

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(10-Chloro-9-anthryl)-5-[3-(prop-2-ynyloxy)phenoxymethyl]isoxazole

Juan Li,^a Hailing Xi^b and Jianming Zhang^a*

^aKey Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ^b6th Department, Research Institute of Chemical Defence, Beijing 102205, People's Republic of China Correspondence e-mail: bluemzj@163.com

Received 23 April 2009; accepted 21 May 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.003 Å; R factor = 0.057; wR factor = 0.163; data-to-parameter ratio = 16.7.

In the title molecule, $C_{27}H_{18}CINO_3$, the anthracene mean plane forms dihedral angles of 67.43(2) and $15.75(3)^{\circ}$ with the isoxazole and benzene rings, respectively. In the crystal structure, $C-H\cdots\pi$ interactions link molecules into centrosymmetric dimers, which are further linked by weak intermolecular $C-H \cdots N$ hydrogen bonds into ribbons propagating in the [110] direction.

Related literature

For the preparation of the title compound, see Han et al. (2003). For pharmaceutical applications of isoxazole and its derivatives, see: De Luca et al. (2001); Yamamoto et al. (2007); Reuman et al. (2008).

 $\gamma = 94.965 \ (1)^{\circ}$

Z = 2

V = 1171.25 (7) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

4812 independent reflections

4227 reflections with $I > 2\sigma(I)$

 $\mu = 0.19 \text{ mm}^{-1}$ T = 292 K

 $R_{\rm int} = 0.0000$

Experimental

Crystal data

C ₂₇ H ₁₈ ClNO ₃	
$M_r = 439.87$	
Triclinic, $P\overline{1}$	
a = 8.4816 (3) Å	
b = 8.6450(3) Å	
c = 16.8606 (6) Å	
$\alpha = 100.364 \ (1)^{\circ}$	
$\beta = 103.596 \ (1)^{\circ}$	

Data collection

Bruker SMART 4K CCD area-detector diffractometer Absorption correction: none 4812 measured reflections

Refinement

289 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C19-C24 ring.

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C27 - H27 \cdots N1^{i}$ C16 - H16 \cdots Cg^{ii}	0.93 0.93	2.57 2.67	3.465 (3) 3.431 (2)	163 140

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank Dr Xiang-Gao Meng for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2557).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

De Luca, L., Giacomelli, G. & Riu, A. (2001). J. Org. Chem. 66, 6823-6825.

Han, X., Twamley, B. & Natale, N. R. (2003). J. Heterocycl. Chem. 40, 539-545. Reuman, M., Beish, S., Davis, J., Batchelor, M. J., Hutchings, M. C., Moffat,

D. F. C., Connolly, P. J. & Russell, R. K. (2008). J. Org. Chem. 73, 1121-1123. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Yamamoto, T., Fujita, K., Asari, S., Chiba, A., Kataba, Y., Ohsumi, K., Hmuta, N., Iida, Y., Ijichi, C., Iwayama, S., Fukuchi, N. & Shoji, M. (2007). Bioorg. Med. Chem. Lett. 17, 3736-3740.

supporting information

Acta Cryst. (2009). E65, o1401 [doi:10.1107/S1600536809019229]

3-(10-Chloro-9-anthryl)-5-[3-(prop-2-ynyloxy)phenoxymethyl]isoxazole

Juan Li, Hailing Xi and Jianming Zhang

S1. Comment

Isoxazole and isoxazole derivatives are important pharmaceutical agents (De Luca *et al.*, 2001), so they are widely investigated (Yamamoto *et al.*, 2007; Reuman *et al.*, 2008). As a part of our investigation into isoxazole derivatives, we report here the structure of the title compound (I).

In (I) (Fig. 1), the anthracene mean plane forms the dihedral angles of 67.43 (2)° and 15.75 (3)° with the isoxazole and benzene rings, respectively. In the crystal, C—H··· π interactions (Table 1) link the molecules into centrosymmetric dimers, which are further linked by the weak intermolecular C—H···N hydrogen bonds (Table 1) into ribbons propagated in direction [110]. The porous crystal packing contains voids of 171 Å³.

S2. Experimental

The title compound was synthesized according to the procedure of Han *et al.* (2003) in 32% isolated yield. Crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of a methaoland DMF solution in ratio of 50:1 at 298 K.

S3. Refinement

All H atoms bonded to C atoms were initially located in difference Fourier maps and then constrained to their ideal geometry positions (C-H = 0.93-0.97 Å), and refined as riding with Uĩso~(H) = 1.2U~eq~(C).

Figure 1

View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.

3-(10-Chloro-9-anthryl)-5-[3-(prop-2-ynyloxy)phenoxymethyl]isoxazole

Crystal data

C₂₇H₁₈ClNO₃ $M_r = 439.87$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.4816(3) Å b = 8.6450(3) Å c = 16.8606 (6) Å $\alpha = 100.364 (1)^{\circ}$ $\beta = 103.596 (1)^{\circ}$ $\gamma = 94.965 (1)^{\circ}$ V = 1171.25 (7) Å³

Data collection

Bruker SMART 4K CCD area-detector	4227 reflections with I
diffractometer	$R_{\rm int} = 0.000$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 26.5^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$
Graphite monochromator	$h = -10 \rightarrow 10$
φ and ω scans	$k = -10 \rightarrow 10$
4812 measured reflections	$l = 0 \rightarrow 21$
4812 independent reflections	
-	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from
$wR(F^2) = 0.163$	neighbouring sites
S = 1.06	H-atom parameters constrained
4812 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0786P)^2 + 0.2928P]$
289 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 2

F(000) = 456

 $\theta = 2.5 - 28.2^{\circ}$

 $\mu = 0.19 \text{ mm}^{-1}$

Block, colourless

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

4227 reflections with $I > 2\sigma(I)$

T = 292 K

 $D_{\rm x} = 1.247 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6384 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 . conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.2863 (2)	0.3620 (2)	0.91382 (11)	0.0372 (4)	
C2	0.1335 (3)	0.4195 (2)	0.91474 (14)	0.0487 (5)	
H2	0.0916	0.4184	0.9609	0.058*	
C3	0.0490 (3)	0.4751 (3)	0.85017 (16)	0.0566 (5)	

110	0.0405	0.5100	0.050	0.000*
H3	-0.0495	0.5128	0.8526	0.068*
C4	0.1087 (3)	0.4767 (3)	0.77859 (15)	0.0534 (5)
H4	0.0487	0.5145	0.7341	0.064*
C5	0.2529 (2)	0.4234 (2)	0.77469 (12)	0.0426 (4)
H5	0.2899	0.4244	0.7270	0.051*
C6	0.3493 (2)	0.36581 (19)	0.84180 (10)	0.0338 (4)
C7	0.4989 (2)	0.30988 (19)	0.83910 (10)	0.0318 (3)
C8	0.5881 (2)	0.2499 (2)	0.90563 (10)	0.0335 (4)
С9	0.7423 (2)	0.1965 (2)	0.90562 (12)	0.0430 (4)
Н9	0.7856	0.2003	0.8601	0.052*
C10	0.8275 (3)	0.1400 (3)	0.97066 (14)	0.0543 (5)
H10	0.9282	0.1063	0.9693	0.065*
C11	0.7643 (3)	0.1322 (3)	1.04012 (13)	0.0580 (6)
H11	0.8229	0.0920	1.0840	0.070*
C12	0.6195 (3)	0.1825 (3)	1.04358 (11)	0.0504 (5)
H12	0.5801	0.1767	1.0901	0.060*
C13	0.5254 (2)	0.2444 (2)	0.97749 (10)	0.0369 (4)
C14	0.3769(2)	0.3003(2)	0.97840 (11)	0.0393(4)
C15	0.56449(19)	0.3098(2)	0 76469 (10)	0.0313(3)
C16	0.5831(2)	0.1769(2)	0.70657 (11)	0.0372(4)
H16	0.5563	0.0702	0.7063	0.0372 (4)
C17	0.5505 0.6479 (2)	0.0702 0.2387 (2)	0.65203 (10)	0.0369 (4)
C18	0.0477(2) 0.7037(2)	0.2587(2) 0.1683(3)	0.05205(10) 0.57805(11)	0.0307(4)
	0.7037 (2)	0.1085 (5)	0.57805 (11)	0.0447(4)
	0.6101	0.2071	0.5854	0.054*
П10D	0.0918	0.0330	0.3703	0.034°
C19	0.0341(2)	0.1848(2)	0.43448 (11)	0.0379 (4)
C20	0.7742 (2)	0.0930 (2)	0.42197 (11)	0.0378 (4)
H20	0.8285	0.0457	0.4640	0.045*
C21	0.8133 (2)	0.0720 (2)	0.34504 (11)	0.0356 (4)
C22	0.7331 (2)	0.1422 (2)	0.28241 (12)	0.0428 (4)
H22	0.7601	0.1289	0.2315	0.051*
C23	0.6120 (2)	0.2329 (2)	0.29685 (12)	0.0444 (4)
H23	0.5571	0.2799	0.2549	0.053*
C24	0.5710 (2)	0.2549 (2)	0.37219 (12)	0.0429 (4)
H24	0.4891	0.3156	0.3810	0.051*
C25	0.9797 (3)	-0.0505 (2)	0.26169 (12)	0.0444 (4)
H25A	0.8811	-0.0784	0.2163	0.053*
H25B	1.0408	-0.1403	0.2597	0.053*
C26	1.0785 (2)	0.0859 (2)	0.24940 (12)	0.0447 (4)
C27	1.1606 (3)	0.1948 (3)	0.24028 (15)	0.0581 (6)
H27	1.2255	0.2809	0.2331	0.070*
Cl1	0.29951 (8)	0.29325 (7)	1.06495 (3)	0.0617 (2)
N1	0.6140 (2)	0.44298 (18)	0.74604 (9)	0.0423 (4)
01	0.66859 (17)	0.39855 (16)	0.67356 (8)	0.0448 (3)
O2	0.60568 (17)	0.2133 (2)	0.50758 (8)	0.0520 (4)
03	0.93481 (17)	-0.02142 (17)	0.33887 (8)	0.0473 (3)
-				

Atomic displacement parameters $(Å^2)$

	U 711	I 722	<i>I</i> 733	U 712	1713	I /23
<u></u>	0.0208 (0)	0.0228 (8)	0.0400 (0)	0.0000 (7)	0.0202 (7)	0 0011 (7)
CI	0.0398 (9)	0.0328 (8)	0.0409 (9)	0.0008 (7)	0.0202 (7)	0.0011 (/)
C2	0.0488 (11)	0.0461 (11)	0.0581 (12)	0.0079 (8)	0.0309 (9)	0.0046 (9)
C3	0.0447 (11)	0.0537 (12)	0.0799 (15)	0.0180 (9)	0.0302 (11)	0.0117 (11)
C4	0.0455 (11)	0.0538 (12)	0.0653 (13)	0.0155 (9)	0.0136 (10)	0.0202 (10)
C5	0.0425 (10)	0.0460 (10)	0.0436 (10)	0.0086 (8)	0.0149 (8)	0.0140 (8)
C6	0.0373 (8)	0.0313 (8)	0.0342 (8)	0.0027 (6)	0.0143 (7)	0.0045 (6)
C7	0.0358 (8)	0.0333 (8)	0.0279 (8)	0.0031 (6)	0.0137 (6)	0.0039 (6)
C8	0.0394 (8)	0.0344 (8)	0.0279 (8)	0.0032 (7)	0.0118 (7)	0.0060 (6)
C9	0.0427 (10)	0.0528 (11)	0.0389 (9)	0.0120 (8)	0.0144 (8)	0.0155 (8)
C10	0.0475 (11)	0.0664 (13)	0.0528 (12)	0.0179 (10)	0.0087 (9)	0.0231 (10)
C11	0.0634 (13)	0.0702 (14)	0.0412 (11)	0.0117 (11)	0.0027 (10)	0.0265 (10)
C12	0.0624 (13)	0.0605 (12)	0.0280 (9)	0.0016 (10)	0.0099 (8)	0.0139 (8)
C13	0.0448 (9)	0.0374 (9)	0.0270 (8)	-0.0022 (7)	0.0111 (7)	0.0044 (6)
C14	0.0503 (10)	0.0390 (9)	0.0302 (8)	-0.0030 (7)	0.0218 (7)	0.0007 (7)
C15	0.0296 (7)	0.0390 (9)	0.0278 (8)	0.0065 (6)	0.0101 (6)	0.0093 (6)
C16	0.0433 (9)	0.0375 (9)	0.0343 (9)	0.0070 (7)	0.0165 (7)	0.0070 (7)
C17	0.0393 (9)	0.0444 (10)	0.0300 (8)	0.0106 (7)	0.0117 (7)	0.0089 (7)
C18	0.0493 (10)	0.0601 (12)	0.0309 (9)	0.0190 (9)	0.0174 (8)	0.0106 (8)
C19	0.0392 (9)	0.0472 (10)	0.0286 (8)	0.0072 (7)	0.0124 (7)	0.0051 (7)
C20	0.0406 (9)	0.0464 (10)	0.0302 (8)	0.0099 (7)	0.0109 (7)	0.0131 (7)
C21	0.0376 (9)	0.0397 (9)	0.0333 (8)	0.0067 (7)	0.0143 (7)	0.0097 (7)
C22	0.0448 (10)	0.0568 (11)	0.0339 (9)	0.0111 (8)	0.0163 (7)	0.0175 (8)
C23	0.0453 (10)	0.0555 (11)	0.0389 (9)	0.0154 (8)	0.0110 (8)	0.0217 (8)
C24	0.0405 (9)	0.0523 (11)	0.0391 (9)	0.0161 (8)	0.0117 (8)	0.0110 (8)
C25	0.0513 (10)	0.0448 (10)	0.0430 (10)	0.0123 (8)	0.0252 (8)	0.0039 (8)
C26	0.0413 (9)	0.0553 (11)	0.0408 (10)	0.0135 (8)	0.0154 (8)	0.0089 (8)
C27	0.0500 (11)	0.0662 (14)	0.0636 (14)	0.0066 (10)	0.0203 (10)	0.0206 (11)
Cl1	0.0751 (4)	0.0780 (4)	0.0412 (3)	0.0068 (3)	0.0364 (3)	0.0093 (2)
N1	0.0581 (9)	0.0403 (8)	0.0368 (8)	0.0081 (7)	0.0263 (7)	0.0101 (6)
01	0.0603 (8)	0.0456 (7)	0.0381 (7)	0.0079 (6)	0.0277 (6)	0.0131 (5)
O2	0.0505 (8)	0.0849 (10)	0.0285 (6)	0.0301 (7)	0.0174 (6)	0.0122 (6)
O3	0.0562 (8)	0.0576 (8)	0.0425 (7)	0.0274 (6)	0.0266 (6)	0.0192 (6)
	X - 7	- (-)	- (-)			

Geometric parameters (Å, °)

C1—C14	1.395 (3)	C15—C16	1.416 (2)	
C1—C2	1.430 (3)	C16—C17	1.340 (2)	
C1—C6	1.441 (2)	C16—H16	0.9300	
С2—С3	1.345 (3)	C17—O1	1.349 (2)	
С2—Н2	0.9300	C17—C18	1.485 (2)	
C3—C4	1.416 (3)	C18—O2	1.418 (2)	
С3—Н3	0.9300	C18—H18A	0.9700	
C4—C5	1.355 (3)	C18—H18B	0.9700	
C4—H4	0.9300	C19—C20	1.376 (3)	
C5—C6	1.427 (2)	C19—O2	1.377 (2)	

С5—Н5	0.9300	C19—C24	1.386 (3)
C6—C7	1.404 (2)	C20—C21	1.398 (2)
C7—C8	1.406 (2)	С20—Н20	0.9300
C7—C15	1.487 (2)	C21—O3	1.374 (2)
C8—C9	1.424 (3)	C21—C22	1.382 (2)
C8—C13	1.440 (2)	C22—C23	1.385 (3)
C9—C10	1.358 (3)	C22—H22	0.9300
С9—Н9	0.9300	C23—C24	1.379 (3)
C10—C11	1 407 (3)	C23—H23	0.9300
C10—H10	0.9300	C24—H24	0.9300
C_{11} C_{12}	1 348 (3)	$C_{25} = 0_{3}$	1.426(2)
C11 H11	0.0300	C25_C26	1.420(2)
	0.9300	$C_{25} = U_{25}$	1.401(3)
C12—C13	1.427(3)	C25_H25A	0.9700
	0.9300	C25—H25B	0.9700
	1.390 (3)	C26-C27	1.176(3)
CI4—CII	1.7434 (17)	С27—Н27	0.9300
C15—N1	1.308 (2)	N1—01	1.4082 (19)
C14—C1—C2	123.58 (17)	C16—C15—C7	127.76 (15)
C14—C1—C6	118.09 (16)	C17—C16—C15	104.87 (16)
$C_2 - C_1 - C_6$	118.33 (17)	C17—C16—H16	127.6
C_{3} $-C_{2}$ $-C_{1}$	121 36 (19)	C15—C16—H16	127.6
C_{3} C_{2} H_{2}	119.3	$C_{16} - C_{17} - O_{1}$	109 76 (16)
$C_1 C_2 H_2$	110.3	C_{16} C_{17} C_{18}	133 60 (18)
$C_1 = C_2 = C_1$	119.5	01 C17 C18	116 60 (16)
$C_2 = C_3 = C_4$	120.08 (19)	02 - 018 - 017	107.62(15)
$C_2 = C_3 = H_3$	119.7	02 - 018 - 017	107.03 (13)
C4—C3—H3	119.7	02-018	110.2
C_{3}	120.19 (19)	C1/-C18-H18A	110.2
C3—C4—H4	119.9	02-C18-H18B	110.2
C3—C4—H4	119.9	С17—С18—Н18В	110.2
C4—C5—C6	121.70 (18)	H18A—C18—H18B	108.5
C4—C5—H5	119.1	C20—C19—O2	123.81 (16)
С6—С5—Н5	119.1	C20—C19—C24	121.26 (16)
C7—C6—C5	122.69 (16)	O2—C19—C24	114.93 (16)
C7—C6—C1	119.58 (15)	C19—C20—C21	118.90 (16)
C5—C6—C1	117.71 (16)	С19—С20—Н20	120.6
C6—C7—C8	120.95 (15)	С21—С20—Н20	120.6
C6—C7—C15	120.45 (14)	O3—C21—C22	124.87 (16)
C8—C7—C15	118.59 (15)	O3—C21—C20	114.38 (15)
С7—С8—С9	122.18 (15)	C22—C21—C20	120.76 (17)
C7—C8—C13	119.87 (16)	C21—C22—C23	118.85 (17)
C9—C8—C13	117.94 (15)	C21—C22—H22	120.6
C10—C9—C8	121.44 (18)	C23—C22—H22	120.6
С10—С9—Н9	119.3	C24—C23—C22	121.41 (16)
С8—С9—Н9	119.3	C24—C23—H23	119.3
C9—C10—C11	120.4 (2)	C22—C23—H23	119.3
C9—C10—H10	119.8	C23—C24—C19	118.82 (17)
C11—C10—H10	119.8	C23—C24—H24	120.6

C12—C11—C10	120.54 (18)	C19—C24—H24	120.6
C12—C11—H11	119.7	O3—C25—C26	112.99 (15)
C10-C11-H11	119.7	O3—C25—H25A	109.0
C11—C12—C13	121.53 (18)	С26—С25—Н25А	109.0
C11—C12—H12	119.2	O3—C25—H25B	109.0
C13—C12—H12	119.2	С26—С25—Н25В	109.0
C14—C13—C12	123.94 (17)	H25A—C25—H25B	107.8
C14—C13—C8	117.93 (16)	C27—C26—C25	178.8 (2)
C12—C13—C8	118.13 (18)	С26—С27—Н27	180.0
C13—C14—C1	123.58 (16)	C15—N1—O1	105.45 (14)
C13—C14—Cl1	118.27 (14)	C17—O1—N1	108.51 (13)
C1-C14-Cl1	118.15 (15)	C19—O2—C18	117.55 (14)
N1-C15-C16	111.40 (15)	C21—O3—C25	117.66 (14)
N1—C15—C7	120.84 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H…A
C27—H27…N1 ⁱ	0.93	2.57	3.465 (3)	163
C16—H16…Cg ⁱⁱ	0.93	2.67	3.431 (2)	140

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1.