Received 20 May 2016
Accepted 20 May 2016

open \prec access

Capecitabine from X-ray powder synchrotron data. Corrigendum

Jan Rohlicek, ${ }^{\text {a* }}$ Michal Husak, ${ }^{\text {a }}$ Ales Gavenda, ${ }^{\text {b }}$ Alexandr Jegorov, ${ }^{\text {c }}$ Bohumil Kratochvil ${ }^{\text {a }}$ and Andy Fitch ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Solid State Chemistry, ICT Prague, Technicka 5, Prague, Czech Republic, ${ }^{\text {b }}$ IVAX Pharmaceuticals s.r.o., R\&D, Opava, Czech Republic, ${ }^{\text {c }}$ Pharmaceuticals Research and Development, Branisovska 31, Ceske Budejovice, Czech Republic, and dID31 Beamline, ESRF, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble Cedex, France. *Correspondence e-mail: rohlicej@vscht.cz

In the paper by Rohlicek et al. [Acta Cryst. (2009), E65, o1325-o1326], one H atom was placed incorrectly.

Following our powder-diffraction study of capecitabine (Rohlicek et al., 2009), Malińska et al. (2014) published the crystal structure of the same molecule based on single-crystal data. Although they modelled the wrong enantiomer [as was pointed out by Kratochvil et al. (2016)], the structures are very similar after inverting the single-crystal structure, including

Figure 1
Overlay of the capecitabine molecular structures arising from powder diffraction (blue) and from single-crystal diffraction data (red). Only nonH atoms are shown for clarity.

(a)
(b)

Figure 2
Schemes for the tautomeric forms of capecitabine (a) assumed in the powder-diffraction study and (b) established in the single-crystal study of Malinska et al. (2014).
the disordered part of the molecule (Fig. 1). Since singlecrystal diffraction is more sensitive to H atoms than powder diffraction, Malinska et al. (2014) were able to locate the H atoms directly. This indicated a different tautomeric form of capecitabine to that assumed in our study, and as they pointed out, we had therefore placed one H atom wrongly.

In our defence, in the powder study, we placed the H atoms geometrically according to a reasonable chemical structure for capecitabine, which shows the tautomeric H atom attached to the N atom of the carbamate group and the plausible formation of an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. As shown by Malińska et al. (2014), the H atom is actually located on the N atom of the pyrimidine ring (Fig. 2), thereby forming an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ link.

With respect to the fact that structure solution from powder diffraction data is based on the proposed molecular structure, readers should beware of the incorrectly placed H atom in Rohlicek et al. (2009) and they should be also beware of the wrong enantiomer in a single-crystal study of Malińska et al. (2014).

References

Kratochvil, B., Husak, M., Korotkova, E. I. \& Jegorov, A. (2016). Chem. Listy, 110, 40-47.
Malińska, M., Krzecyński, P., Czerniec-Michalik, E., Trzcińska, K., Cmoch, P., Kutner, A. \& Woźniak, K. (2014). J. Pharm. Sci. 103, 587-593.
Rohlicek, J., Husak, M., Gavenda, A., Jegorov, A., Kratochvil, B. \& Fitch, A. (2009). Acta Cryst. E65, o1325-o1326.

Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Capecitabine from X-ray powder synchrotron data

Jan Rohlicek, ${ }^{\text {a* }}$ Michal Husak, ${ }^{\text {a }}$ Ales Gavenda, ${ }^{\text {b }}$ Alexandr Jegorov, ${ }^{\text {c }}$ Bohumil Kratochvil ${ }^{\text {a }}$ and Andy Fitch ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Solid State Chemistry, ICT Prague, Technicka 5, Prague, Czech Republic, ${ }^{\text {b }}$ IVAX Pharmaceuticals s.r.o., R\&D, Opava, Czech Republic,
${ }^{\text {c P Pharmaceuticals Research and Development, Branisovska 31, Ceske Budejovice, }}$ Czech Republic, and ${ }^{\text {d ID31 }}$ Beamline, ESRF, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble Cedex, France
Correspondence e-mail: rohlicej@vscht.cz

Received 3 April 2009; accepted 12 May 2009
Key indicators: powder synchrotron study; $T=293 \mathrm{~K} ;$ mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; disorder in main residue; R factor $=0.055 ; w R$ factor $=0.074$; data-to-parameter ratio $=5.5$.

In the title compound [systematic name 5-deoxy-5-fluoro- N (pentyloxycarbonyl)cytidine], $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{6}$, the pentyl chain is disordered over two positions with refined occupancies of 0.53 (5) and 0.47 (5). The furan ring assumes an envelope conformation. In the crystal, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into chains propagating along the b axis. The crystal packing exhibits electrostatic interactions between the 5 -fluoropyrimidin- $2(1 H)$-one fragments of neighbouring molecules as indicated by short $\mathrm{O} \cdots \mathrm{C}$ [2.875 (3) and 2.961 (3) A] and F $\cdots C[2.886$ (3) A] contacts.

Related literature

Capecitabine is the first FDA-approved oral chemotherapy for the treatment for some types of cancer, including advanced bowel cancer or breast cancer, see: Wagstaff et al. (2003); Jones et al. (2004).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{6} \\
& M_{r}=359.35 \\
& \text { Orthorhombic, } P_{2} 2_{1} 2_{1} \\
& a=5.20527(2) \AA \AA \\
& b=9.52235(4) \AA \\
& c=34.77985(13) \AA \\
& V=1723.91(1) \AA \AA^{3}
\end{aligned}
$$

$Z=4$
Synchrotron radiation
$\lambda=0.79483$ (4) \AA
$\mu=0.15 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Specimen shape: cylinder $40 \times 1 \times 1 \mathrm{~mm}$

Specimen prepared at 101 kPa Specimen prepared at 293 K

Data collection

ID31 ESRF Grenoble diffractometer
Specimen mounting: 1.0 mm borosilicate glass capillary
Specimen mounted in transmission mode

Refinement
$R_{\mathrm{p}}=0.055$
$R_{\text {wp }}=0.074$
$R_{\text {exp }}=0.036$
$R_{\mathrm{B}}=0.102$
$S=2.11$
Wavelength of incident radiation: $0.79483(4) \AA$
Excluded region(s): no
Profile function: Pseudo-Voigt profile coefficients as parameterized in Thompson et al.

Particle morphology: no specific habit, white

Scan method: step
Absorption correction: none
$2 \theta_{\text {min }}=1.0,2 \theta_{\text {max }}=35.0^{\circ}$
Increment in $2 \theta=0.003^{\circ}$
(1987), asymmetry correction according to Finger et al. (1994) 499 reflections
91 parameters
77 restraints
H -atom parameters not refined Preferred orientation correction: March-Dollase (Dollase, 1986); direction of preferred orientation 001 , texture parameter $r=1.03$ (1)

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 17-\mathrm{H} 171 \cdots \mathrm{O} 8^{\mathrm{i}}$	0.860	1.956	$2.797(5)$	170
Symmetry code: (i) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$.				

Data collection: ESRF SPEC package; cell refinement: GSAS (Larson \& Von Dreele, 1994); data reduction: CRYSFIRE2004 (Shirley, 2000) and MOPAC (Dewar et al., 1985); program(s) used to solve structure: FOX (Favre-Nicolin \& Černý, 2002); program(s) used to refine structure: GSAS; molecular graphics: Mercury (Macrae et al., 2006) and PLATON (Spek, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004).

This study was supported by the Czech Grant Agency (grant No. GAČR 203/07/0040), the Institute of Chemical Technology in Prague (grant No. 108-08-0017) and the research program MSM 2B08021 of the Ministry of Education, Youth and Sports of the Czech Republic.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2544).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. \& Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902-3909.
Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.
Favre-Nicolin, V. \& Cerný, R. (2002). J. Appl. Cryst. 35, 734-743.
Finger, L. W., Cox, D. E. \& Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.
Jones, L., Hawkins, N., Westwood, M., Wright, K., Richardson, G. \& Riemsma, R. (2004). Health Technol. Assess. 8, 1-156.

Larson, A. C. \& Von Dreele, R. B. (1994). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

organic compounds

Shirley, R. (2000). CRYSFIRE User's Manual. Guildford, England: The Lattice Press.
Spek, A. L. (2009). Acta Cryst. D65, 148-155

Thompson, P., Cox, D. E. \& Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.
Wagstaff, A. J., Ibbotson, T. \& Goa, K. L. (2003). Drugs, 63, 217-236.

supporting information

Acta Cryst. (2009). E65, o1325-o1326 [doi:10.1107/S1600536809017905]

Capecitabine from X-ray powder synchrotron data

Jan Rohlicek, Michal Husak, Ales Gavenda, Alexandr Jegorov, Bohumil Kratochvil and Andy Fitch

S1. Comment

Capecitabine is the first FDA-approved oral chemotherapy for the treatment for some types of cancer, including advanced bowel cancer or breast cancer (Wagstaff et al., 2003; Jones et al., 2004). Capecitabine is 5-deoxy-5-fluoro- N-[(pentyl-oxy)carbonyl]-cytidine and in vivo is enzymatically converted to the active drug 5-fluorouracil. Crystal structure determination of capecitabine was not reported yet. In this paper we report crystal structure determination of the title compound from the powder diffraction data by using synchrotron radiation.
The asymmetric unit consists of one molecule of capecitabine (Fig 1). The crystal packing is stabilized by intermolecular interactions - electrostatic interactions proved by short $\mathrm{O} \cdots \mathrm{C}$ and $\mathrm{F} \cdots \mathrm{C}$ contacts (Table 1) and $\mathrm{N} — \mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

S2. Experimental

Samples of crystalline capecitabine were prepared by two methods, a and b, respectively. Method a : capecitabine (10 g) was dissolved in $\mathrm{EtOH}(80 \mathrm{~g})$. The solution was concentrated under reduced pressure to a residual volume of 25 ml and kept under stirring overnight. The solid was filtered off and dried at room temperature furnishing capecitabine (6 g). Method b : capecitabine (18 g) was dissolved in DCM $(200 \mathrm{~g})$ and the solution was evaporated to dryness under reduced pressure. The residue was taken up with toluene (400 g) and about 150 g of solvent were distilled off. The solution was heated up to $50^{\circ} \mathrm{C}$ and then allowed to 3 spontaneously cool to $25^{\circ} \mathrm{C}$. After cooling to $0^{\circ} \mathrm{C}$, the solid was filtered off, washed with toluene and dried at $60^{\circ} \mathrm{C}$ under vacuum to constant weight furnishing capecitabine (16.5 g).

S3. Refinement

Both crystallization procedures lead to one polycrystalline form of capecitabine. It was confirmed by measuring on XRay powder diffractometer PANalytical Xpert Pro, $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.541874 \AA$). Attempts to determine the structure from these data were unsuccessful probably due to flexible molecule of capecitabine and low resolution of these data. The powder obtained by the first "a" procedure was used for structure determination. X-Ray diffraction data were collected on the high resolution diffractometer ID31 of the European Synchrotron Radiation Facility. The monochromatic wavelength was fixed at 0.79483 (4) \AA. Si (111) crystal multi-analyser combined with Si (111) monochromator was used (beam offset angle $\alpha=2^{\circ}$). A rotating 1-mm-diameter borosilicate glass capillary with capecitabine powder was used for the experiment. Data were measured from $1.002^{\circ} 2 \theta$ to $34.998^{\circ} 2 \theta$ at the room temperature, steps scans was set to $0.003^{\circ} 2 \theta$.

First 20 peaks were used by CRYSFIRE 2004 package (Shirley, 2000) to get a list of possible lattice parameters. The most probable result was selected $(a=5.21 \AA, b=9.52 \AA, c=34.79 \AA, \mathrm{~V}=1724 \AA 3$, FOM $(20)=330)$. If $15 \AA^{3}$ are used as an atomic volume for $\mathrm{C}, \mathrm{N}, \mathrm{O}$ and F and $5 \AA 3$ as a volume for hydrogen atom, the approximate molecular volume is
$485 \AA^{3}$. The found volume of $1724 \AA^{3}$ suggests that there are four molecules in the unit cell $(Z=4) . P 2_{l} 2_{l} 2_{l}$ space group was selected on the basic of peaks extinction and on the basic of agreement of the Le-bail fit. The structure was solved in program FOX (Favre-Nicolin \& Černý, 2002) using parallel tempering algorithm. The initial model was generated by AM1 computing method implemented in program MOPAC (Dewar et al., 1985). For the solution process hydrogen atoms were removed. This model was restrained with bonds and angles restraints, automatically generated by program FOX. The refinement was carried out in GSAS (Larson \& Von Dreele, 1994). Hydrogen atoms were added in positions based on geometry and structure was restrained by bonds and angles restraints. Five planar restraints for $s p^{2}$ hybridization were used (O20/C18/O19/N17, N17/C13/N14/C12, C13/C12/F16/C11, N14/C10/O15/N9 and C4/N9/C10/C11). Due to relatively high $U_{\text {iso }}$ thermal parameters of alkyl chain $(\mathrm{C} 21-\mathrm{C} 25)$ the structure was refined with two disordered chains (C21—C25 and C21a-C25a) with occupancy factors $0.53(5)$ and $0.47(5) . U_{\text {iso }}$ thermal parameters were constrained just for atoms in disordered chains by this way ($\mathrm{C} 21 / \mathrm{C} 21 a, \mathrm{C} 22 / \mathrm{C} 22 a, \mathrm{C} 23 / \mathrm{C} 23 a, \mathrm{C} 24 / \mathrm{C} 24 a, \mathrm{C} 25 / \mathrm{C} 25 a$). At the final stage atomic coordinates of non-hydrogen atoms were refined to the final agreement factors: $R_{\mathrm{p}}=0.055$ and $R_{\mathrm{wp}}=0.0743$. The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 2.

Figure 1
The molecular structure of capecitabine showing the atomic numbering. Displacement spheres are drawn at the 20\% probability level. Only major part of the disordered pentyl chain is shown.

Figure 2

The final Rietveld plot showing the measured data (black thin-plus), calculated data (red line) and difference curve (blue line). Calculated positions of the reflections are shown by verical bars.

5-deoxy-5-fluoro-N-(pentyloxycarbonyl)cytidine

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{6}$
$M_{r}=359.35$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.20527$ (2) \AA
$b=9.52235$ (4) \AA
$c=34.77985(13) \AA$
$V=1723.91(1) \AA^{3}$
$Z=4$
$F(000)=760$

Data collection

ID31 ESRF Grenoble diffractometer
Radiation source: X-Ray
$\mathrm{Si}(111)$ monochromator
$D_{\mathrm{x}}=1.385 \mathrm{Mg} \mathrm{m}^{-3}$
Synchrotron radiation, $\lambda=0.79483$ (4) \AA
$\mu=0.15 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Particle morphology: no specific habit
white
cylinder, $40 \times 1 \mathrm{~mm}$
Specimen preparation: Prepared at 293 K and 101 kPa

Specimen mounting: 1.0 mm borosilicate glass capillary
Data collection mode: transmission
Scan method: step
$2 \theta_{\min }=1.000^{\circ}, 2 \theta_{\max }=34.996^{\circ}, 2 \theta_{\text {step }}=0.003^{\circ}$

Refinement

Least-squares matrix: full
$R_{\mathrm{p}}=0.055$
$R_{\text {wp }}=0.074$
$R_{\text {exp }}=0.036$
$R_{\text {Bragg }}=0.102$
$\chi^{2}=4.452$
11333 data points
Excluded region(s): no
Profile function: Pseudo-Voigt profile
coefficients as parameterized in Thompson et al.
(1987), asymmetry correction according to

Finger et al. (1994)

91 parameters
77 restraints
6 constraints
H-atom parameters not refined
Weighting scheme based on measured s.u.'s $w=$ $1 / \sigma\left(\mathrm{Y}_{\mathrm{obs}}\right)^{2}$
$(\Delta / \sigma)_{\max }=0.05$
Background function: Shifted Chebyschev
Preferred orientation correction: March-Dollase (Dollase, 1986); direction of preferred orientation 001, texture parameter $\mathrm{r}=1.03(1)$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
C1	-0.0205 (8)	0.8964 (3)	0.86415 (10)	0.087 (5)*	
C2	0.0063 (7)	0.7423 (4)	0.87424 (8)	0.048 (5)*	
C3	0.0924 (6)	0.6753 (3)	0.83655 (8)	0.049 (4)*	
C4	-0.0166 (5)	0.7766 (2)	0.80775 (7)	0.081 (5)*	
O5	-0.0717 (9)	0.9090 (3)	0.82416 (10)	0.093 (3)*	
C6	0.2118 (13)	0.9888 (6)	0.87530 (18)	0.079 (4)*	
O7	-0.2355 (9)	0.6775 (5)	0.88107 (14)	0.088 (3)*	
O8	0.0594 (11)	0.5279 (3)	0.83793 (13)	0.109 (3)*	
N9	0.1175 (4)	0.79531 (18)	0.77283 (7)	0.036 (4)*	
C10	0.0276 (4)	0.73076 (17)	0.73805 (7)	0.030 (4)*	
C11	0.3307 (5)	0.87392 (18)	0.77201 (7)	0.023 (4)*	
C12	0.4772 (3)	0.90315 (14)	0.73950 (6)	0.031 (4)*	
C13	0.3691 (3)	0.83732 (13)	0.70512 (6)	0.010 (4)*	
N14	0.1675 (4)	0.75150 (16)	0.70410 (6)	0.028 (4)*	
O15	-0.1690 (5)	0.6596 (2)	0.73930 (11)	0.046 (3)*	
F16	0.6861 (5)	0.98180 (17)	0.74183 (10)	0.072 (2)*	
N17	0.4922 (3)	0.86898 (14)	0.67035 (6)	0.030 (3)*	
C18	0.4009 (4)	0.8094 (2)	0.63692 (7)	0.063 (5)*	
O19	0.2448 (4)	0.7158 (3)	0.63482 (12)	0.108 (3)*	
O20	0.5359 (5)	0.8859 (3)	0.60977 (10)	0.087 (4)*	
C21	0.491 (4)	0.8346 (15)	0.57240 (14)	0.146 (6)*	0.53 (5)
C22	0.524 (3)	0.957 (2)	0.5449 (2)	0.169 (8)*	0.53 (5)
C23	0.801 (3)	0.9940 (19)	0.5361 (5)	0.174 (9)*	0.53 (5)
C24	0.817 (4)	1.1183 (13)	0.5087 (4)	0.174 (10)*	0.53 (5)
C25	0.700 (5)	1.082 (2)	0.4695 (5)	0.143 (9)*	0.53 (5)
C21a	0.518 (5)	0.8251 (19)	0.57299 (18)	0.146 (6)*	0.47 (5)
C22a	0.680 (3)	0.9142 (19)	0.54603 (17)	0.169 (8)*	0.47 (5)
C23a	0.560 (3)	0.939 (2)	0.5068 (4)	0.174 (9)*	0.47 (5)
C24a	0.764 (5)	0.9452 (15)	0.4756 (2)	0.174 (10)*	0.47 (5)
C25a	0.925 (4)	1.079 (2)	0.4786 (7)	0.143 (9)*	0.47 (5)
H251	0.7123	1.1617	0.453	0.25*	0.53 (5)
H252	0.5245	1.0576	0.4727	0.25*	0.53 (5)
H253	0.7906	1.0057	0.4585	0.25*	0.53 (5)

H241	0.7261	1.1953	0.5195	0.25*	0.53 (5)
H242	0.9921	1.1435	0.5053	0.25*	0.53 (5)
H231	0.8866	1.0173	0.5594	0.25*	0.53 (5)
H232	0.8831	0.9152	0.5246	0.25*	0.53 (5)
H221	0.4433	1.0371	0.5559	0.25*	0.53 (5)
H222	0.4406	0.9338	0.5214	0.25*	0.53 (5)
H211	0.3216	0.7981	0.5706	0.25*	0.53 (5)
H212	0.6111	0.7627	0.5664	0.25*	0.53 (5)
H61	0.1794	1.0833	0.868	0.1*	
H62	0.2378	0.9842	0.9023	0.1*	
H63	0.361	0.9557	0.8624	0.1*	
H21	0.1249	0.7267	0.8946	0.075*	
H31	0.273	0.6894	0.8356	0.075*	
H11	-0.166	0.9315	0.8775	0.12*	
H41	-0.1786	0.7386	0.8007	0.12*	
H111	0.3869	0.9132	0.7957	0.03*	
H171	0.6224	0.9246	0.6699	0.04*	
H82	-0.0753	0.5066	0.8272	0.1*	
H72	-0.216	0.592	0.883	0.12*	
H2511	1.0505	1.0802	0.4588	0.25*	0.47 (5)
H2512	1.008	1.082	0.5029	0.25*	0.47 (5)
H2513	0.8164	1.1589	0.476	0.25*	0.47 (5)
H2411	0.874	0.8661	0.478	0.25*	0.47 (5)
H2412	0.6824	0.943	0.4511	0.25*	0.47 (5)
H2311	0.4682	1.0252	0.5072	0.25*	0.47 (5)
H2312	0.4442	0.8643	0.5013	0.25*	0.47 (5)
H2211	0.7075	1.0029	0.5578	0.25*	0.47 (5)
H2212	0.8402	0.8684	0.5424	0.25*	0.47 (5)
H2111	0.5817	0.7316	0.5736	0.25*	0.47 (5)
H2112	0.3442	0.8245	0.5647	0.25*	0.47 (5)

Geometric parameters ($A,{ }^{\circ}$)

C1-C2	1.515 (5)	O20-C21	1.408 (2)
C1-O5	1.421 (5)	O20-C21a	1.407 (2)
C1-C6	1.545 (7)	C21-C22	1.518 (2)
C1-H11	0.950	C21-H211	0.949 (16)
C2-C3	1.525 (4)	C21-H212	0.95 (2)
C2-07	1.422 (6)	C22-C23	1.520 (2)
C2-H21	0.950	C22-H221	0.95 (2)
C3-C4	1.502 (4)	C22-H222	0.950 (9)
C3-08	1.413 (4)	C23-C24	1.522 (2)
C3-H31	0.950	C23-H231	0.950 (19)
C4-O5	1.413 (4)	C23-H232	0.95 (2)
C4-N9	1.4123 (19)	C24-H241	0.949 (19)
C4-H41	0.950	C24-H242	0.95 (2)
C6-H61	0.950	C25-C24	1.530 (2)
C6-H62	0.950	C25-H251	0.951 (19)

C6-H63	0.950
O7-H72	0.820
O8-H82	0.820
N9-C10	1.4352 (18)
N9-C11	1.3389 (19)
C10-N14	1.4015 (19)
C10-O15	1.2282 (19)
C11-C12	1.3919 (19)
C11-H111	0.950
C12-C13	1.4625 (19)
C12-F16	1.3228 (19)
C13-N14	1.3305 (18)
C13-N17	1.4013 (19)
N17-C18	1.3783 (19)
N17-H171	0.860
C18-O19	1.208 (2)
C18-O20	1.384 (2)
O15 \cdots C12 ${ }^{\text {i }}$	2.961 (3)
F16 \cdots C10 ${ }^{\text {ii }}$	2.886 (3)
C2- $\mathrm{C} 1-\mathrm{O} 5$	109.0 (3)
C2-C1-C6	114.9 (2)
C2-C1-H11	107.52
O5-C1-C6	110.2 (2)
O5-C1-H11	107.4
C6- $\mathrm{C} 1-\mathrm{H} 11$	107.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	103.46 (14)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 7$	112.16 (19)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 21$	112.53
C3-C2-O7	102.85 (18)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 21$	112.59
O7- $\mathrm{C} 2-\mathrm{H} 21$	112.5
C2-C3-C4	101.19 (13)
C2-C3-O8	110.48 (18)
C2-C3-H31	105.17
C4-C3-O8	127.86 (19)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 31$	105.07
O8-C3-H31	105.13
C3-C4-O5	112.34 (14)
C3-C4-N9	117.90 (12)
C3-C4-H41	105.26
O5-C4-N9	109.57 (17)
O5-C4-H41	105.29
N9-C4-H41	105.37
C1-O5-C4	106.4 (3)
C1-C6-H61	109.5
C1-C6-H62	109.5

$\mathrm{C} 25-\mathrm{H} 252$	$0.95(3)$
$\mathrm{C} 25-\mathrm{H} 253$	$0.95(2)$
$\mathrm{C} 21 \mathrm{a}-\mathrm{C} 22 \mathrm{a}$	$1.519(2)$
$\mathrm{C} 21 \mathrm{a}-\mathrm{H} 2111$	$0.95(3)$
$\mathrm{C} 21 \mathrm{a}-\mathrm{H} 2112$	$0.95(3)$
$\mathrm{C} 22 \mathrm{a}-\mathrm{C} 23 \mathrm{a}$	$1.520(2)$
$\mathrm{C} 22 \mathrm{a}-\mathrm{H} 2211$	$0.950(15)$
$\mathrm{C} 22 \mathrm{a}-\mathrm{H} 2212$	$0.95(2)$
$\mathrm{C} 23 \mathrm{a}-\mathrm{C} 24 \mathrm{a}$	$1.523(2)$
$\mathrm{C} 23 \mathrm{a}-\mathrm{H} 2311$	$0.95(2)$
$\mathrm{C} 23 \mathrm{a}-\mathrm{H} 2312$	$0.950(18)$
$\mathrm{C} 24 \mathrm{a}-\mathrm{C} 25 \mathrm{a}$	$1.530(2)$
$\mathrm{C} 24 \mathrm{a}-\mathrm{H} 2411$	$0.95(2)$
$\mathrm{C} 24 \mathrm{a}-\mathrm{H} 2412$	$0.952(18)$
$\mathrm{C} 25 \mathrm{a}-\mathrm{H} 2511$	$0.950(19)$
$\mathrm{C} 25 \mathrm{a}-\mathrm{H} 2512$	$0.95(3)$
$\mathrm{C} 25 \mathrm{a}-\mathrm{H} 2513$	$0.95(3)$
$\mathrm{O} 15 \cdots \mathrm{C} 11^{\mathrm{iii}}$	$2.875(3)$

$\mathrm{O} 20-\mathrm{C} 21-\mathrm{H} 212$	$110.1(17)$
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{H} 211$	$110.1(16)$
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{H} 212$	$109.9(6)$
$\mathrm{H} 211-\mathrm{C} 21-\mathrm{H} 212$	$109.4(9)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$114.3(2)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 221$	$108.2(6)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 222$	$108.2(14)$
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 221$	$108.3(14)$
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 222$	$108.3(12)$
$\mathrm{H} 221-\mathrm{C} 22-\mathrm{H} 222$	$109.5(16)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$110.9(2)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 231$	$109.1(13)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 232$	$109.1(15)$
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{H} 231$	$109.1(15)$
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{H} 232$	$109.5(12)$
$\mathrm{H} 231-\mathrm{C} 23-\mathrm{H} 232$	$111.3(2)$
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	$109.1(12)$
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{H} 241$	$109.0(16)$
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{H} 242$	$109(2)$
$\mathrm{C} 25-\mathrm{C} 24-\mathrm{H} 241$	$109.0(17)$
$\mathrm{C} 25-\mathrm{C} 24-\mathrm{H} 242$	$109.4(11)$
$\mathrm{H} 241-\mathrm{C} 24-\mathrm{H} 242$	$110(2)$
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{H} 251$	$110(2)$
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{H} 252$	$109.6(17)$
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{H} 253$	$109.3(19)$
$\mathrm{H} 251-\mathrm{C} 25-\mathrm{H} 252$	$110(2)$
$\mathrm{H} 251-\mathrm{C} 25-\mathrm{H} 253$	

C1-C6-H63	109.4
H61-C6-H62	109.4
H61-C6-H63	109.4
H62-C6-H63	109.6
C2-O7-H72	109.5
C3-O8-H82	109.47
C4-N9-C10	120.62 (14)
C4-N9-C11	119.91 (14)
C10-N9-C11	119.47 (12)
N9-C10-N14	118.71 (13)
N9-C10-O15	118.59 (15)
N14-C10-O15	122.71 (15)
N9-C11-C12	125.65 (14)
N9-C11-H111	117.16
C12-C11-H111	117.19
C11-C12-C13	111.59 (12)
C11-C12-F16	120.89 (15)
C13-C12-F16	127.52 (14)
C12-C13-N14	126.04 (12)
C12-C13-N17	115.94 (14)
N14-C13-N17	118.02 (18)
C10-N14-C13	118.29 (13)
C13-N17-C18	118.81 (13)
C13-N17-H171	120.56
C18-N17-H171	120.63
N17-C18-O19	125.88 (16)
N17-C18-O20	100.60 (15)
O19-C18-O20	133.52 (16)
C18-O20-C21	111.3 (2)
C18-O20-C21a	111.7 (2)
O20-C21-C22	107.3 (2)
$\mathrm{O} 20-\mathrm{C} 21-\mathrm{H} 211$	110.0 (9)

$\mathrm{H} 252-\mathrm{C} 25-\mathrm{H} 253$	$109(2)$
$\mathrm{O} 20-\mathrm{C} 21 \mathrm{a}-\mathrm{C} 22 \mathrm{a}$	$107.2(2)$
$\mathrm{O} 20-\mathrm{C} 21 \mathrm{a}-\mathrm{H} 2111$	$110.1(16)$
$\mathrm{O} 20-\mathrm{C} 21 \mathrm{a}-\mathrm{H} 2112$	$109.9(18)$
$\mathrm{C} 22 \mathrm{a}-\mathrm{C} 21 \mathrm{a}-\mathrm{H} 2111$	$110.2(17)$
$\mathrm{C} 22 \mathrm{a}-\mathrm{C} 21 \mathrm{a}-\mathrm{H} 2112$	$110.1(13)$
$\mathrm{H} 2111-\mathrm{C} 21 \mathrm{a}-\mathrm{H} 2112$	$109.4(6)$
$\mathrm{C} 21 \mathrm{a}-\mathrm{C} 22 \mathrm{a}-\mathrm{C} 23 \mathrm{a}$	$114.4(2)$
$\mathrm{C} 21 \mathrm{a}-\mathrm{C} 22 \mathrm{a}-\mathrm{H} 2211$	$108.3(6)$
$\mathrm{C} 21 \mathrm{a}-\mathrm{C} 22 \mathrm{a}-\mathrm{H} 2212$	$108.2(15)$
$\mathrm{C} 23 \mathrm{a}-\mathrm{C} 22 \mathrm{a}-\mathrm{H} 2211$	$108.2(19)$
$\mathrm{C} 23 \mathrm{a}-\mathrm{C} 22 \mathrm{a}-\mathrm{H} 2212$	$108.3(10)$
$\mathrm{H} 2211-\mathrm{C} 22 \mathrm{a}-\mathrm{H} 2212$	$109.4(10)$
$\mathrm{C} 22 \mathrm{a}-\mathrm{C} 23 \mathrm{a}-\mathrm{C} 24 \mathrm{a}$	$111.0(2)$
$\mathrm{C} 22 \mathrm{a}-\mathrm{C} 23 \mathrm{a}-\mathrm{H} 2311$	$109(2)$
$\mathrm{C} 22 \mathrm{a}-\mathrm{C} 23 \mathrm{a}-\mathrm{H} 2312$	$109.0(11)$
$\mathrm{C} 24 \mathrm{a}-\mathrm{C} 23 \mathrm{a}-\mathrm{H} 2311$	$109.1(12)$
$\mathrm{C} 24 \mathrm{a}-\mathrm{C} 23 \mathrm{a}-\mathrm{H} 2312$	$109.2(19)$
$\mathrm{H} 2311-\mathrm{C} 23 \mathrm{a}-\mathrm{H} 2312$	$109.5(16)$
$\mathrm{C} 23 \mathrm{a}-\mathrm{C} 24 \mathrm{a}-\mathrm{C} 25 \mathrm{a}$	$111.4(2)$
$\mathrm{C} 23 \mathrm{a}-\mathrm{C} 24 \mathrm{a}-\mathrm{H} 2411$	$109.0(10)$
$\mathrm{C} 23 \mathrm{a}-\mathrm{C} 24 \mathrm{a}-\mathrm{H} 2412$	$109(2)$
$\mathrm{C} 25 \mathrm{a}-\mathrm{C} 24 \mathrm{a}-\mathrm{H} 2411$	$109(3)$
$\mathrm{C} 25 \mathrm{a}-\mathrm{C} 24 \mathrm{a}-\mathrm{H} 2412$	$109.0(16)$
$\mathrm{H} 2411-\mathrm{C} 24 \mathrm{a}-\mathrm{H} 2412$	$109.4(11)$
$\mathrm{C} 24 \mathrm{a}-\mathrm{C} 25 \mathrm{a}-\mathrm{H} 2511$	$110(2)$
$\mathrm{C} 24 \mathrm{a}-\mathrm{C} 25 \mathrm{a}-\mathrm{H} 2512$	$110(2)$
$\mathrm{C} 24 \mathrm{a}-\mathrm{C} 25 \mathrm{a}-\mathrm{H} 2513$	$109.6(17)$
$\mathrm{H} 2511-\mathrm{C} 25 \mathrm{a}-\mathrm{H} 2512$	$109(2)$
$\mathrm{H} 2511-\mathrm{C} 25 \mathrm{a}-\mathrm{H} 2513$	$109(2)$
$\mathrm{H} 2512-\mathrm{C} 25 \mathrm{a}-\mathrm{H} 2513$	

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+1, y+1 / 2,-z+3 / 2$; (iii) $-x, y-1 / 2,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 17 — \mathrm{H} 171 \cdots \mathrm{O} 8^{\mathrm{ii}}$	0.860	1.956	$2.797(5)$	170

Symmetry code: (ii) $-x+1, y+1 / 2,-z+3 / 2$.

