organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 2-[(E)-3-hydroxy-4-methoxybenzylidene]hydrazinecarboxylate

Lu-Ping Lv,^a Tie-Ming Yu,^a Wen-Bo Yu,^a Wei-Wei Li^a and Xian-Chao Hu^b*

^aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and ^bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: zgdhxc@126.com

Received 15 May 2009; accepted 19 May 2009

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.098; data-to-parameter ratio = 13.0.

The title compound, $C_{10}H_{12}N_2O_4$, adopts a *trans* configuration with respect to the C-N bond. The hydrazinecarboxylate group is twisted from the benzene ring by $6.62(5)^{\circ}$ and an intramolecular O-H···O hydrogen bond occurs. In the crystal structure, molecules are linked into a two-dimensional network parallel to (100) by $O-H \cdots O$, $N-H \cdots O$ and C-H···O hydrogen bonds. In addition, weak C-H··· π interactions are observed.

Related literature

For properties of benzaldehydehydrazone derivatives, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999). For Schiff base metal complexes, see: Kahwa et al. (1986); Santos et al. (2001). For a related structure, see: Shang et al. (2007).

Experimental

a = 7.7223 (12) Å
b = 9.2106 (14) Å
c = 15.092 (2) Å

$\beta = 100.944 \ (6)^{\circ}$	
V = 1054.0 (3) Å ³	
Z = 4	
Mo $K\alpha$ radiation	

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min} = 0.978, T_{\max} = 0.982$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ 149 parameters $wR(F^2) = 0.098$ H-atom parameters constrained S = 1.05 $\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$ 1944 reflections

 $\mu = 0.11 \text{ mm}^{-1}$ T = 223 K

 $R_{\rm int} = 0.024$

 $0.18 \times 0.16 \times 0.15~\text{mm}$

5767 measured reflections

1944 independent reflections 1657 reflections with $I > 2\sigma(I)$

Table 1		
Hydrogen-bond geometry ((Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H2···O1	0.82	2.28	2.6871 (13)	112
$O2-H2 \cdot \cdot \cdot O3^{i}$	0.82	2.20	2.9303 (13)	148
$N2-H2A\cdots O3^{ii}$	0.86	2.44	3.1951 (15)	147
C8−H8···O3 ⁱⁱ	0.93	2.51	3.3185 (16)	146
$C10-H10A\cdots Cg1^{iii}$	0.96	2.87	3.6878 (18)	143

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x + 1, -y - \frac{1}{2}, z - \frac{1}{2}$. Cg1 is the centroid of the C2–C7 ring.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Hangzhou Vocational and Technical College for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2804).

References

- Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.
- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.
- Kahwa, I. A., Selbin, J., Hsieh, T. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 151, 201-208.
- Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.
- Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.
- Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, 03394.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o1384 [doi:10.1107/S1600536809018996]

Methyl 2-[(E)-3-hydroxy-4-methoxybenzylidene]hydrazinecarboxylate

Lu-Ping Lv, Tie-Ming Yu, Wen-Bo Yu, Wei-Wei Li and Xian-Chao Hu

S1. Comment

Benzaldehydehydrazone derivatives have attracted much attention due to their pharmacological activity (Parashar *et al.*, 1988) and their photochromic properties (Hadjoudis *et al.*, 1987). They are important intermediates of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many interesting properties (Borg *et al.*, 1999). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa *et al.*, 1986; Santos *et al.*, 2001). We report here the crystal structure of the title compound (Fig. 1).

The title molecule adopts a *trans* configuration with respect to the C=N bond. The hydrazinecarboxylate group is twisted from the benzene ring by 6.62 (5)°. The bond lengths and angles are comparable to those observed for methylN'-[(E)-4-methoxybenzylidene]hydrazinecarboxylate (Shang *et al.*, 2007). An intramolecular O—H…O interaction is observed.

In the crystal structure, the molecules are linked into a two-dimensional network parallel to the (100) by O—H···O, N— H···O and C—H···O hydrogen bonds (Table 1 and Fig.2). In addition, a C—H··· π interaction is observed.

S2. Experimental

3-Hydroxy-4-methoxy-benzaldehyde (1.52 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90 g, 0.01 mol) were dissolved in stirred methanol (25 ml) and left for 4 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 75% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 398–401 K).

S3. Refinement

H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.93 or 0.96 Å) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C,N)$ and $1.5U_{eq}(C_{methyl})$.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates a hydrogen bond.

Figure 2

Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Methyl 2-[(E)-3-hydroxy-4-methoxybenzylidene]hydrazinecarboxylate

Crystal data	
$C_{10}H_{12}N_2O_4$	F(000) = 472
$M_r = 224.22$	$D_{\rm x} = 1.413 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1944 reflections
a = 7.7223 (12) Å	$\theta = 2.6 - 25.5^{\circ}$
b = 9.2106 (14) Å	$\mu = 0.11 \ { m mm^{-1}}$
c = 15.092 (2) Å	T = 223 K
$\beta = 100.944 \ (6)^{\circ}$	Block, colourless
V = 1054.0 (3) Å ³	$0.18 \times 0.16 \times 0.15 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2002) $T_{\min} = 0.978$, $T_{\max} = 0.982$ Refinement	5767 measured reflections 1944 independent reflections 1657 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -9 \rightarrow 8$ $k = -11 \rightarrow 11$ $l = -18 \rightarrow 18$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.098$ S = 1.05 1944 reflections 149 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0545P)^2 + 0.1597P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.19$ e Å ⁻³ $\Delta\rho_{min} = -0.18$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.035 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
<u>C9</u>	1.14900 (17)	0.19752 (13)	0.79259 (8)	0.0395 (3)	
C8	0.89788 (18)	0.11117 (13)	0.58309 (9)	0.0435 (3)	
H8	0.8814	0.0133	0.5941	0.052*	
C3	0.78128 (16)	0.37223 (13)	0.39017 (8)	0.0386 (3)	
C5	0.84592 (17)	0.31881 (13)	0.47483 (8)	0.0392 (3)	
Н5	0.9053	0.3802	0.5193	0.047*	
C7	0.82305 (17)	0.17208 (13)	0.49464 (8)	0.0399 (3)	
C2	0.68958 (16)	0.28075 (14)	0.32243 (8)	0.0401 (3)	
C6	0.73162 (19)	0.08300 (14)	0.42746 (9)	0.0475 (3)	
H6	0.7149	-0.0143	0.4401	0.057*	
C4	0.66479 (18)	0.13636 (14)	0.34190 (9)	0.0466 (3)	
H4	0.6035	0.0753	0.2978	0.056*	
C10	1.3093 (2)	0.17575 (17)	0.94154 (9)	0.0564 (4)	
H10A	1.3936	0.2432	0.9261	0.085*	
H10B	1.3697	0.1025	0.9810	0.085*	

H10C	1.2281	0.2263	0.9714	0.085*
C1	0.5523 (2)	0.25850 (18)	0.16765 (10)	0.0575 (4)
H1A	0.6295	0.1791	0.1614	0.086*
H1B	0.5317	0.3150	0.1132	0.086*
H1C	0.4422	0.2214	0.1787	0.086*
01	0.63158 (13)	0.34761 (10)	0.24138 (6)	0.0500 (3)
O4	1.21426 (13)	0.10865 (10)	0.86081 (6)	0.0513 (3)
O3	1.17310 (14)	0.32803 (9)	0.79258 (6)	0.0529 (3)
O2	0.80571 (14)	0.51620 (9)	0.37432 (6)	0.0520 (3)
H2	0.7894	0.5307	0.3197	0.078*
N1	0.98497 (14)	0.18969 (11)	0.64511 (7)	0.0420 (3)
N2	1.05406 (15)	0.12010 (11)	0.72457 (7)	0.0442 (3)
H2A	1.0369	0.0287	0.7307	0.053*

Atomic displacement parameters (\mathring{A}^2)

				10	10	
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C9	0.0475 (7)	0.0337 (6)	0.0380 (7)	0.0026 (5)	0.0096 (5)	0.0032 (5)
C8	0.0531 (8)	0.0325 (6)	0.0440 (7)	-0.0037 (5)	0.0067 (6)	0.0023 (5)
C3	0.0427 (7)	0.0331 (6)	0.0406 (7)	0.0000 (5)	0.0091 (5)	-0.0006 (5)
C5	0.0441 (7)	0.0354 (6)	0.0372 (6)	-0.0039 (5)	0.0057 (5)	-0.0032 (5)
C7	0.0425 (7)	0.0369 (6)	0.0397 (7)	-0.0015 (5)	0.0067 (5)	0.0002 (5)
C2	0.0412 (7)	0.0415 (7)	0.0369 (7)	0.0025 (5)	0.0060 (5)	-0.0007 (5)
C6	0.0571 (8)	0.0335 (6)	0.0497 (8)	-0.0070 (6)	0.0045 (6)	-0.0007 (5)
C4	0.0518 (8)	0.0417 (7)	0.0430 (7)	-0.0061 (6)	0.0003 (6)	-0.0079 (5)
C10	0.0626 (9)	0.0631 (9)	0.0391 (8)	-0.0074 (7)	-0.0015 (6)	0.0067 (6)
C1	0.0618 (9)	0.0646 (9)	0.0411 (8)	-0.0054 (7)	-0.0030 (6)	-0.0032 (7)
01	0.0606 (6)	0.0474 (5)	0.0377 (5)	0.0009 (4)	-0.0018 (4)	0.0008 (4)
O4	0.0664 (6)	0.0407 (5)	0.0416 (5)	-0.0009 (4)	-0.0027 (4)	0.0066 (4)
O3	0.0776 (7)	0.0341 (5)	0.0440 (5)	-0.0049 (4)	0.0038 (5)	0.0007 (4)
O2	0.0772 (7)	0.0348 (5)	0.0415 (5)	-0.0048 (4)	0.0053 (5)	0.0044 (4)
N1	0.0517 (6)	0.0348 (5)	0.0380 (6)	0.0009 (4)	0.0049 (5)	0.0046 (4)
N2	0.0602 (7)	0.0300 (5)	0.0393 (6)	-0.0015 (5)	0.0015 (5)	0.0040 (4)

Geometric parameters (Å, °)

С9—03	1.2164 (15)	C6—C4	1.3864 (19)
С9—О4	1.3369 (15)	С6—Н6	0.93
C9—N2	1.3469 (16)	C4—H4	0.93
C8—N1	1.2698 (16)	C10—O4	1.4371 (16)
C8—C7	1.4621 (17)	C10—H10A	0.96
С8—Н8	0.93	C10—H10B	0.96
C3—O2	1.3669 (14)	C10—H10C	0.96
C3—C5	1.3717 (17)	C1—O1	1.4241 (16)
C3—C2	1.4078 (17)	C1—H1A	0.96
С5—С7	1.4025 (17)	C1—H1B	0.96
С5—Н5	0.93	C1—H1C	0.96
C7—C6	1.3885 (18)	O2—H2	0.82

C2—O1	1.3668 (15)	N1—N2	1.3750 (14)
C2—C4	1.3831 (19)	N2—H2A	0.86
O3—C9—O4	124.74 (12)	C2—C4—H4	120.1
O3—C9—N2	125.75 (11)	C6—C4—H4	120.1
O4—C9—N2	109.51 (10)	O4—C10—H10A	109.5
N1—C8—C7	121.11 (11)	O4—C10—H10B	109.5
N1—C8—H8	119.4	H10A-C10-H10B	109.5
С7—С8—Н8	119.4	O4—C10—H10C	109.5
O2—C3—C5	118.24 (11)	H10A—C10—H10C	109.5
O2—C3—C2	121.38 (11)	H10B-C10-H10C	109.5
C5—C3—C2	120.37 (11)	O1—C1—H1A	109.5
C3—C5—C7	120.40 (11)	O1—C1—H1B	109.5
С3—С5—Н5	119.8	H1A—C1—H1B	109.5
С7—С5—Н5	119.8	O1—C1—H1C	109.5
C6—C7—C5	118.74 (12)	H1A—C1—H1C	109.5
C6—C7—C8	119.87 (11)	H1B—C1—H1C	109.5
C5—C7—C8	121.36 (11)	C2	117.31 (11)
O1—C2—C4	126.04 (11)	C9—O4—C10	116.53 (10)
O1—C2—C3	114.48 (11)	С3—О2—Н2	109.5
C4—C2—C3	119.47 (11)	C8—N1—N2	116.16 (10)
C4—C6—C7	121.22 (12)	C9—N2—N1	118.88 (10)
С4—С6—Н6	119.4	C9—N2—H2A	120.6
С7—С6—Н6	119.4	N1—N2—H2A	120.6
C2—C4—C6	119.79 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
02—H2…O1	0.82	2.28	2.6871 (13)	112
O2—H2…O3 ⁱ	0.82	2.20	2.9303 (13)	148
N2—H2A····O3 ⁱⁱ	0.86	2.44	3.1951 (15)	147
C8—H8····O3 ⁱⁱ	0.93	2.51	3.3185 (16)	146
C10—H10 A ···Cg1 ⁱⁱⁱ	0.96	2.87	3.6878 (18)	143

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*+2, *y*-1/2, -*z*+3/2; (iii) *x*+1, -*y*-1/2, *z*-1/2.