055 (2)	0.0409 (16)	-0.0264 (14)	0.0131 (13)	-0.0059 (14)
C34	0.0553 (17)	0.0441 (19)	0.0362 (15)	-0.0192 (14)	0.0069 (13)	-0.0085 (13)

Geometric parameters (Å, °)

<u>S1—01</u>	1.4266 (19)	С7—Н7	0.9500
S1—O2	1.424 (2)	C8—H8	0.9500
S1—N1	1.670 (2)	С9—Н9	0.9500
S1—C11	1.739 (2)	C10—H10B	0.9800
S2—N3	1.676 (2)	C10—H10A	0.9800
S2—O6	1.4155 (19)	C10—H10C	0.9800
S2—O7	1.422 (2)	C12—H12	0.9500
S2—C28	1.738 (3)	C13—H13	0.9500
O3—C1	1.212 (3)	C15—H15B	0.9800
O4—C2	1.203 (3)	C15—H15A	0.9800
O5—C14	1.358 (3)	C15—H15C	0.9800
O5—C15	1.432 (4)	C16—H16	0.9500
O8—C18	1.216 (3)	C17—H17	0.9500
O9—C19	1.213 (3)	C19—C20	1.518 (3)
O10—C31	1.357 (3)	C20—C27	1.530 (4)
O10—C32	1.440 (4)	C20—C21	1.532 (3)
N1-C1	1.382 (3)	C21—C22	1.385 (3)
N1—C3	1.502 (3)	C21—C26	1.376 (4)
N2—C1	1.372 (3)	C22—C23	1.383 (4)
N2—C2	1.362 (3)	C23—C24	1.375 (4)
N2—H2N	0.91 (2)	C24—C25	1.374 (4)
N3—C20	1.493 (3)	C25—C26	1.384 (4)
N3—C18	1.390 (3)	C28—C34	1.372 (4)
N4—C18	1.363 (3)	C28—C29	1.385 (4)

N4—C19	1.362 (3)	C29—C30	1.368 (4)
N4—H4N	0.92 (2)	C30—C31	1.391 (4)
C2—C3	1.526 (4)	C31—C33	1.378 (4)
C3—C4	1.524 (3)	C33—C34	1.371 (4)
C3—C10	1.520 (4)	C22—H22	0.9500
C4—C9	1.374 (4)	C23—H23	0.9500
C4—C5	1.379 (4)	C24—H24	0.9500
C5—C6	1.379 (4)	C25—H25	0.9500
C6—C7	1.361 (4)	C26—H26	0.9500
C7—C8	1.357 (5)	C27—H27A	0.9800
C8 - C9	1.387(3)	C27—H27B	0.9800
$C_{11} - C_{17}$	1.301(1) 1 380(4)	C27—H27C	0.9800
C11-C12	1.300(4) 1 373(4)	C29_H29	0.9500
C_{12} C_{13}	1.373(4) 1.372(4)	C_{29} H29	0.9500
$C_{12} = C_{13}$	1.372(4) 1.378(4)	C32 H32A	0.9500
C14	1.376(4) 1.297(4)	C32—1132A C22—1132B	0.9800
C14-C10	1.387 (4)	С32—П32В	0.9800
	1.374 (4)	C32—H32C	0.9800
С5—Н5	0.9500	C33—H33	0.9500
С6—Н6	0.9500	C34—H34	0.9500
01 - 81 - 02	120 78 (12)	C13—C12—H12	120.00
01 - S1 - N1	126.76(12) 106.27(10)	C14—C13—H13	120.00
01 - 81 - C11	100.27(10) 109.54(12)	C12_C13_H13	120.00
$O_2 = S_1 = O_1$	107.34(12) 104.23(11)	O5 C15 H15B	100.00
02 - 51 - 101	104.23(11) 100.21(12)	05 - C15 - H15A	109.00
N1 S1 C11	105.21(12) 105.65(11)	H15A C 15 H15B	109.00
N1 - S1 - C11 O7 - S2 - N3	105.05(11) 104.59(11)	H15A C15 H15C	110.00
07 - 52 - 105	104.39(11) 100.28(12)	05 C15 U15C	100.00
0/-52-028	109.38(12) 104.00(11)	U_{15} U_{15} U_{15} U_{15}	109.00
$N_{3} = S_{2} = C_{28}$	104.90 (11)		110.00
06-52-028	109.55 (12)	C14—C10—H10	120.00
06 - 32 - 07	120.61 (12)	C1/C16H16	120.00
06—S2—N3	106.56 (11)	C16—C17—H17	120.00
C14—O5—C15	118.2 (2)	C11—C17—H17	120.00
C31—O10—C32	117.5 (2)	N3—C18—N4	107.7 (2)
S1—N1—C1	122.10 (17)	O8—C18—N3	126.9 (2)
S1—N1—C3	125.57 (16)	O8—C18—N4	125.4 (2)
C1—N1—C3	111.58 (19)	O9—C19—C20	125.8 (2)
C1—N2—C2	113.3 (2)	O9—C19—N4	125.9 (2)
C2—N2—H2N	129.4 (18)	N4—C19—C20	108.3 (2)
C1—N2—H2N	117.2 (18)	N3—C20—C21	112.64 (19)
S2—N3—C18	123.31 (18)	N3—C20—C19	100.5 (2)
S2—N3—C20	124.85 (16)	C19—C20—C27	107.1 (2)
C18—N3—C20	110.71 (19)	C21—C20—C27	114.8 (2)
C18—N4—C19	112.8 (2)	N3—C20—C27	111.6 (2)
C18—N4—H4N	119.1 (16)	C19—C20—C21	109.1 (2)
C19—N4—H4N	128.1 (16)	C22—C21—C26	119.3 (2)
N1—C1—N2	107.0 (2)	C20—C21—C22	118.8 (2)
O3—C1—N1	126.9 (2)	C20—C21—C26	122.0 (2)

O3—C1—N2	126.1 (2)	C21—C22—C23	120.2 (2)
O4—C2—C3	125.6 (2)	C22—C23—C24	120.1 (2)
O4—C2—N2	126.3 (2)	C23—C24—C25	120.0 (3)
N2—C2—C3	108.1 (2)	C24—C25—C26	120.0 (3)
N1—C3—C10	111.9 (2)	C21—C26—C25	120.5 (2)
N1—C3—C4	111.35 (19)	C29—C28—C34	119.9 (2)
N1—C3—C2	99.77 (19)	S2—C28—C29	120.4 (2)
C2—C3—C4	108.9 (2)	S2—C28—C34	119.7 (2)
C2—C3—C10	108.0 (2)	C28—C29—C30	119.8 (2)
C4—C3—C10	115.6 (2)	C29—C30—C31	119.8 (2)
C5—C4—C9	118.3 (2)	Q10—C31—C33	124.5 (2)
C3—C4—C9	122.3 (2)	Q10—C31—C30	115.0 (2)
C3—C4—C5	119.4 (2)	C30—C31—C33	120.5(2)
C4—C5—C6	121.1 (3)	C31—C33—C34	118.9 (2)
C5—C6—C7	119.9 (3)	C28—C34—C33	121.1 (3)
C6—C7—C8	119.6 (3)	C21—C22—H22	120.00
C7—C8—C9	121.0 (3)	C23—C22—H22	120.00
C4—C9—C8	120.1 (3)	C22—C23—H23	120.00
S1-C11-C17	120.15 (19)	C24—C23—H23	120.00
S1-C11-C12	119.5 (2)	C23—C24—H24	120.00
C12—C11—C17	120.4 (2)	C25—C24—H24	120.00
C11—C12—C13	120.4 (2)	C24—C25—H25	120.00
C12—C13—C14	119.4 (3)	C26—C25—H25	120.00
O5-C14-C16	115.5 (3)	C21—C26—H26	120.00
C13—C14—C16	120.5 (2)	C25—C26—H26	120.00
O5—C14—C13	124.0 (3)	С20—С27—Н27А	109.00
C14—C16—C17	119.6 (3)	С20—С27—Н27В	110.00
C11—C17—C16	119.7 (2)	С20—С27—Н27С	109.00
C4—C5—H5	119.00	H27A—C27—H27B	109.00
С6—С5—Н5	119.00	H27A—C27—H27C	110.00
С5—С6—Н6	120.00	H27B—C27—H27C	109.00
С7—С6—Н6	120.00	С28—С29—Н29	120.00
С6—С7—Н7	120.00	С30—С29—Н29	120.00
С8—С7—Н7	120.00	С29—С30—Н30	120.00
С7—С8—Н8	120.00	C31—C30—H30	120.00
С9—С8—Н8	119.00	O10—C32—H32A	109.00
С4—С9—Н9	120.00	O10—C32—H32B	110.00
С8—С9—Н9	120.00	O10—C32—H32C	109.00
H10A—C10—H10B	109.00	H32A—C32—H32B	109.00
H10A—C10—H10C	109.00	H32A—C32—H32C	109.00
C3—C10—H10C	109.00	H32B—C32—H32C	109.00
C3—C10—H10B	109.00	С31—С33—Н33	121.00
C3—C10—H10A	110.00	С34—С33—Н33	121.00
H10B-C10-H10C	110.00	C28—C34—H34	119.00
C11—C12—H12	120.00	С33—С34—Н34	119.00
O1—S1—N1—C1	44.6 (2)	N2—C2—C3—N1	4.8 (2)
O1—S1—N1—C3	-146.18 (18)	O4—C2—C3—N1	-173.7 (2)

O2—S1—N1—C1	173.23 (18)	O4—C2—C3—C4	69.6 (3)
O2—S1—N1—C3	-17.6 (2)	O4—C2—C3—C10	-56.8 (3)
C11—S1—N1—C1	-71.7 (2)	C10-C3-C4-C9	-8.8 (4)
C11—S1—N1—C3	97.5 (2)	N1—C3—C4—C9	120.3 (3)
O1—S1—C11—C12	149.2 (2)	C2—C3—C4—C5	48.5 (3)
O1—S1—C11—C17	-31.9 (2)	N1—C3—C4—C5	-60.6 (3)
O2—S1—C11—C12	14.9 (2)	C10—C3—C4—C5	170.3 (2)
O2—S1—C11—C17	-166.3(2)	C2—C3—C4—C9	-130.6(3)
N1—S1—C11—C12	-96.7 (2)	C9—C4—C5—C6	-0.4 (4)
N1—S1—C11—C17	82.2 (2)	C3—C4—C5—C6	-179.5(2)
O6—S2—N3—C18	-38.6(2)	C3—C4—C9—C8	179.4 (3)
06—S2—N3—C20	154.74 (18)	C5—C4—C9—C8	0.3 (4)
Q7—S2—N3—C18	-167.37(19)	C4—C5—C6—C7	1.0 (4)
07— <u>S2</u> —N3—C20	26.0 (2)	C5—C6—C7—C8	-1.5(5)
$C_{28} = S_{2} = N_{3} = C_{18}$	77.5 (2)	C6—C7—C8—C9	1.5 (5)
$C_{28} = S_{2} = N_{3} = C_{20}$	-89.1 (2)	C7—C8—C9—C4	-0.8(5)
06-82-C28-C29	-137.8(2)	S1-C11-C12-C13	1794(2)
06 - 82 - C28 - C34	44 6 (3)	C_{17} $-C_{11}$ $-C_{12}$ $-C_{13}$	0.5(4)
07 - 82 - C28 - C29	-36(3)	S1-C11-C17-C16	179.8(2)
07 - 52 - C28 - C34	1789(2)	C_{12} C_{11} C_{17} C_{16}	-14(4)
$N_3 = S_2 = C_{28} = C_{29}$	1081(2)	C_{11} C_{12} C_{13} C_{14}	0.8(4)
$N_3 = S_2 = C_{28} = C_{34}$	-694(2)	C_{12} C_{13} C_{14} C_{15} C_{17}	178.9(3)
$C_{15} = 05 = C_{14} = C_{13}$	0.2(4)	C_{12} C_{13} C_{14} C_{16}	-12(4)
$C_{15} = 05 = C_{14} = C_{15}$	-179.6(3)	05 C14 C16 C17	-1797(2)
$C_{13}^{$	-178.8(2)	C_{13} C_{14} C_{16} C_{17}	1/9.7(2) 0 4 (4)
$C_{32} = 010 = C_{31} = C_{30}$	170.0(2)	$C_{13} - C_{14} - C_{10} - C_{17}$	0.4(4)
$C_{32} = 010 = C_{31} = C_{33}$	-175.22(16)	C14 - C10 - C17 - C11	-170.8(2)
S1 = N1 = C1 = O2	-50(4)	09 - C19 - C20 - N3	-61.2(2)
S1 = N1 = C1 = O3	-3.0(4)	09-019-020-021	-01.3(3)
SI = NI = CI = NZ	174.15(13) 175.6(2)	$V_{20} = C_{10} = C_{20} = C_{27}$	03.0(3)
$C_3 = N_1 = C_1 = O_3$	-1/3.0(2)	N4 - C19 - C20 - N3	0.9(2)
$C_3 = N_1 = C_1 = N_2$	5.0(3)	N4 - C19 - C20 - C21	119.4(2)
CI = NI = C3 = C2	-3.0(2)	N4 - C19 - C20 - C27	-113.8(2)
SI = NI = C3 = C4	-60.3(3)	N_{3} $-C_{20}$ $-C_{21}$ $-C_{22}$	07.3 (3)
SI = NI = C3 = C10	/0./(2)	$N_3 - C_2 0 - C_2 1 - C_2 6$	-111.8 (3)
CI = NI = C3 = C4	109.9 (2)	C19 - C20 - C21 - C22	-43.4(3)
CI = NI = C3 = C10	-119.1(2)	C19 - C20 - C21 - C26	137.6(2)
C1 - N2 - C2 - O4	175.3 (3)	C27—C20—C21—C22	-163.5 (2)
C2—N2—C1—O3	179.0 (2)	C27—C20—C21—C26	17.4 (3)
C2—N2—C1—N1	-0.2(3)	C_{20} C_{21} C_{22} C_{23}	179.9 (2)
C1—N2—C2—C3	-3.2 (3)	C26—C21—C22—C23	-1.0 (4)
S2—N3—C18—O8	9.1 (4)	C20—C21—C26—C25	-180.0 (3)
S2—N3—C18—N4	-170.73 (16)	C22—C21—C26—C25	1.0 (4)
C20—N3—C18—N4	-2.4 (3)	C21—C22—C23—C24	0.1 (4)
S2—N3—C20—C19	169.04 (16)	C22—C23—C24—C25	0.8 (4)
S2—N3—C20—C21	53.1 (3)	C23—C24—C25—C26	-0.9 (4)
S2—N3—C20—C27	-77.7 (2)	C24—C25—C26—C21	-0.1 (4)
C18—N3—C20—C19	0.9 (2)	S2—C28—C29—C30	-178.7 (2)
C18—N3—C20—C21	-115.0 (2)	C34—C28—C29—C30	-1.2(4)

supporting information

C18 - N3 - C20 - C27 $114.2 (2)$ $S2 - C28 - C34 - C33$ $177.6 (2)$ $C20 - N3 - C18 - O8$ $177.4 (2)$ $C29 - C28 - C34 - C33$ $0.1 (4)$ $C19 - N4 - C18 - N3$ $3.1 (3)$ $C28 - C29 - C30 - C31$ $1.3 (4)$ $C18 - N4 - C19 - O9$ $178.2 (2)$ $C29 - C30 - C31 - O10$ $179.0 (2)$ $C18 - N4 - C19 - C20$ $-2.5 (3)$ $C29 - C30 - C31 - C33$ $-0.3 (4)$ $C19 - N4 - C18 - O8$ $-176.8 (2)$ $O10 - C31 - C33 - C34$ $180.0 (2)$ $N2 - C2 - C3 - C4$ $-112.0 (2)$ $C30 - C31 - C33 - C34$ $-0.8 (4)$	
N2—C2—C3—C10 121.7 (2) C31—C33—C34—C28 0.9 (4)	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H···A
N2—H2 <i>N</i> ···O8 ⁱ	0.91 (2)	1.95 (2)	2.851 (3)	171 (2)
N4—H4 <i>N</i> ···O3 ⁱⁱ	0.92 (2)	1.89 (2)	2.800(3)	171 (2)
C5—H5····O2 ⁱ	0.95	2.36	3.218 (3)	150
C10—H10A…O8	0.98	2.56	3.437 (3)	149
C10—H10B…O2	0.98	2.45	3.055 (3)	120
С12—Н12…О2	0.95	2.52	2.905 (3)	104
С13—Н13…О9ііі	0.95	2.43	3.287 (3)	150
C22—H22…O7 ⁱⁱ	0.95	2.42	3.351 (3)	165
C24—H24…O8 ^{iv}	0.95	2.56	3.492 (3)	166
C27—H27A…O7	0.98	2.52	3.126 (4)	120
С29—Н29…О7	0.95	2.54	2.916 (3)	104
C30—H30…O4 ^v	0.95	2.38	3.159 (3)	138
C34—H34…O8	0.95	2.56	3.291 (3)	134

Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) -x+1, y+1/2, -z+1; (iv) -x+1, y-1/2, -z; (v) -x, y-1/2, -z.