

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 1,1'-(2-Thienylmethylene)di-2-naphthol ethyl acetate solvate

#### Yuan Zhang, Yong Hua Li,\* Min Min Zhao, De Hong Wu and Rong Yang

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: liyhnju@hotmail.com

Received 1 April 2009; accepted 4 May 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.063; wR factor = 0.158; data-to-parameter ratio = 17.2.

In the title compound,  $C_{25}H_{18}O_2S \cdot C_4H_8O_2$ , there are intermolecular O-H···O hydrogen bonds between the main molecule and the solvent molecule. The thiophene ring is oriented at dihedral angles of 70.87 (7) and 75.36 (4) $^{\circ}$  with respect to the mean planes of the two naphthyl ring systems.

#### **Related literature**

For the properties of bisnaphthols, see: Handique & Barauh et al. (2002). For bond-length data, see: Allen et al. (1987).



23800 measured reflections

 $R_{\rm int} = 0.047$ 

5314 independent reflections

4010 reflections with  $I > 2\sigma(I)$ 

#### **Experimental**

#### Crystal data

| $C_{25}H_{18}O_2S \cdot C_4H_8O_2$ | V = 2413.4 (9) Å <sup>3</sup>             |
|------------------------------------|-------------------------------------------|
| $M_r = 470.57$                     | Z = 4                                     |
| Monoclinic, $P2_1/c$               | Mo $K\alpha$ radiation                    |
| a = 13.425 (3) Å                   | $\mu = 0.17 \text{ mm}^{-1}$              |
| b = 21.613 (4)  Å                  | T = 291  K                                |
| c = 8.417 (2) Å                    | $0.40 \times 0.27 \times 0.25 \text{ mm}$ |
| $\beta = 98.808 \ (15)^{\circ}$    |                                           |
|                                    |                                           |

#### Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000)  $T_{\rm min} = 0.95, T_{\rm max} = 0.96$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.063$ | 309 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.158$               | H-atom parameters constrained                              |
| S = 1.00                        | $\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$  |
| 5314 reflections                | $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $O2-H2A\cdots O3^i$ 0.91 | 1.88 | 2.764 (3) | 163 |
|--------------------------|------|-----------|-----|

Symmetry code: (i) x - 1, y, z.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC.

This work was supported by a Start-up Grant (No. 4007041028) and a Science Technology Grant (No. KJ2009375) from Southeast University to YHL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2064).

#### References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19. Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Handique, J. G. & Barauh, J. B. (2002). React. Funct. Polym. A, 52, 163-188. Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supporting information

Acta Cryst. (2009). E65, o1259 [doi:10.1107/S1600536809016559]

# 1,1'-(2-Thienylmethylene)di-2-naphthol ethyl acetate solvate

# Yuan Zhang, Yong Hua Li, Min Min Zhao, De Hong Wu and Rong Yang

## S1. Comment

The molten reaction of 2-naphthol, thiophene-2-carbaldehyde and 1-*p*-tolylethanamine at 120°C did not yield a Betti-type product, but the title bisnaphthol compound. Bisnaphthols are usually referred to as a diverse group of synthetic compounds containing two naphthol units which are connected by an aldehyde group. They have synthetic, medicinal and industrial value (Handique & Barauh *et al.* 2002). Here we report the synthesis and crystal structure of the title compound. The asymmetric unit of the compound contains an ethyl acetate solvent molecule (Fig. 1). The bond lengths and angles are within normal ranges (Allen *et al.* 1987).

Rings of the two naphthols and thiophene are, of course, planar. The dihedral angles between rings A (C2–C6/C11) and B (C6–C11), and between rings C (C12–C16/C21) and D (C16–C21), are 0.87 (4) and 1.57 (3), respectively. The orientation of ring E (C22–C25/S1) with respect to the mean planes of the two naphthyl groups containing rings A and B, and C and D, may be described by the dihedral angles of 70.87 (7) and 75.36 (4), respectively. The dihedral angle between the mean planes of the two naphthyl groups is 75.36 (4).

As can be seen from the packing diagram (Fig. 2), intermolecular O—H…O hydrogen bonds (Table 1) link the molecules. Dipole–dipole and van der Waals interactions are also effective in the molecular packing.

## **S2.** Experimental

Thiophene-2-carbaldehyde (1.68 g, 0.015 mol) and 1-*p*-tolylethanamine (2.025 g, 0.015 mol) was added to 2-naphthol (2.16 g, 0.015 mol) without solvent under nitrogen. The temperature was raised to 120°C in one hour gradually and the mixture was stirred at this temperature for 10 h. The system was treated with 20 ml of ethanol 95% and cooled. The precipitate was filtered and washed with a small amount of ethanol 95%. The title compound was isolated using column chromatography (petroleum ether:ethyl acetate 2:1). Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of ethyl acetate solution.

## **S3. Refinement**

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.91–0.96 Å and  $U_{iso}(H) = 1.3-1.5U_{eq}(C)$ .



# Figure 1

Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.



# Figure 2

The crystal packing of the title compound viewed along the *c* axis showing hydrogen bondings network.

## 1,1'-(2-Thienylmethylene)di-2-naphthol ethyl acetate solvate

#### Crystal data

 $C_{25}H_{18}O_2S \cdot C_4H_8O_2$  $M_r = 470.57$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 13.425 (3) Å b = 21.613 (4) Å c = 8.417 (2) Å $\beta = 98.808 (15)^{\circ}$ V = 2413.4 (9) Å<sup>3</sup> Z = 4

#### Data collection

| Rigaku SCXmini                                       | 23800 measured reflections                                          |
|------------------------------------------------------|---------------------------------------------------------------------|
| diffractometer                                       | 5314 independent reflections                                        |
| Radiation source: fine-focus sealed tube             | 4010 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                               | $R_{\rm int} = 0.047$                                               |
| Detector resolution: 13.6612 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 27.1^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$ |
| CCD Profile fitting scans                            | $h = -17 \rightarrow 17$                                            |
| Absorption correction: multi-scan                    | $k = -27 \rightarrow 27$                                            |
| (SADABS; Bruker, 2000)                               | $l = -10 \rightarrow 10$                                            |
| $T_{\min} = 0.95, \ T_{\max} = 0.96$                 |                                                                     |
| Refinement                                           |                                                                     |
| Refinement on $F^2$                                  | Secondary atom site location: difference Fourier                    |
| Least-squares matrix: full                           | map                                                                 |
| $R[F^2 > 2\sigma(F^2)] = 0.063$                      | Hydrogen site location: inferred from                               |
| $wR(F^2) = 0.158$                                    | neighbouring sites                                                  |
| S = 1.00                                             | H-atom parameters constrained                                       |

F(000) = 992

 $\theta = 2.4 - 27.2^{\circ}$  $\mu = 0.17 \text{ mm}^{-1}$ 

Prism, colourless

 $0.40 \times 0.27 \times 0.25 \text{ mm}$ 

T = 291 K

 $D_{\rm x} = 1.295 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 4944 reflections

H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0651P)^2 + 1.3572P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant  $\Delta \rho_{\rm min} = -0.31 \ {\rm e} \ {\rm \AA}^{-3}$ 

# Special details

direct methods

5314 reflections

309 parameters

0 restraints

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|    | x            | У            | Ζ          | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|----|--------------|--------------|------------|-----------------------------|--|
| C1 | 0.31470 (16) | 0.04909 (9)  | 0.4961 (3) | 0.0371 (5)                  |  |
| H1 | 0.3802       | 0.0292       | 0.4957     | 0.045*                      |  |
| C2 | 0.33844 (16) | 0.10811 (9)  | 0.5991 (3) | 0.0376 (5)                  |  |
| C3 | 0.28873 (17) | 0.16412 (10) | 0.5686 (3) | 0.0451 (5)                  |  |
|    |              |              |            |                             |  |

| C4         | 0.3180 (2)               | 0.21791 (11)            | 0.6593 (3) | 0.0573 (7)             |
|------------|--------------------------|-------------------------|------------|------------------------|
| H4         | 0.2841                   | 0.2550                  | 0.6336     | 0.069*                 |
| C5         | 0.3952 (2)               | 0.21569 (12)            | 0.7836(3)  | 0.0591 (7)             |
| Н5         | 0.4135                   | 0.2513                  | 0.8429     | 0.071*                 |
| C6         | 0.44799 (18)             | 0.16039(11)             | 0.8243 (3) | 0.0480 (6)             |
| C7         | 0.5277 (2)               | 0.15747 (14)            | 0.9552 (3) | 0.0618 (7)             |
| H7         | 0.5437                   | 0.1925                  | 1.0180     | 0.074*                 |
| C8         | 0.5814 (2)               | 0.10479 (15)            | 0.9913 (3) | 0.0652 (8)             |
| H8         | 0.6350                   | 0.1043                  | 1.0757     | 0.078*                 |
| C9         | 0.55585 (19)             | 0.05109 (13)            | 0.9008 (3) | 0.0568 (7)             |
| Н9         | 0.5928                   | 0.0150                  | 0.9252     | 0.068*                 |
| C10        | 0.47685 (17)             | 0.05134 (11)            | 0.7766 (3) | 0.0458 (5)             |
| H10        | 0.4598                   | 0.0149                  | 0.7204     | 0.055*                 |
| C11        | 0.42030(16)              | 0.10589(10)             | 0.7312(3)  | 0.022<br>0.0404 (5)    |
| C12        | 0.25054(15)              | 0.00026 (9)             | 0.7512(3)  | 0.0361(4)              |
| C13        | 0.16002 (16)             | 0.00020(9)              | 0.6138(3)  | 0.0201(1)<br>0.0414(5) |
| C14        | 0.09914(18)              | -0.02789(11)            | 0.6780(3)  | 0.0488(6)              |
| H14        | 0.0391                   | -0.0155                 | 0.7108     | 0.0400(0)              |
| C15        | 0.0391<br>0.12767(18)    | -0.08802(12)            | 0.6921 (3) | 0.059                  |
| H15        | 0.0871                   | -0.1164                 | 0.7350     | 0.0501 (0)             |
| C16        | 0.0871<br>0.21813 (17)   | -0.10821(10)            | 0.7350     | 0.000                  |
| C10<br>C17 | 0.21013(17)<br>0.2476(2) | -0.17108(11)            | 0.6544(3)  | 0.0420(3)<br>0.0579(7) |
| U17        | 0.2470 (2)               | -0.1005                 | 0.6072     | 0.0379(7)              |
| C19        | 0.2070                   | -0.1995                 | 0.0972     | 0.070                  |
| U10        | 0.3538 (2)               | -0.19070(12)<br>-0.2322 | 0.6049 (4) | 0.0030 (8)             |
| П10<br>С10 | 0.3324                   | -0.2322<br>0.14842 (12) | 0.0134     | $0.078^{\circ}$        |
| U19<br>U10 | 0.3948 (2)               | -0.14842 (12)           | 0.5570 (4) | 0.0390(7)              |
| П19<br>С20 | 0.4334                   | -0.1620                 | 0.5022     | $0.072^{\circ}$        |
| C20        | 0.36867 (17)             | -0.08/22(11)            | 0.5238 (3) | 0.0464 (5)             |
| H20        | 0.4100                   | -0.0601                 | 0.4/81     | $0.050^{\circ}$        |
| C21        | 0.28040 (16)             | -0.063/9(10)            | 0.5769(2)  | 0.0370(5)              |
| C22        | 0.2/4/4(1/)              | 0.06136 (10)            | 0.3198 (3) | 0.0399 (5)             |
| C23        | 0.18677 (18)             | 0.04016 (11)            | 0.2295 (3) | 0.0476 (5)             |
| H23        | 0.1395                   | 0.0154                  | 0.2693     | 0.057*                 |
| C24        | 0.1777 (2)               | 0.06118 (15)            | 0.0666 (3) | 0.0673 (8)             |
| H24        | 0.1230                   | 0.0516                  | -0.0113    | 0.081*                 |
| C25        | 0.2557 (2)               | 0.09609 (14)            | 0.0369 (3) | 0.0647 (7)             |
| H25        | 0.2609                   | 0.1133                  | -0.0628    | 0.078*                 |
| C26        | 0.8122 (2)               | 0.13551 (18)            | 0.8359 (4) | 0.0821 (10)            |
| H26B       | 0.7999                   | 0.0928                  | 0.8580     | 0.123*                 |
| H26C       | 0.7565                   | 0.1516                  | 0.7623     | 0.123*                 |
| H26D       | 0.8195                   | 0.1587                  | 0.9343     | 0.123*                 |
| C27        | 0.9068 (2)               | 0.14072 (14)            | 0.7629 (3) | 0.0598 (7)             |
| C28        | 1.0195 (3)               | 0.20912 (15)            | 0.6570 (5) | 0.0830 (10)            |
| H28B       | 1.0131                   | 0.1888                  | 0.5531     | 0.100*                 |
| H28C       | 1.0775                   | 0.1919                  | 0.7256     | 0.100*                 |
| C29        | 1.0330 (3)               | 0.27622 (15)            | 0.6379 (5) | 0.0852 (10)            |
| H29B       | 1.0927                   | 0.2836                  | 0.5909     | 0.128*                 |
| H29C       | 1.0394                   | 0.2959                  | 0.7412     | 0.128*                 |

| H29D | 0.9756       | 0.2928       | 0.5691      | 0.128*      |  |
|------|--------------|--------------|-------------|-------------|--|
| 01   | 0.20776 (13) | 0.17382 (8)  | 0.4507 (2)  | 0.0556 (4)  |  |
| H1A  | 0.1819       | 0.1373       | 0.4077      | 0.106 (13)* |  |
| O2   | 0.12727 (13) | 0.07581 (8)  | 0.5945 (2)  | 0.0564 (5)  |  |
| H2A  | 0.0650       | 0.0833       | 0.6207      | 0.110 (13)* |  |
| O3   | 0.95846 (15) | 0.09760 (9)  | 0.7375 (3)  | 0.0736 (6)  |  |
| 04   | 0.92817 (15) | 0.19908 (10) | 0.7291 (3)  | 0.0728 (6)  |  |
| S1   | 0.34342 (5)  | 0.10506 (3)  | 0.20365 (8) | 0.0582 (2)  |  |
|      |              |              |             |             |  |

Atomic displacement parameters  $(Å^2)$ 

|            | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------------|-------------|-------------|-------------|--------------|--------------|--------------|
| C1         | 0.0354 (10) | 0.0330 (10) | 0.0441 (11) | -0.0001 (8)  | 0.0099 (9)   | 0.0002 (9)   |
| C2         | 0.0368 (11) | 0.0338 (10) | 0.0439 (11) | -0.0041 (9)  | 0.0115 (9)   | -0.0015 (9)  |
| C3         | 0.0457 (12) | 0.0382 (12) | 0.0525 (13) | -0.0019 (10) | 0.0114 (11)  | -0.0021 (10) |
| C4         | 0.0652 (16) | 0.0334 (12) | 0.0756 (18) | -0.0004 (11) | 0.0181 (14)  | -0.0056 (12) |
| C5         | 0.0699 (17) | 0.0439 (14) | 0.0657 (17) | -0.0144 (13) | 0.0177 (14)  | -0.0156 (12) |
| C6         | 0.0495 (13) | 0.0497 (14) | 0.0467 (13) | -0.0158 (11) | 0.0139 (11)  | -0.0050 (10) |
| C7         | 0.0661 (17) | 0.0686 (18) | 0.0509 (15) | -0.0277 (15) | 0.0096 (13)  | -0.0073 (13) |
| C8         | 0.0548 (16) | 0.089 (2)   | 0.0490 (15) | -0.0225 (16) | -0.0012 (12) | 0.0039 (15)  |
| C9         | 0.0466 (14) | 0.0697 (17) | 0.0529 (15) | -0.0025 (13) | 0.0039 (11)  | 0.0125 (13)  |
| C10        | 0.0427 (12) | 0.0473 (13) | 0.0485 (13) | -0.0057 (10) | 0.0105 (10)  | 0.0026 (10)  |
| C11        | 0.0379 (11) | 0.0434 (12) | 0.0424 (11) | -0.0086 (9)  | 0.0139 (9)   | 0.0000 (9)   |
| C12        | 0.0358 (10) | 0.0355 (11) | 0.0378 (10) | -0.0043 (9)  | 0.0079 (9)   | 0.0002 (8)   |
| C13        | 0.0385 (11) | 0.0391 (11) | 0.0472 (12) | -0.0004 (9)  | 0.0084 (9)   | -0.0015 (9)  |
| C14        | 0.0410 (12) | 0.0518 (14) | 0.0574 (14) | -0.0047 (10) | 0.0194 (11)  | -0.0018 (11) |
| C15        | 0.0462 (13) | 0.0488 (13) | 0.0575 (14) | -0.0121 (11) | 0.0154 (11)  | 0.0029 (11)  |
| C16        | 0.0429 (12) | 0.0394 (12) | 0.0461 (12) | -0.0058 (10) | 0.0064 (10)  | 0.0028 (9)   |
| C17        | 0.0620 (16) | 0.0381 (12) | 0.0753 (18) | -0.0091 (12) | 0.0155 (14)  | 0.0069 (12)  |
| C18        | 0.0685 (18) | 0.0359 (13) | 0.093 (2)   | 0.0037 (12)  | 0.0205 (16)  | 0.0043 (13)  |
| C19        | 0.0568 (15) | 0.0453 (14) | 0.0800 (19) | 0.0068 (12)  | 0.0210 (14)  | -0.0009 (13) |
| C20        | 0.0437 (12) | 0.0396 (12) | 0.0577 (14) | 0.0004 (10)  | 0.0132 (11)  | 0.0014 (10)  |
| C21        | 0.0366 (10) | 0.0363 (10) | 0.0374 (11) | -0.0032 (9)  | 0.0035 (9)   | 0.0003 (9)   |
| C22        | 0.0438 (12) | 0.0347 (10) | 0.0433 (12) | -0.0017 (9)  | 0.0131 (9)   | -0.0018 (9)  |
| C23        | 0.0494 (13) | 0.0544 (14) | 0.0393 (12) | -0.0096 (11) | 0.0078 (10)  | -0.0001 (10) |
| C24        | 0.0680 (18) | 0.086 (2)   | 0.0461 (14) | -0.0053 (16) | 0.0021 (13)  | -0.0025 (14) |
| C25        | 0.081 (2)   | 0.0704 (18) | 0.0453 (14) | 0.0063 (15)  | 0.0185 (14)  | 0.0104 (13)  |
| C26        | 0.0555 (17) | 0.102 (3)   | 0.093 (2)   | 0.0005 (17)  | 0.0272 (16)  | -0.024 (2)   |
| C27        | 0.0524 (15) | 0.0723 (19) | 0.0556 (16) | 0.0040 (14)  | 0.0108 (12)  | -0.0122 (14) |
| C28        | 0.086 (2)   | 0.072 (2)   | 0.101 (3)   | 0.0128 (18)  | 0.047 (2)    | 0.0006 (18)  |
| C29        | 0.084 (2)   | 0.075 (2)   | 0.097 (3)   | 0.0114 (18)  | 0.015 (2)    | -0.0006 (19) |
| 01         | 0.0534 (10) | 0.0441 (10) | 0.0672 (11) | 0.0089 (8)   | 0.0028 (9)   | -0.0003 (8)  |
| 02         | 0.0460 (9)  | 0.0431 (9)  | 0.0851 (13) | 0.0081 (7)   | 0.0265 (9)   | 0.0043 (9)   |
| 03         | 0.0633 (12) | 0.0669 (13) | 0.0975 (16) | 0.0098 (10)  | 0.0340 (12)  | -0.0031 (11) |
| O4         | 0.0678 (13) | 0.0683 (13) | 0.0873 (15) | 0.0129 (10)  | 0.0281 (11)  | -0.0074 (11) |
| <b>S</b> 1 | 0.0638 (4)  | 0.0544 (4)  | 0.0600 (4)  | -0.0099 (3)  | 0.0212 (3)   | 0.0090 (3)   |

Geometric parameters (Å, °)

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                  |            |             |             |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------|-------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                  | C1—C22     | 1.522 (3)   | C17—C18     | 1.357 (4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C1—C12     | 1.536 (3)   | C17—H17     | 0.9300      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                  | C1—C2      | 1.548 (3)   | C18—C19     | 1.404 (4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C1—H1      | 0.9800      | C18—H18     | 0.9300      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C2—C3      | 1.387 (3)   | C19—C20     | 1.369 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C2—C11     | 1.439 (3)   | C19—H19     | 0.9300      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C3—O1      | 1.371 (3)   | C20—C21     | 1.422 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C3—C4      | 1.413 (3)   | C20—H20     | 0.9300      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C4—C5      | 1.357 (4)   | C22—C23     | 1.381 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C4—H4      | 0.9300      | C22—S1      | 1.725 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C5—C6      | 1.405 (4)   | C23—C24     | 1.431 (4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | С5—Н5      | 0.9300      | С23—Н23     | 0.9300      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C6—C7      | 1.415 (4)   | C24—C25     | 1.344 (4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C6—C11     | 1.432 (3)   | C24—H24     | 0.9300      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C7—C8      | 1.357 (4)   | C25—S1      | 1.699 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | С7—Н7      | 0.9300      | С25—Н25     | 0.9300      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C8—C9      | 1.402 (4)   | C26—C27     | 1.497 (4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | С8—Н8      | 0.9300      | C26—H26B    | 0.9600      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C9—C10     | 1.370 (3)   | C26—H26C    | 0.9600      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | С9—Н9      | 0.9300      | C26—H26D    | 0.9600      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C10—C11    | 1.422 (3)   | С27—ОЗ      | 1.201 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C10—H10    | 0.9300      | C27—O4      | 1.334 (4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C12—C13    | 1.380 (3)   | C28—O4      | 1.465 (4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C12—C21    | 1.440 (3)   | C28—C29     | 1.473 (4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C13—O2     | 1.364 (3)   | C28—H28B    | 0.9700      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C13—C14    | 1.414 (3)   | C28—H28C    | 0.9700      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C14—C15    | 1.355 (3)   | C29—H29B    | 0.9600      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C14—H14    | 0.9300      | С29—Н29С    | 0.9600      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C15—C16    | 1.412 (3)   | C29—H29D    | 0.9600      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | С15—Н15    | 0.9300      | O1—H1A      | 0.9136      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C16—C17    | 1.415 (3)   | O2—H2A      | 0.9116      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C16—C21    | 1.437 (3)   |             |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C22—C1—C12 | 111.05 (17) | С18—С17—Н17 | 119.3       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C22—C1—C2  | 114.47 (17) | С16—С17—Н17 | 119.3       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C12—C1—C2  | 115.52 (17) | C17—C18—C19 | 119.8 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | С22—С1—Н1  | 104.8       | C17—C18—H18 | 120.1       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | С12—С1—Н1  | 104.8       | C19-C18-H18 | 120.1       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C2-C1-H1   | 104.8       | C20-C19-C18 | 120.4 (2)   |
| C3-C2-C1124.3 (2)C18-C19-H19119.8C11-C2-C1118.19 (18)C19-C20-C21122.2 (2)O1-C3-C2125.0 (2)C19-C20-H20118.9O1-C3-C4112.9 (2)C21-C20-H20118.9C2-C3-C4122.1 (2)C20-C21-C16116.4 (2)C5-C4-C3120.3 (2)C20-C21-C12124.04 (19) | C3—C2—C11  | 117.4 (2)   | C20-C19-H19 | 119.8       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | C3—C2—C1   | 124.3 (2)   | C18—C19—H19 | 119.8       |
| O1-C3-C2125.0 (2)C19-C20-H20118.9O1-C3-C4112.9 (2)C21-C20-H20118.9C2-C3-C4122.1 (2)C20-C21-C16116.4 (2)C5-C4-C3120.3 (2)C20-C21-C12124.04 (19)                                                                          | C11—C2—C1  | 118.19 (18) | C19—C20—C21 | 122.2 (2)   |
| O1C3C4112.9 (2)C21C20H20118.9C2C3C4122.1 (2)C20C21C16116.4 (2)C5C4C3120.3 (2)C20C21C12124.04 (19)                                                                                                                       | O1—C3—C2   | 125.0 (2)   | C19—C20—H20 | 118.9       |
| C2-C3-C4122.1 (2)C20-C21-C16116.4 (2)C5-C4-C3120.3 (2)C20-C21-C12124.04 (19)                                                                                                                                            | O1—C3—C4   | 112.9 (2)   | C21—C20—H20 | 118.9       |
| C5-C4-C3 120.3 (2) C20-C21-C12 124.04 (19)                                                                                                                                                                              | C2—C3—C4   | 122.1 (2)   | C20—C21—C16 | 116.4 (2)   |
|                                                                                                                                                                                                                         | C5—C4—C3   | 120.3 (2)   | C20—C21—C12 | 124.04 (19) |

| C5—C4—H4    | 119.9       | C16—C21—C12   | 119.56 (19) |
|-------------|-------------|---------------|-------------|
| C3—C4—H4    | 119.9       | C23—C22—C1    | 128.5 (2)   |
| C4—C5—C6    | 121.0 (2)   | C23—C22—S1    | 110.84 (17) |
| C4—C5—H5    | 119.5       | C1—C22—S1     | 120.59 (16) |
| С6—С5—Н5    | 119.5       | C22—C23—C24   | 111.2 (2)   |
| C5—C6—C7    | 121.4 (2)   | С22—С23—Н23   | 124.4       |
| C5—C6—C11   | 119.2 (2)   | С24—С23—Н23   | 124.4       |
| C7—C6—C11   | 119.4 (2)   | C25—C24—C23   | 113.7 (3)   |
| C8—C7—C6    | 121.6 (3)   | C25—C24—H24   | 123.2       |
| С8—С7—Н7    | 119.2       | C23—C24—H24   | 123.2       |
| С6—С7—Н7    | 119.2       | C24—C25—S1    | 111.8 (2)   |
| C7—C8—C9    | 119.7 (3)   | С24—С25—Н25   | 124.1       |
| С7—С8—Н8    | 120.1       | S1—C25—H25    | 124.1       |
| С9—С8—Н8    | 120.1       | С27—С26—Н26В  | 109.5       |
| C10—C9—C8   | 120.5 (3)   | С27—С26—Н26С  | 109.5       |
| С10—С9—Н9   | 119.7       | H26B—C26—H26C | 109.5       |
| С8—С9—Н9    | 119.7       | C27—C26—H26D  | 109.5       |
| C9—C10—C11  | 121.8 (2)   | H26B—C26—H26D | 109.5       |
| С9—С10—Н10  | 119.1       | H26C—C26—H26D | 109.5       |
| C11—C10—H10 | 119.1       | O3—C27—O4     | 123.1 (3)   |
| C10—C11—C6  | 116.9 (2)   | O3—C27—C26    | 124.4 (3)   |
| C10—C11—C2  | 123.2 (2)   | O4—C27—C26    | 112.5 (3)   |
| C6—C11—C2   | 119.9 (2)   | O4—C28—C29    | 108.4 (3)   |
| C13—C12—C21 | 118.02 (18) | O4—C28—H28B   | 110.0       |
| C13—C12—C1  | 120.75 (18) | C29—C28—H28B  | 110.0       |
| C21—C12—C1  | 121.17 (18) | O4—C28—H28C   | 110.0       |
| O2—C13—C12  | 118.84 (19) | C29—C28—H28C  | 110.0       |
| O2—C13—C14  | 119.1 (2)   | H28B—C28—H28C | 108.4       |
| C12—C13—C14 | 122.0 (2)   | C28—C29—H29B  | 109.5       |
| C15—C14—C13 | 120.4 (2)   | С28—С29—Н29С  | 109.5       |
| C15—C14—H14 | 119.8       | H29B—C29—H29C | 109.5       |
| C13—C14—H14 | 119.8       | C28—C29—H29D  | 109.5       |
| C14—C15—C16 | 121.0 (2)   | H29B—C29—H29D | 109.5       |
| C14—C15—H15 | 119.5       | H29C—C29—H29D | 109.5       |
| C16—C15—H15 | 119.5       | C3—O1—H1A     | 111.5       |
| C15—C16—C17 | 121.3 (2)   | C13—O2—H2A    | 115.5       |
| C15—C16—C21 | 119.0 (2)   | C27—O4—C28    | 116.7 (2)   |
| C17—C16—C21 | 119.7 (2)   | C25—S1—C22    | 92.43 (13)  |
| C18—C17—C16 | 121.4 (2)   |               | ~ /         |
|             |             |               |             |

# Hydrogen-bond geometry (Å, °)

| D—H···A                           | <i>D</i> —Н | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|-----------------------------------|-------------|-------|-----------|-------------------------|
| 02—H2 <i>A</i> ···O3 <sup>i</sup> | 0.91        | 1.88  | 2.764 (3) | 163                     |

Symmetry code: (i) x-1, y, z.