Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Fluoro-2-[(*E*)-2-pyridyliminomethyl]phenol

Ping Cui and Lei Shi*

Key Laboratory of Anhui Educational Department, Anhui University of Technology, Maanshan 243002, People's Republic of China, and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: shilei0828@gmail.com

Received 7 May 2009; accepted 8 May 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.053; wR factor = 0.145; data-to-parameter ratio = 12.4.

In the title compound, $C_{12}H_9FN_2O$, the dihedral angle between the benzene ring and the pyridine ring is 4.35 (16)°. The molecular conformation is stabilized by an intramolecular $O-H \cdots N$ hydrogen bond.

Related literature

For a related structure, see: Li *et al.* (2006). For reference structural data, see: Allen *et al.* (1987).

Experimental

Crystal data C₁₂H₉FN₂O

 $M_r = 216.21$

Monoclinic, $P2_1/n$ a = 13.1635 (11) Å b = 6.2252 (6) Å c = 13.8235 (17) Å $\beta = 113.33$ (3)° V = 1040.1 (3) Å ³	$Z = 4$ Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K $0.40 \times 0.25 \times 0.15 \text{ mm}$
Data collection Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{min} = 0.960, T_{max} = 0.985$	1907 measured reflections 1825 independent reflections 1210 reflections with $I > 2\sigma(I)$ $R_{int} = 0.064$
Refinement $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.145$	147 parameters H-atom parameters constrained

Table 1

S = 1.05

1825 reflections

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
O1−H1···N1	0.82	1.86	2.588 (2)	147

 $\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

We thank the Measurement Foundation of Nanjing University, and Dr Rui-Qin Fang for her support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2968).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Li, Y.-G., Huang, K.-X., Ai, L. & Zhu, H.-L. (2006). Acta Cryst. E62, o2219– o2220.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o1282 [doi:10.1107/S1600536809017280]

4-Fluoro-2-[(E)-2-pyridyliminomethyl]phenol

Ping Cui and Lei Shi

S1. Comment

Recently, we have reported the structural characterization of one Schiff base compound derived from the condensation of 5-chloro-salicylaldehyde and primary amines (Li *et al.*, 2006). As an extension of this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen *et al.*, 1987) (Fig. 1). There is an intramolecular O—H···N hydrogen bond in (I). The dihedral angle between the two aromatic rings is 4.35(0.16)°.

S2. Experimental

Pyridin-2-amine (94 mg, 1 mmol) and 5-fluoro-salicylaldehyde (140 mg, 1 mmol) were dissolved in methanol (10 ml) at 323 K. The mixture was stirred for 2 h to give a clear yellow solution. After keeping the solution in air for 7 d by slow evaporation of the solvent, yellow blocks of (I) were formed at the bottom of the vessel, with 80% yield. The crystals were isolated, washed three times with methanol and dried in a vacuum desiccator containing anhydrous CaCl₂.

S3. Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.96 Å, O—H = 0.82Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$.

Figure 1

The molecular structure of (I) showing 30% probability displacement ellipsoids.

4-Fluoro-2-[(E)-2-pyridyliminomethyl]phenol

Crystal data $C_{12}H_9FN_2O$ $M_r = 216.21$

Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 13.1635 (11) Åb = 6.2252 (6) Å c = 13.8235 (17) Å $\beta = 113.33 \ (3)^{\circ}$ V = 1040.1 (3) Å³ Z = 4F(000) = 448 $D_{\rm x} = 1.381 {\rm Mg m^{-3}}$

Data collection

Enraf-Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North et al., 1968) $T_{\rm min} = 0.960, T_{\rm max} = 0.985$

Refinement

Refinement on F^2 Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.145$ S = 1.05where $P = (F_0^2 + 2F_c^2)/3$ 1825 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 147 parameters $\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints $\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 . conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.96836 (16)	0.2734 (3)	0.23488 (17)	0.0457 (6)	
C2	1.06679 (18)	0.2492 (4)	0.21918 (18)	0.0529 (6)	
C3	1.1349 (2)	0.0730 (4)	0.2622 (2)	0.0633 (7)	
H3	1.1996	0.0568	0.2510	0.076*	
C4	1.1080 (2)	-0.0767 (4)	0.3207 (2)	0.0658 (7)	
H4	1.1540	-0.1936	0.3496	0.079*	
C5	1.0116 (2)	-0.0506 (4)	0.3357 (2)	0.0619 (7)	

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 9 - 12^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 KBlock, yellow $0.40 \times 0.25 \times 0.15 \text{ mm}$

1907 measured reflections 1825 independent reflections 1210 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.064$ $\theta_{\rm max} = 25.0^\circ, \, \theta_{\rm min} = 1.8^\circ$ $h = 0 \rightarrow 15$ $k = 0 \rightarrow 7$ $l = -16 \rightarrow 15$

Hydrogen site location: inferred from H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0657P)^2 + 0.1652P]$ Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.089 (10)

C6	0.94233 (19)	0.1189 (3)	0.29492 (19)	0.0548 (6)	
H6	0.8779	0.1318	0.3069	0.066*	
C7	0.89393 (17)	0.4506 (3)	0.18913 (17)	0.0484 (6)	
H7	0.8301	0.4632	0.2022	0.058*	
C8	0.83993 (18)	0.7650(3)	0.08721 (17)	0.0488 (6)	
С9	0.8652 (2)	0.9050 (4)	0.02246 (19)	0.0591 (7)	
H9	0.9269	0.8816	0.0070	0.071*	
C10	0.7981 (2)	1.0788 (4)	-0.01873 (19)	0.0673 (7)	
H10	0.8141	1.1762	-0.0618	0.081*	
C11	0.7071 (2)	1.1067 (4)	0.0045 (2)	0.0677 (7)	
H11	0.6600	1.2231	-0.0223	0.081*	
C12	0.6870 (2)	0.9583 (4)	0.0684 (2)	0.0660 (7)	
H12	0.6247	0.9772	0.0835	0.079*	
F1	0.98419 (14)	-0.2003 (2)	0.39318 (14)	0.0938 (6)	
N1	0.91366 (15)	0.5906 (3)	0.13106 (15)	0.0514 (5)	
N2	0.75169 (16)	0.7888 (3)	0.11012 (15)	0.0582 (6)	
01	1.09729 (14)	0.3937 (3)	0.16264 (16)	0.0721 (6)	
H1	1.0476	0.4818	0.1364	0.108*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0411 (11)	0.0435 (12)	0.0504 (13)	-0.0015 (10)	0.0159 (10)	-0.0095 (10)
C2	0.0488 (13)	0.0527 (13)	0.0569 (14)	-0.0022 (11)	0.0206 (11)	-0.0129 (12)
C3	0.0499 (14)	0.0678 (17)	0.0690 (16)	0.0094 (13)	0.0201 (13)	-0.0160 (14)
C4	0.0655 (17)	0.0503 (15)	0.0676 (17)	0.0120 (13)	0.0116 (13)	-0.0067 (13)
C5	0.0649 (16)	0.0453 (13)	0.0677 (16)	-0.0035 (12)	0.0181 (13)	0.0006 (12)
C6	0.0502 (13)	0.0500 (14)	0.0638 (15)	-0.0036 (11)	0.0221 (11)	-0.0062 (12)
C7	0.0439 (12)	0.0493 (13)	0.0539 (14)	-0.0027 (10)	0.0216 (11)	-0.0089 (11)
C8	0.0513 (13)	0.0479 (13)	0.0462 (13)	-0.0020 (11)	0.0181 (11)	-0.0058 (11)
C9	0.0651 (16)	0.0579 (15)	0.0577 (15)	-0.0051 (12)	0.0280 (13)	-0.0030 (12)
C10	0.0829 (19)	0.0613 (16)	0.0551 (15)	-0.0051 (15)	0.0248 (14)	0.0088 (13)
C11	0.0761 (18)	0.0572 (16)	0.0582 (15)	0.0115 (14)	0.0143 (14)	0.0083 (13)
C12	0.0631 (16)	0.0661 (16)	0.0678 (16)	0.0146 (13)	0.0249 (13)	0.0088 (14)
F1	0.1042 (13)	0.0645 (10)	0.1094 (13)	0.0031 (9)	0.0390 (10)	0.0279 (9)
N1	0.0525 (11)	0.0486 (11)	0.0553 (12)	-0.0021 (9)	0.0237 (9)	-0.0043 (10)
N2	0.0564 (12)	0.0585 (12)	0.0618 (13)	0.0107 (10)	0.0257 (10)	0.0087 (10)
O1	0.0616 (11)	0.0784 (13)	0.0899 (14)	0.0050 (9)	0.0444 (10)	0.0052 (11)

Geometric parameters (Å, °)

C1—C6	1.399 (3)	С7—Н7	0.9300	
C1—C2	1.404 (3)	C8—N2	1.328 (3)	
C1—C7	1.444 (3)	C8—C9	1.381 (3)	
C2—O1	1.353 (3)	C8—N1	1.422 (3)	
C2—C3	1.392 (3)	C9—C10	1.370 (3)	
C3—C4	1.369 (3)	С9—Н9	0.9300	
С3—Н3	0.9300	C10—C11	1.368 (4)	

C4—C5	1.375 (3)	C10—H10	0.9300
C4—H4	0.9300	C11—C12	1.375 (3)
C5—C6	1.362 (3)	C11—H11	0.9300
C5—F1	1.363 (3)	C12—N2	1.335 (3)
С6—Н6	0.9300	C12—H12	0.9300
C7—N1	1.279 (3)	O1—H1	0.8200
C6—C1—C2	118.4 (2)	C1—C7—H7	119.2
C6—C1—C7	120.12 (19)	N2—C8—C9	122.8 (2)
C2—C1—C7	121.5 (2)	N2-C8-N1	119.8 (2)
O1—C2—C3	118.8 (2)	C9—C8—N1	117.3 (2)
01—C2—C1	121.4 (2)	C10—C9—C8	119.1 (2)
C3—C2—C1	119.7 (2)	С10—С9—Н9	120.4
C4—C3—C2	121.0 (2)	С8—С9—Н9	120.4
С4—С3—Н3	119.5	C11—C10—C9	118.9 (2)
С2—С3—Н3	119.5	C11—C10—H10	120.6
C3—C4—C5	118.6 (2)	C9—C10—H10	120.6
C3—C4—H4	120.7	C10-C11-C12	118.4 (2)
С5—С4—Н4	120.7	C10—C11—H11	120.8
C6—C5—F1	118.9 (2)	C12—C11—H11	120.8
C6—C5—C4	122.4 (2)	N2-C12-C11	123.8 (2)
F1C5C4	118.8 (2)	N2-C12-H12	118.1
C5—C6—C1	119.8 (2)	C11—C12—H12	118.1
С5—С6—Н6	120.1	C7—N1—C8	120.91 (19)
С1—С6—Н6	120.1	C8—N2—C12	117.0 (2)
N1—C7—C1	121.6 (2)	C2—O1—H1	109.5
N1—C7—H7	119.2		
C6-C1-C2-01	-179.5 (2)	C6—C1—C7—N1	-177.70 (19)
C7—C1—C2—O1	1.6 (3)	C2C1C7N1	1.2 (3)
C6—C1—C2—C3	0.7 (3)	N2-C8-C9-C10	1.3 (3)
С7—С1—С2—С3	-178.2 (2)	N1-C8-C9-C10	-178.0 (2)
O1—C2—C3—C4	179.5 (2)	C8—C9—C10—C11	-0.9 (4)
C1—C2—C3—C4	-0.6 (3)	C9-C10-C11-C12	0.0 (4)
C2—C3—C4—C5	0.4 (4)	C10-C11-C12-N2	0.6 (4)
C3—C4—C5—C6	-0.2 (4)	C1C7N1C8	-179.53 (19)
C3—C4—C5—F1	179.5 (2)	N2-C8-N1-C7	2.8 (3)
F1C5C1	-179.4 (2)	C9—C8—N1—C7	-177.8 (2)
C4—C5—C6—C1	0.3 (4)	C9—C8—N2—C12	-0.8 (3)
C2—C1—C6—C5	-0.5 (3)	N1—C8—N2—C12	178.5 (2)
C7—C1—C6—C5	178.4 (2)	C11—C12—N2—C8	-0.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1…N1	0.82	1.86	2.588 (2)	147