

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Bromo-4,4-dimethyl-1-(2,4,5trimethoxyphenyl)pentan-3-one

Lin-Lin Tang, Jiao Ye, Qi-Xing Liu and Ai-Xi Hu*

College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China Correspondence e-mail: axhu0731@yahoo.com.cn

Received 14 May 2009; accepted 17 May 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.025; wR factor = 0.073; data-to-parameter ratio = 16.5.

The three methoxy groups of the title compound, $C_{16}H_{23}BrO_4$, are almost coplanar with the attached aromatic ring, forming dihedral angles of 7.19 (13), 2.48 (13) and 7.24 (12)°. The crystal structure shows an intramolecular and an intermolecular $C-H\cdots O$ interaction.

Related literature

For background and related structures, see: Xu et al. (2007); Hu et al. (2007).

Experimental

Crystal data

$C_{16}H_{23}BrO_4$	a = 9.0173 (5) Å
$M_r = 359.25$	b = 9.2086 (5) Å
Triclinic, P1	c = 11.4217 (6) Å

```
\alpha = 106.752 (1)^{\circ}

\beta = 106.196 (1)^{\circ}

\gamma = 100.353 (1)^{\circ}

V = 836.51 (8) \text{ Å}^{3}

Z = 2
```

Data collection

Bruker SMART 1000 CCD	6537 measured reflections
diffractometer	3237 independent reflections
Absorption correction: multi-scan	2940 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2004)	$R_{\rm int} = 0.017$
$T_{\min} = 0.370, \ T_{\max} = 0.594$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ 196 parameters $wR(F^2) = 0.073$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.65$ e Å $^{-3}$ 3237 reflections $\Delta \rho_{min} = -0.21$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2 - H2 \cdots O4$ C16 - H16B \cdots O2 ⁱ	1.00 0.98	2.50 2.57	3.089 (2) 3.465 (3)	117 151

Symmetry code: (i) x, y + 1, z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was funded by the SIT program of Hunan University (2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2955).

References

Bruker (2001). *SMART*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2003). *SAINT-Plus*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). *SADABS* Bruker AXS Inc., Madison, Wisconsin, USA. Hu, A.-X., Cao, G., Xu, J.-J., Xia, L. & He, D.-H. (2007). *J. Hunan Univ. (Nat. Sci.)*, **34**, 78–81.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Xu, J.-J., Hu, A.-X. & Cao, G. (2007). Acta Cryst. E63, 0533-0534.

Mo *K* α radiation $\mu = 2.47 \text{ mm}^{-1}$

 $0.47 \times 0.40 \times 0.21 \text{ mm}$

T = 173 K

supporting information

Acta Cryst. (2009). E65, o1359 [doi:10.1107/S1600536809018601]

2-Bromo-4,4-dimethyl-1-(2,4,5-trimethoxyphenyl)pentan-3-one

Lin-Lin Tang, Jiao Ye, Qi-Xing Liu and Ai-Xi Hu

S1. Comment

 α -Bromoketone are well known for its universal applications in medical industry and play a key role in the synthesis of thiazole derivatives (Xu *et al.*, 2007, Hu *et al.*, 2007). It is found that α -bromoketones work as perfect intermediates and increase the efficiency. Herein we report the synthesis and structure of 2-bromo-4,4-dimethyl-1-(2,4,5-trimethyphenyl)-pentan-3-one.

S2. Experimental

To the compound of 4,4-dimethyl-1-(2,4,5-trimethyphenyl)pentan-3-one (0.02 mol), 1-butyl-3-methylimidazolidine bromide (0.02 mol) was slowly added. The reaction mixture was stirred for 30 min, then it was extracted with ethyl acetate (30 ml×3). The organic layers were collected, washed with water (20 ml), dried with anhydrous Na₂SO₄ and concentrated to give the desired product. Yield: 90.5%. m.p. 366~369 K. ¹H NMR (CDCl₃, 600 MHz) δ : 1.01 (s, 9H, 3×CH₃), 3.20~3.28 (m, 2H, CH₂), 3.80 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 4.92~4.96 (m, 1H, CHBr), 6.49 (d, J = 4.2 Hz, 1H, C₆H₂ 3-H), 6.61 (d, J = 6.0 Hz, 1H, C₆H₂ 6-H).

Crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

S3. Refinement

The H-atoms were positioned geometrically, with C—H = 0.95 Å for aromatic, C—H = 0.98 Å for methyl, C—H = 0.99 Å for methylene and were refined as riding with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C_{methyl})$.

Figure 1

Molecular structure showing 30% probability displacement ellipsoids.

Figure 2

A packing diagram for the title compound. H atoms bonded to C atoms have been omitted for clarity.

2-Bromo-4,4-dimethyl-1-(2,4,5-trimethoxyphenyl)pentan-3-one

Crystal data

C₁₆H₂₃BrO₄ $M_r = 359.25$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.0173 (5) Å b = 9.2086 (5) Å c = 11.4217 (6) Å a = 106.752 (1)° $\beta = 106.196$ (1)° $\gamma = 100.353$ (1)° V = 836.51 (8) Å³

Data collection

Bruker SMART 1000 CCD	6537 measured reflections
diffractometer	3237 independent reflections
Radiation source: fine-focus sealed tube	2940 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.017$
ω scans	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Bruker, 2004)	$k = -11 \longrightarrow 11$
$T_{\min} = 0.370, \ T_{\max} = 0.594$	$l = -14 \rightarrow 11$
Refinement	

Z = 2

F(000) = 372

 $\theta = 2.4 - 27.0^{\circ}$

 $\mu = 2.47 \text{ mm}^{-1}$

Block, colorless

 $0.47 \times 0.40 \times 0.21 \text{ mm}$

T = 173 K

 $D_{\rm x} = 1.426 {\rm ~Mg} {\rm ~m}^{-3}$

Melting point = 366–369 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4833 reflections

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0411P)^2 + 0.3147P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.002$
$\Delta \rho_{\rm max} = 0.65 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	1.06994 (2)	0.86479 (2)	0.12181 (2)	0.03353 (9)
C1	0.8126 (2)	0.6005 (2)	0.07781 (19)	0.0234 (4)
H1A	0.7458	0.6459	0.0216	0.028*

H1B	0.8596	0 5309	0.0243	0.028*
C^2	0.0390	0.7329(2)	0.19069 (19)	0.020
H2	0.8996	0.7993	0.2477	0.026*
C3	1.0691 (2)	0.6722(2)	0.27311(19)	0.0224 (4)
C4	1.1235 (3)	0.7470(3)	0.4214(2)	0.0310(5)
C5	1.2550 (3)	0.6801 (4)	0.4841(3)	0.0517 (7)
H5A	1.2123	0.5653	0.4571	0.078*
H5B	1.2899	0.7282	0.5794	0.078*
H5C	1.3468	0.7039	0.4560	0.078*
C6	1.1885 (3)	0.9271 (3)	0.4661 (3)	0.0466 (6)
H6A	1.2815	0.9533	0.4399	0.070*
H6B	1.2213	0.9734	0.5613	0.070*
H6C	1.1042	0.9696	0.4256	0.070*
C7	0.9764 (3)	0.7038 (3)	0.4612 (2)	0.0399 (5)
H7A	0.8945	0.7514	0.4249	0.060*
H7B	1.0095	0.7439	0.5566	0.060*
H7C	0.9316	0.5886	0.4274	0.060*
C8	0.7081 (2)	0.5042 (2)	0.12787 (18)	0.0214 (4)
С9	0.7162 (2)	0.3520 (2)	0.12133 (19)	0.0230 (4)
Н9	0.7914	0.3107	0.0881	0.028*
C10	0.6174 (2)	0.2603 (2)	0.16207 (19)	0.0223 (4)
C11	0.5060 (2)	0.3213 (2)	0.21148 (19)	0.0222 (4)
C12	0.4989 (2)	0.4740 (2)	0.22142 (19)	0.0222 (4)
H12	0.4255	0.5165	0.2565	0.027*
C13	0.5997 (2)	0.5642 (2)	0.17981 (19)	0.0221 (4)
C14	0.7250 (3)	0.0427 (3)	0.1048 (2)	0.0342 (5)
H14A	0.6990	0.0390	0.0145	0.051*
H14B	0.7131	-0.0648	0.1058	0.051*
H14C	0.8361	0.1074	0.1563	0.051*
C15	0.3096 (3)	0.2861 (3)	0.3105 (3)	0.0386 (5)
H15A	0.3760	0.3772	0.3897	0.058*
H15B	0.2506	0.2054	0.3341	0.058*
H15C	0.2330	0.3198	0.2520	0.058*
C16	0.4788 (2)	0.7768 (2)	0.2246 (2)	0.0292 (4)
H16A	0.3724	0.7047	0.1671	0.044*
H16B	0.4866	0.8811	0.2172	0.044*
H16C	0.4939	0.7862	0.3151	0.044*
01	1.11572 (18)	0.56644 (17)	0.21908 (15)	0.0306 (3)
02	0.61793 (17)	0.11030 (16)	0.15966 (15)	0.0291 (3)
03	0.41020 (17)	0.22188 (16)	0.24643 (15)	0.0283 (3)
04	0.60042 (16)	0.71626 (16)	0.18717 (15)	0.0281 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.03262 (13)	0.02892 (13)	0.05128 (16)	0.00848 (9)	0.02332 (10)	0.02369 (10)
C1	0.0223 (9)	0.0241 (9)	0.0231 (10)	0.0050 (7)	0.0070 (8)	0.0096 (8)
C2	0.0217 (9)	0.0201 (9)	0.0271 (10)	0.0059 (7)	0.0119 (8)	0.0113 (8)

C3	0.0191 (9)	0.0221 (9)	0.0260 (10)	0.0044 (7)	0.0089 (8)	0.0089 (8)
C4	0.0303 (11)	0.0362 (12)	0.0252 (11)	0.0122 (9)	0.0077 (9)	0.0094 (9)
C5	0.0510 (15)	0.081 (2)	0.0325 (13)	0.0360 (15)	0.0117 (12)	0.0258 (13)
C6	0.0446 (14)	0.0386 (13)	0.0362 (13)	0.0023 (11)	0.0065 (11)	-0.0025 (10)
C7	0.0466 (14)	0.0497 (14)	0.0325 (12)	0.0184 (11)	0.0215 (11)	0.0176 (11)
C8	0.0175 (8)	0.0228 (9)	0.0216 (9)	0.0027 (7)	0.0045 (7)	0.0088 (7)
C9	0.0213 (9)	0.0241 (9)	0.0237 (10)	0.0076 (7)	0.0076 (8)	0.0085 (8)
C10	0.0228 (9)	0.0183 (9)	0.0248 (10)	0.0059 (7)	0.0053 (8)	0.0091 (7)
C11	0.0197 (9)	0.0211 (9)	0.0231 (9)	0.0021 (7)	0.0056 (8)	0.0083 (7)
C12	0.0170 (9)	0.0219 (9)	0.0272 (10)	0.0045 (7)	0.0076 (8)	0.0088 (8)
C13	0.0194 (9)	0.0190 (9)	0.0261 (10)	0.0044 (7)	0.0043 (8)	0.0093 (7)
C14	0.0376 (12)	0.0253 (10)	0.0515 (14)	0.0165 (9)	0.0242 (11)	0.0175 (10)
C15	0.0423 (13)	0.0280 (11)	0.0578 (15)	0.0097 (9)	0.0332 (12)	0.0182 (11)
C16	0.0277 (10)	0.0230 (10)	0.0418 (12)	0.0104 (8)	0.0159 (9)	0.0132 (9)
01	0.0327 (8)	0.0306 (8)	0.0337 (8)	0.0175 (6)	0.0134 (6)	0.0121 (6)
O2	0.0356 (8)	0.0218 (7)	0.0403 (8)	0.0128 (6)	0.0209 (7)	0.0159 (6)
O3	0.0285 (7)	0.0222 (7)	0.0403 (8)	0.0058 (6)	0.0184 (7)	0.0145 (6)
O4	0.0236 (7)	0.0214 (7)	0.0473 (9)	0.0094 (5)	0.0169 (7)	0.0177 (6)

Geometric parameters (Å, °)

Br1—C2	1.9693 (18)	С8—С9	1.398 (3)
C1—C8	1.514 (3)	C9—C10	1.382 (3)
C1—C2	1.519 (3)	С9—Н9	0.9500
C1—H1A	0.9900	C10—O2	1.374 (2)
C1—H1B	0.9900	C10—C11	1.407 (3)
С2—С3	1.536 (3)	C11—O3	1.365 (2)
С2—Н2	1.0000	C11—C12	1.392 (3)
C3—O1	1.205 (2)	C12—C13	1.393 (3)
C3—C4	1.525 (3)	C12—H12	0.9500
C4—C5	1.530(3)	C13—O4	1.377 (2)
C4—C6	1.533 (3)	C14—O2	1.429 (2)
C4—C7	1.542 (3)	C14—H14A	0.9800
С5—Н5А	0.9800	C14—H14B	0.9800
С5—Н5В	0.9800	C14—H14C	0.9800
С5—Н5С	0.9800	C15—O3	1.422 (3)
С6—Н6А	0.9800	C15—H15A	0.9800
C6—H6B	0.9800	C15—H15B	0.9800
С6—Н6С	0.9800	C15—H15C	0.9800
С7—Н7А	0.9800	C16—O4	1.428 (2)
С7—Н7В	0.9800	C16—H16A	0.9800
С7—Н7С	0.9800	C16—H16B	0.9800
C8—C13	1.393 (3)	C16—H16C	0.9800
C8—C1—C2	110.66 (16)	C13—C8—C9	118.31 (17)
C8—C1—H1A	109.5	C13—C8—C1	120.84 (17)
C2—C1—H1A	109.5	C9—C8—C1	120.84 (17)
C8—C1—H1B	109.5	C10—C9—C8	121.62 (18)

C2—C1—H1B	109.5	С10—С9—Н9	119.2
H1A—C1—H1B	108.1	С8—С9—Н9	119.2
C1-C2-C3	112.96 (15)	02-C10-C9	125.42 (17)
C1-C2-Br1	109.43 (13)	02-C10-C11	115.27 (17)
C3-C2-Br1	105 97 (12)	C9-C10-C11	119.30(17)
C1 - C2 - H2	109.5	03-C11-C12	124 48 (17)
$C_3 - C_2 - H_2$	109.5	03-C11-C10	121.10(17) 11570(16)
$Br1 - C^2 - H^2$	109.5	C_{12} C_{11} C_{10}	119.82 (17)
01 - C3 - C4	122 68 (18)	C_{11} C_{12} C_{13}	119.02(17)
$01 - C_3 - C_2$	122.00(10) 119.30(17)	$C_{11} - C_{12} - H_{12}$	120.1
$C_4 - C_3 - C_2$	118.00 (16)	C13 - C12 - H12	120.1
$C_{3} - C_{4} - C_{5}$	109 50 (18)	04-C13-C12	120.1 123.22(17)
C_{3} C_{4} C_{6}	110.49 (19)	04-C13-C8	125.22(17) 115.67(17)
C_{5} C_{4} C_{6}	1096(2)	C_{12} C_{13} C_{8}	113.07(17) 121.11(17)
$C_3 = C_4 = C_0$	107.65(17)	$O_{2}^{2} C_{14}^{14} H_{14A}^{14A}$	100 5
$C_{3} - C_{4} - C_{7}$	107.03(17) 100.5(2)	$O_2 = C_1 + H_1 A P$	109.5
C_{3}	109.3(2)	02 - C14 - H14D	109.5
C_{0}	110.09 (19)	H14A - C14 - H14B	109.5
C4 - C5 - H5P	109.5		109.5
C4—C5—H5B	109.5	H14A - C14 - H14C	109.5
H5A—C5—H5B	109.5	H14B $-C14$ $-H14C$	109.5
C4—C5—H5C	109.5	03-C15-H15A	109.5
H5A—C5—H5C	109.5		109.5
H5B—C5—H5C	109.5	HI5A—CI5—HI5B	109.5
C4—C6—H6A	109.5	03—C15—H15C	109.5
C4—C6—H6B	109.5	H15A—C15—H15C	109.5
H6A—C6—H6B	109.5	H15B—C15—H15C	109.5
C4—C6—H6C	109.5	O4—C16—H16A	109.5
Н6А—С6—Н6С	109.5	O4—C16—H16B	109.5
H6B—C6—H6C	109.5	H16A—C16—H16B	109.5
С4—С7—Н7А	109.5	O4—C16—H16C	109.5
C4—C7—H7B	109.5	H16A—C16—H16C	109.5
H7A—C7—H7B	109.5	H16B—C16—H16C	109.5
C4—C7—H7C	109.5	C10—O2—C14	116.49 (15)
H7A—C7—H7C	109.5	C11—O3—C15	116.98 (15)
H7B—C7—H7C	109.5	C13—O4—C16	118.02 (15)
C8—C1—C2—C3	66.5 (2)	O2—C10—C11—O3	-2.0 (2)
C8—C1—C2—Br1	-175.74 (12)	C9—C10—C11—O3	178.37 (17)
C1—C2—C3—O1	43.4 (2)	O2—C10—C11—C12	178.26 (17)
Br1—C2—C3—O1	-76.38 (19)	C9—C10—C11—C12	-1.4 (3)
C1—C2—C3—C4	-135.17 (18)	O3—C11—C12—C13	-178.37 (18)
Br1—C2—C3—C4	105.03 (17)	C10-C11-C12-C13	1.4 (3)
O1—C3—C4—C5	6.3 (3)	C11—C12—C13—O4	-179.61 (17)
C2—C3—C4—C5	-175.18 (19)	C11—C12—C13—C8	0.1 (3)
O1—C3—C4—C6	127.1 (2)	C9—C8—C13—O4	178.22 (17)
C2—C3—C4—C6	-54.3 (2)	C1—C8—C13—O4	-2.7 (3)
O1—C3—C4—C7	-112.6 (2)	C9—C8—C13—C12	-1.5 (3)
C2—C3—C4—C7	65.9 (2)	C1—C8—C13—C12	177.52 (18)
	× /		- /

supporting information

C2-C1-C8-C13	74.0 (2)	C9—C10—O2—C14	-3.0 (3)
C2—C1—C8—C9	-107.0 (2)	C11—C10—O2—C14	177.39 (18)
C13—C8—C9—C10	1.5 (3)	C12—C11—O3—C15	-7.3 (3)
C1C8C9C10	-177.55 (18)	C10-C11-O3-C15	172.93 (18)
C8—C9—C10—O2	-179.66 (18)	C12—C13—O4—C16	-7.7 (3)
C8—C9—C10—C11	-0.1 (3)	C8—C13—O4—C16	172.52 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
С2—Н2…О4	1.00	2.50	3.089 (2)	117
C16—H16 <i>B</i> ···O2 ⁱ	0.98	2.57	3.465 (3)	151

Symmetry code: (i) x, y+1, z.