organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,3-Bis{(+)-(\$)-[1-(1-naphthyl)ethyl]iminomethyl}benzene dichloromethane solvate

Armando Espinosa Leija,^a Guadalupe Hernández,^b Sandra Cruz,^b‡ Sylvain Bernès^c* and René Gutiérrez^b

^aFacultad de Ciencias Químicas, UANL, Licenciatura en Química Industrial, Ciudad Universitaria, Monterrey, NL, Mexico, ^bLaboratorio de Síntesis de Complejos, Facultad de Ciencias Químicas, BUAP, AP 1067, 72001 Puebla, Pue., Mexico, and ^cDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico

Correspondence e-mail: sylvain_bernes@Hotmail.com

Received 14 February 2009; accepted 11 May 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.060; wR factor = 0.186; data-to-parameter ratio = 14.5.

In the title compound, $C_{32}H_{28}N_2 \cdot CH_2Cl_2$, the complete Schiff base and solvent molecules are both generated by crystallographic twofold axes, with the two C atoms of the former and the C atom of the latter lying on the rotation axis. The central benzene ring is substituted with two chiral groups including imine functionalities, with the common *E* configuration. The dihedral angle between the central benzene ring and the terminal naphthalene ring is 45.42 (9)° and that between the two naphthalene rings is 89.16 (8)°. The conformation of the Schiff base allows solvent molecules to fill the voids in the crystal, affording a stable 1:1 solvate, but the solvent interacts poorly with the Schiff base, as reflected by its rather high displacement parameters.

Related literature

For solvent-free synthesis in organic chemistry, see: Jeon *et al.* (2005); Noyori (2005); Tanaka & Toda (2000). For related chiral Schiff bases synthesized using similar routes, see: Tovar *et al.* (2007).

‡ Other affiliation: Depto. Ing. Química, Universidad Politécnica de Tlaxcala Calle 21, no. 611 Col. La Loma Xicohténcatl Tlaxcala, Tlax. Mexico.

Experimental

Crystal data

 $\begin{array}{l} C_{32}H_{28}N_2 \cdot CH_2Cl_2 \\ M_r = 525.49 \\ \text{Orthorhombic, } P2_12_12 \\ a = 8.550 \ (2) \ \text{\AA} \\ b = 20.706 \ (6) \ \text{\AA} \\ c = 7.972 \ (3) \ \text{\AA} \end{array}$

Data collection

Siemens P4 diffractometer Absorption correction: gaussian (XSCANS; Siemens, 1996) $T_{min} = 0.933$, $T_{max} = 0.954$ 6308 measured reflections 2497 independent reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.060 \\ wR(F^2) &= 0.186 \\ S &= 1.06 \\ 2497 \text{ reflections} \\ 172 \text{ parameters} \\ \text{H-atom parameters constrained} \end{split}$$

 $V = 1411.3 (7) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.25 \text{ mm}^{-1}$ T = 298 K $0.40 \times 0.24 \times 0.20 \text{ mm}$

1428 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ 3 standard reflections every 97 reflections intensity decay: 2.3%

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.19 \mbox{ e } {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.16 \mbox{ e } {\rm \AA}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ 1028 \mbox{ Friedel pairs} \\ \mbox{Flack parameter: } 0.0 \mbox{ (2)} \end{array}$

Data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*.

Partial support from VIEP-UAP (GUPJ-NAT08-G) is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2198).

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jeon, S.-J., Li, H. & Walsh, P. J. (2005). J. Am. Chem. Soc. 127, 16416–16425. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor,
- R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Novori, R. (2005). *Chem. Commun.* pp. 1807–1811.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Tanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025-1074.
- Tovar, A., Peña, U., Hernández, G., Portillo, R. & Gutiérrez, R. (2007). *Synthesis*, pp. 22–24.

supporting information

Acta Cryst. (2009). E65, o1316 [doi:10.1107/S1600536809017528]

1,3-Bis{(+)-(*S*)-[**1**-(**1**-naphthyl)ethyl]iminomethyl}benzene dichloromethane solvate

Armando Espinosa Leija, Guadalupe Hernández, Sandra Cruz, Sylvain Bernès and René Gutiérrez

S1. Comment

During the last few decades, a central objective in synthetic organic chemistry has been to develop greener and more economically competitive processes for the efficient synthesis of compounds with potential applications in diverse fields. In this context, the solvent-free approach is simple with amazing versatility because it reduces the use of organic solvents and minimizes the formation of other waste. Likewise, the reactions occur under mild conditions and usually require easier workup procedures and simpler equipment. Moreover, it may allow access to compounds that require harsh reaction conditions under traditional approaches or when the yields are too low to be of practical convenience (Jeon *et al.*, 2005; Noyori, 2005; Tanaka & Toda, 2000).

On the other hand, bisimines have lately attracted much attention, mostly due to their versatile coordination behavior and the interesting properties of their metal complexes. These compounds are particularly interesting since they can potentially act in a variety of coordination modes.

Continuing our work on the synthesis of chiral imines (Tovar *et al.*, 2007), we synthesized the title Schiff base under solvent-free conditions and report here its X-ray structure. The asymmetric unit contains one half-molecule and one half dichloromethane molecule, both placed on binary axis (Fig. 1). This arrangement is probably favored by the presence of a chiral center, C6, allowing to orient the substituents of the imine functionality towards the opposite faces of the central benzene core. The crystal is further stabilized by the inclusion of lattice solvent, resulting in a 1:1 solvate. Indeed, the shape of the Schiff base is suitable for the formation of a guest-host complex (Fig. 2). However, as no efficient hydrogen bonds are formed, the solvent molecule presents high displacement parameters, compared to the host (See Fig. 1).

S2. Experimental

Under solvent-free conditions, a mixture of benzene-1,3-dicarboxaldehyde (0.12 g, 0.9 mmol) and (*S*)-(-)-1-naphthylethylamine (0.32 g, 1.8 mmol) were mixed at 298 K, giving a white solid. The crude material was recrystallized from CH₂Cl₂, affording colorless crystals of the title solvate (Yield: 98%; m.p. 343–345 K. $[\alpha]^{25}_{D}$ =+253.7 (*c*=1, CHCl₃). IR and NMR data are consistent with the X-ray structure (see archived CIF).

S3. Refinement

All H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH₃), 0.97 (methylene CH₂) and 0.98 Å (methine CH). isotropic displacement parameters were calculated as $U_{iso}(H) = 1.5 U_{eq}(\text{carrier atom})$ for the methyl group and $U_{iso}(H) = 1.2 U_{eq}(\text{carrier atom})$ otherwise.

Figure 1

Molecular structure of the title compound, with 30% probability level displacement ellipsoids for non-H atoms. Non-labeled atoms are generated through the symmetry operation 2 - x, 1 - y, z.

Figure 2

A part of the crystal structure of the title compound along [100], showing the lattice solvent molecules with a spacefilling representation.

1,3-Bis{(+)-(S)-[1-(1-naphthyl)ethyl]iminomethyl}benzene dichloromethane solvate

<i>c</i> = 7.972 (3) Å
V = 1411.3 (7) Å ³
Z = 2
F(000) = 552
$D_{\rm x} = 1.237 {\rm ~Mg} {\rm ~m}^{-3}$
Melting point: 343 K

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 51 reflections $\theta = 4.0-11.9^{\circ}$ $\mu = 0.25$ mm⁻¹

Data collection

Siemens P4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $2\theta/\omega$ scans Absorption correction: gaussian (*XSCANS*; Siemens, 1996) $T_{\min} = 0.933, T_{\max} = 0.954$ 6308 measured reflections

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.060$ H-atom parameters constrained $wR(F^2) = 0.186$ $w = 1/[\sigma^2(F_o^2) + (0.0833P)^2 + 0.2257P]$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.062497 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 172 parameters $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$ 0 constraints Extinction correction: SHELXL97 (Sheldrick, Primary atom site location: structure-invariant 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.036 (6) direct methods Absolute structure: Flack (1983), 1028 Friedel Secondary atom site location: difference Fourier pairs map Absolute structure parameter: 0.0(2)

T = 298 K

 $R_{\rm int} = 0.060$

 $h = -10 \rightarrow 10$

 $k = -24 \rightarrow 24$

 $l = -9 \rightarrow 9$

Prism, yellow

 $0.40 \times 0.24 \times 0.20$ mm

 $\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.0^\circ$

intensity decay: 2.3%

2497 independent reflections

1428 reflections with $I > 2\sigma(I)$

3 standard reflections every 97 reflections

 $U_{\rm iso}*/U_{\rm eq}$ х v Z0.0789 (10) N1 0.8943(5)0.38124 (15) 1.0214 (4) C1 1.0000 0.5000 1.5231 (7) 0.0904 (19) H1A 1.0000 0.5000 1.6398 0.108* C2 0.9506 (5) 0.4463(2)1.4376 (5) 0.0800(12) 1.4968 0.096* H₂A 0.9166 0.4102 C3 0.9508 (4) 0.44531 (18) 1.2633 (5) 0.0660(10)C4 1.0000 0.5000 1.1777 (7) 0.0682 (14) H4A 1.0000 0.5000 1.0611 0.082*C5 0.9004(5)0.38667 (18) 1.1771 (5) 0.0711(10)H5A 0.8711 0.3514 1.2420 0.085* C6 0.9537(5)0.0747(11)0.8370(5)0.32020 (18) H6A 0.8222 0.2897 1.0464 0.090* C7 0.6791 (5) 0.8717(6) 0.0947 (14) 0.3332(2)0.6077 0.3499 0.9539 0.142* H7A 0.6383 0.2937 0.8262 0.142* H7B 0.142* H7C 0.6918 0.3642 0.7832 C8 0.9507(5)0.29178 (16) 0.8309(5)0.0646(9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C9	1.0643 (5)	0.32880 (18)	0.7563 (5)	0.0760 (11)
H9A	1.0740	0.3720	0.7868	0.091*
C10	1.1656 (6)	0.3034 (2)	0.6361 (6)	0.0924 (14)
H10A	1.2430	0.3295	0.5899	0.111*
C11	1.1527 (6)	0.2419 (2)	0.5865 (5)	0.0851 (12)
H11A	1.2184	0.2263	0.5028	0.102*
C12	1.0413 (5)	0.20049 (19)	0.6592 (5)	0.0751 (11)
C13	1.0297 (6)	0.1351 (2)	0.6116 (6)	0.0911 (13)
H13A	1.0960	0.1188	0.5293	0.109*
C14	0.9225 (6)	0.0957 (2)	0.6848 (7)	0.0973 (15)
H14A	0.9158	0.0527	0.6524	0.117*
C15	0.8233 (5)	0.1194 (2)	0.8073 (7)	0.0909 (14)
H15A	0.7514	0.0919	0.8578	0.109*
C16	0.8295 (5)	0.18255 (17)	0.8549 (6)	0.0749 (11)
H16A	0.7615	0.1975	0.9371	0.090*
C17	0.9380 (4)	0.22579 (17)	0.7812 (5)	0.0652 (9)
C18	0.5000	0.5000	0.8916 (9)	0.123 (3)
H18A	0.4641	0.5349	0.9629	0.148*
Cl1	0.6505 (3)	0.52641 (11)	0.7706 (3)	0.1852 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.102 (3)	0.0685 (19)	0.067 (2)	-0.0018 (18)	0.003 (2)	0.0003 (16)
C1	0.099 (5)	0.115 (5)	0.057 (3)	0.000 (4)	0.000	0.000
C2	0.084 (3)	0.090 (3)	0.066 (2)	0.004 (3)	0.008 (2)	0.008 (2)
C3	0.062 (2)	0.076 (2)	0.060(2)	0.0110 (19)	0.0047 (19)	0.0017 (19)
C4	0.073 (3)	0.075 (3)	0.056 (3)	0.015 (3)	0.000	0.000
C5	0.073 (2)	0.070 (2)	0.070 (3)	0.008 (2)	0.007 (2)	0.008 (2)
C6	0.085 (3)	0.070 (2)	0.069 (2)	-0.001 (2)	0.003 (2)	0.0066 (19)
C7	0.080 (3)	0.099 (3)	0.105 (3)	0.016 (3)	0.008 (3)	0.000 (3)
C8	0.069 (2)	0.064 (2)	0.060(2)	0.0002 (18)	0.003 (2)	0.0087 (17)
C9	0.085 (3)	0.072 (2)	0.071 (2)	-0.006 (2)	0.005 (2)	0.009 (2)
C10	0.091 (3)	0.100 (3)	0.086 (3)	-0.005 (3)	0.026 (3)	0.022 (3)
C11	0.082 (3)	0.102 (3)	0.072 (3)	0.013 (3)	0.011 (2)	0.003 (2)
C12	0.071 (2)	0.081 (2)	0.073 (2)	0.010 (2)	-0.014 (2)	-0.004 (2)
C13	0.089 (3)	0.090 (3)	0.095 (3)	0.020 (3)	-0.019 (3)	-0.019 (3)
C14	0.097 (3)	0.076 (3)	0.120 (4)	0.012 (3)	-0.030 (4)	-0.010 (3)
C15	0.078 (3)	0.075 (3)	0.120 (4)	-0.005 (2)	-0.024 (3)	0.007 (3)
C16	0.066 (2)	0.072 (2)	0.087 (3)	-0.004(2)	-0.004 (2)	0.002 (2)
C17	0.059 (2)	0.069 (2)	0.068 (2)	0.0022 (18)	-0.007 (2)	0.0072 (18)
C18	0.192 (10)	0.094 (5)	0.084 (4)	-0.003 (5)	0.000	0.000
C11	0.1454 (16)	0.208 (2)	0.202 (2)	-0.0442 (14)	0.0100 (17)	0.0547 (16)

Geometric parameters (Å, °)

N1-C5	1.248 (5)	C9—C10	1.395 (6)
N1—C6	1.459 (5)	С9—Н9А	0.9300

C1—C2	1.371 (5)	C10—C11	1.338 (6)
C1-C2 ⁱ	1.371 (5)	C10—H10A	0.9300
C1—H1A	0.9300	C11—C12	1.407 (6)
C2—C3	1.390 (5)	C11—H11A	0.9300
C2—H2A	0.9300	C12-C13	1 410 (6)
$C_3 - C_4$	1387(4)	C12 - C17	1.110(0)
$C_3 - C_5$	1.367(1) 1 460(5)	C12 - C14	1.111(3) 1.359(7)
$C4-C3^{i}$	1.100(3) 1.387(4)	C13—H13A	0.9300
C4—H4A	0.9300	C14— $C15$	1.384(7)
C5—H5A	0.9300	C14 $H14A$	0.9300
C6-C8	1 500 (5)	C15-C16	1 363 (5)
C6-C7	1.500 (5)	C15—H15A	0.9300
С6—Н6А	0.9800	C16-C17	1.416(5)
C7H7A	0.9600	C16-H16A	0.9300
C7H7B	0.9600	$C18$ $C11^{ii}$	1 699 (5)
C7_H7C	0.9600		1.099(5)
C_{1}^{2}	1 373 (5)	C_{18} H_{18A}	0.0608
C_{8} C_{17}	1.373(3) 1.427(5)	C10—1110A	0.9098
68-617	1.427 (3)		
C5-N1-C6	1174(3)	C8-C9-C10	1218(4)
C_{2} C_{1} C_{2}^{i}	120 4 (6)	C8—C9—H9A	119.1
$C_2 - C_1 - H_1 A$	119.8	C10-C9-H9A	119.1
$C2^{i}$ $C1$ $H1A$	119.8	$C_{11} - C_{10} - C_{9}$	120.7(4)
C1 - C2 - C3	120.6 (4)	$C_{11} - C_{10} - H_{10A}$	119.7
C1 - C2 - H2A	119 7	C9-C10-H10A	119.7
$C_3 - C_2 - H_2 A$	119.7	C10-C11-C12	121.0(4)
C4-C3-C2	119.7	C10-C11-H11A	119.5
$C_{4} - C_{3} - C_{5}$	122 5 (4)	C12— $C11$ — $H11A$	119.5
$C_{2} - C_{3} - C_{5}$	1122.3 (4)	C_{11} C_{12} C_{13}	121.5(4)
$C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{3}^{i}$	121 1 (5)	$C_{11} - C_{12} - C_{17}$	121.3(4) 1187(4)
$C_3 - C_4 - H_4 \Delta$	110 4	C_{13} C_{12} C_{17}	110.7(4) 110.8(4)
$C3^{i}$ $C4$ $H4A$	119.4	$C_{12} = C_{12} = C_{17}$	119.8(4) 120.5(5)
N1_C5_C3	123.7(4)	$C_{14} = C_{13} = H_{13}$	110.7
N1 = C5 = C5	118.1	C_{12} C_{13} H_{13A}	119.7
$C_3 C_5 H_5 \Lambda$	118.1	$C_{12} = C_{13} = M_{13} \times C_{14}$	119.7 120.3(4)
N1_C6_C8	111 3 (3)	C_{13} C_{14} H_{14A}	110.5 (4)
N1 C6 C7	111.5(3)	$C_{15} = C_{14} = H_{14A}$	110.0
C_{8} C_{6} C_{7}	107.0(3) 111.3(3)	$C_{15} - C_{14} - M_{4A}$	119.9
$C_{0} = C_{0} = C_{1}$	108.8	$C_{10} = C_{15} = C_{14}$	120.8 (5)
C_{8} C_{6} H_{6A}	108.8	C14 $C15$ $H15A$	119.0
C_{3}	108.8	$C_{14} = C_{15} = M_{15} = M_{15}$	119.0
C = C = H T A	100.5	$C_{15} = C_{16} = C_{17}$	121.1 (4)
$C_0 - C_1 - H_1 A$	109.5	C17 C16 H16A	119.4
	109.5	$C_{17} = C_{10} = 110 \text{A}$	117.4
$\Pi/\Lambda - C/- \Pi/D$	109.5	$C_{12} = C_{17} = C_{10}$	1100(2)
U = U = U = U = U	109.5	$C_{12} - C_{17} - C_{0}$	117.7 (3) 122 7 (4)
$\Pi/\Lambda - C/ - \Pi/C$	109.5	$C_{10} - C_{17} - C_{0}$	122.7 (4)
$\Pi/D - C/ - \Pi/C$	109.3	$C_{11} = C_{10} = C_{11}$	110.8 (4)
C9-C8-C1/	117.9 (4)	UII"—UI&—HI&A	109.4

C9—C8—C6 C17—C8—C6	121.5 (3) 120.5 (3)	Cl1—C18—H18A	109.4
C2 ⁱ —C1—C2—C3	0.4 (3)	C10-C11-C12-C13	-178.1 (4)
C1—C2—C3—C4	-0.9 (6)	C10-C11-C12-C17	2.7 (6)
C1—C2—C3—C5	178.7 (3)	C11—C12—C13—C14	179.2 (4)
$C2-C3-C4-C3^{i}$	0.4 (3)	C17—C12—C13—C14	-1.6 (6)
$C5-C3-C4-C3^{i}$	-179.1 (4)	C12-C13-C14-C15	0.0 (7)
C6—N1—C5—C3	-178.2 (4)	C13-C14-C15-C16	1.0 (7)
C4—C3—C5—N1	-1.5 (6)	C14-C15-C16-C17	-0.3 (6)
C2-C3-C5-N1	179.0 (4)	C11—C12—C17—C16	-178.6 (4)
C5—N1—C6—C8	-126.4 (4)	C13—C12—C17—C16	2.2 (5)
C5—N1—C6—C7	111.4 (4)	C11—C12—C17—C8	-1.5 (5)
N1—C6—C8—C9	-19.0 (5)	C13—C12—C17—C8	179.3 (4)
C7—C6—C8—C9	101.1 (4)	C15-C16-C17-C12	-1.3 (6)
N1—C6—C8—C17	164.5 (3)	C15—C16—C17—C8	-178.3 (4)
C7—C6—C8—C17	-75.4 (4)	C9—C8—C17—C12	0.3 (5)
C17—C8—C9—C10	-0.3 (6)	C6—C8—C17—C12	177.0 (3)
C6—C8—C9—C10	-176.9 (4)	C9—C8—C17—C16	177.2 (3)
C8—C9—C10—C11	1.5 (7)	C6—C8—C17—C16	-6.1 (5)
C9—C10—C11—C12	-2.7 (7)		

Symmetry codes: (i) -*x*+2, -*y*+1, *z*; (ii) -*x*+1, -*y*+1, *z*.