Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Ammonio-4-hydroxybenzoate monohydrate

Sami Ullah, ${ }^{\text {a }}$ M. Nawaz Tahir, ${ }^{\text {b }}$ * Durre Shahwar, ${ }^{\text {a }}$ Zaheer-ud-Din Khan ${ }^{\text {c }}$ and Muhammad Akmal Khan ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Government College University, Lahore, Pakistan, ${ }^{\text {b }}$ Department of Physics, University of Sargodha, Sargodha, Pakistan, and ${ }^{\text {c }}$ Department of Botany, Government College University, Lahore, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 7 May 2009; accepted 9 May 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.042 ; w R$ factor $=0.118$; data-to-parameter ratio $=13.6$.

The title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, which crystallized as a hydrate, was obtained from an extraction of the plant species Saussurea atkinsonii of the asteraceae family collected from the hilly area (Ayubia) of Pakistan during the flowering season. The dihedral angle between the benzene ring and the carboxylate group is $25.64(5)^{\circ}$. In the crystal, the packing is consolidated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, as well as weak aromatic $\pi-\pi$ stacking [centroid-centroid separation $=3.9365$ (9) \AA] and $\mathrm{C}=\mathrm{O} \cdots \pi$ interactions.

Related literature

For a related structure, see: Bertasso et al. (2001). For reference structural data, see: Allen et al. (1987).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=171.15$
Orthorhombic, Pbca
$a=8.7711$ (3) A
$b=12.7193$ (7) A
$c=12.9289$ (6) \AA

$$
\begin{aligned}
& V=1442.38(11) \AA^{3} \\
& Z=8 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.13 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& 0.26 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.971, T_{\text {max }}=0.976$
8827 measured reflections 1725 independent reflections 1277 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.118$ independent and constrained
$S=1.06$ refinement

1725 reflections
$\Delta \rho_{\max }=0.31 \mathrm{e} \mathrm{A}^{-3}$
127 parameters
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e} \AA^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 14 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.952 (18)	1.945 (18)	2.8884 (16)	170.4 (14)
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.952 (18)	2.335 (18)	2.9008 (18)	117.6 (13)
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 4^{\mathrm{ii}}$	0.944 (19)	2.001 (19)	2.8957 (19)	157.4 (16)
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{C} \cdots \mathrm{O} 1^{\text {iii }}$	0.933 (17)	1.860 (17)	2.7846 (18)	170.5 (16)
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 4^{\text {iv }}$	0.904 (18)	1.760 (18)	2.6456 (15)	166.0 (19)
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 2^{\text {iv }}$	0.90 (2)	1.80 (2)	2.6945 (18)	171.1 (17)
$\mathrm{O} 4-\mathrm{H} 42 \cdots \mathrm{O} 1^{\text {iii }}$	0.884 (19)	2.03 (2)	2.9027 (18)	168.8 (17)
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\text {v }}$	0.93	2.55	3.446 (2)	161
$\mathrm{C} 7-\mathrm{O} 2 \cdots \mathrm{CgA}^{\text {vi }}$	1.25 (1)	3.49 (1)	3.9313 (16)	101 (1)

Symmetry codes: (i) $-x+\frac{3}{2}, y-\frac{1}{2}, z$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (iv)
$x-\frac{1}{2}, y,-z+\frac{1}{2} ;$ (v) $-x+\frac{1}{2}, y+\frac{1}{2}, z ;$ (vi) $x+\frac{1}{2}, y,-z+\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999) and PLATON.

SU greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program (PIN 042-121314-PS2287).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2969).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bertasso, M., Holzenkampfer, M., Zeeck, A., Dall'Antonia, F. \& Fiedler, H.-P. (2001). J. Antibiot. 54, 730-737.

Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o1304 [doi:10.1107/S1600536809017462]

3-Ammonio-4-hydroxybenzoate monohydrate

Sami Ullah, M. Nawaz Tahir, Durre Shahwar, Zaheer-ud-Din Khan and Muhammad Akmal Khan

S1. Comment

The medicinal plants are available all over the world. Locally available plant specie Saussurea atkinsonii of asteraceae family was collected from hilly area (Ayubia) of Pakistan during the flowering season. The plant was dried inside room for 20-25 days. The title compound (I), (Fig. 1), is an extract of it in chloroform and methanol. The study of its bioactivity is in progress.
The crystal structure of (II) (4-vinylphenyl 3-amino-4-hydroxybenzoate or bagremycin A (Bertasso et al., 2001), has been reported which contains the aromatic ring along with heavy atoms of the substituants of (I). In the title compound, the bond distances and bond angles are within normal ranges (Allen et al., 1987). The benzene ring A (C1-C6) is planar and is oriented at a dihedral angle of $25.64(5)^{\circ}$ with the CO_{2} group. The N -atom of ammonium is in plane of the ring A , whereas the O-atom of hydroxy group is at a distance of -0.0580 (21) \AA from the same.
There exist intensive intermolecular H-bonding (Table 1), resulting in three-dimensional polymeric network. There also exist $\mathrm{CgA} \cdots \mathrm{CgA}^{\mathrm{i}}$ [symmetry code $\left.\mathrm{i}=1-x, 1-y,-z\right]$ interaction at a distance of $3.9365(9) \AA$, where CgA is the centroid of aromatic ring. The molecules may also be stabilized due to $\mathrm{C}==\mathrm{O} \cdots \pi$ interaction (Table 1).

S2. Experimental

The Specie Saussurea atkinsonii of asteraceae family was dried inside room for 20-25 days as a whole and grinded. The extract was obtained using soxhlet apparatus in 50% chloroform and 50% methanol and it was subjected to isolation by performing column chromatography and thin layer chromatography. The extract obtained was recrystallized from methanol and light brown rods of (I) were obtained. The water found in the structure was presumably incorporated from the atomsphere.

S3. Refinement

The coordinates of H -atoms of hydroxy, ammonium moiety and water molecule were refined. The other H -atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic type and constrained to ride on their parent atoms, with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})$ $=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C}, \mathrm{N}, \mathrm{O})$.

Figure 1
View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius.

Figure 2

The partial packing of (I), showing that molecules form three-dimensional polymeric network.

3-Ammonio-4-hydroxybenzoate monohydrate

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=171.15$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=8.7711$ (3) \AA
$b=12.7193$ (7) \AA
$c=12.9289$ (6) \AA
$V=1442.38(11) \AA^{3}$
$Z=8$

Data collection

Bruker Kappa APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 7.40 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min }=0.971, T_{\text {max }}=0.976$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.118$
$S=1.06$
1725 reflections
127 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods

$$
\begin{aligned}
& F(000)=720 \\
& D_{\mathrm{x}}=1.576 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1725 \text { reflections } \\
& \theta=3.2-28.3^{\circ} \\
& \mu=0.13 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Rod, light brown } \\
& 0.26 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

8827 measured reflections

1752 independent reflections
1277 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-11 \rightarrow 11$
$k=-15 \rightarrow 16$
$l=-11 \rightarrow 17$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0684 P)^{2}+0.0409 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e} \AA^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.69598(12)$	$0.67023(9)$	$0.16442(9)$	$0.0284(4)$

O2	$0.83764(11)$	$0.53206(10)$	$0.12269(9)$	$0.0302(4)$
O3	$0.20823(11)$	$0.29862(10)$	$0.11448(10)$	$0.0319(4)$
N1	$0.48231(14)$	$0.21872(11)$	$0.16388(11)$	$0.0232(4)$
C1	$0.57236(15)$	$0.50443(12)$	$0.14203(11)$	$0.0205(5)$
C2	$0.58869(15)$	$0.39732(13)$	$0.15731(11)$	$0.0203(4)$
C3	$0.46511(14)$	$0.33137(12)$	$0.14912(11)$	$0.0193(4)$
C4	$0.32078(15)$	$0.37051(12)$	$0.12444(12)$	$0.0212(4)$
C5	$0.30300(15)$	$0.47766(13)$	$0.11230(12)$	$0.0241(5)$
C6	$0.42742(15)$	$0.54444(13)$	$0.12153(12)$	$0.0232(4)$
C7	$0.71208(15)$	$0.57284(13)$	$0.14299(11)$	$0.0216(5)$
O4	$0.43081(12)$	$0.34489(11)$	$0.45169(10)$	$0.0308(4)$
H1A	$0.587(2)$	$0.2008(14)$	$0.1721(12)$	0.0278^{*}
H1B	$0.4519(19)$	$0.1828(14)$	$0.1034(15)$	0.0278^{*}
H1C	$0.4229(18)$	$0.1948(14)$	$0.2189(14)$	0.0278^{*}
H2	0.68403	0.36974	0.17325	0.0243^{*}
H3	$0.119(2)$	$0.3252(16)$	$0.0913(15)$	0.0383^{*}
H5	0.20714	0.50524	0.09785	0.0289^{*}
H6	0.41402	0.61656	0.11398	0.0279^{*}
H41	$0.3898(19)$	$0.4057(16)$	$0.4289(15)$	0.0369^{*}
H42	$0.381(2)$	$0.2927(16)$	$0.4217(15)$	0.0369^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0316(5)$	$0.0154(7)$	$0.0383(7)$	$-0.0051(4)$	$0.0053(4)$	$-0.0044(5)$
O2	$0.0231(5)$	$0.0245(7)$	$0.0430(7)$	$-0.0032(5)$	$0.0043(4)$	$-0.0063(5)$
O3	$0.0193(5)$	$0.0217(7)$	$0.0548(8)$	$-0.0032(4)$	$-0.0059(5)$	$0.0000(6)$
N1	$0.0214(6)$	$0.0150(8)$	$0.0331(8)$	$0.0010(5)$	$0.0027(5)$	$0.0015(6)$
C1	$0.0236(7)$	$0.0164(9)$	$0.0216(8)$	$-0.0029(5)$	$0.0013(5)$	$-0.0026(6)$
C2	$0.0183(6)$	$0.0190(9)$	$0.0235(8)$	$0.0006(5)$	$0.0011(5)$	$-0.0006(6)$
C3	$0.0209(6)$	$0.0142(9)$	$0.0228(8)$	$0.0003(5)$	$0.0018(5)$	$0.0013(6)$
C4	$0.0195(6)$	$0.0188(9)$	$0.0254(8)$	$-0.0024(5)$	$-0.0004(5)$	$-0.0019(6)$
C5	$0.0205(6)$	$0.0218(9)$	$0.0300(9)$	$0.0041(6)$	$-0.0024(6)$	$0.0003(7)$
C6	$0.0290(7)$	$0.0137(8)$	$0.0270(8)$	$0.0014(6)$	$0.0000(5)$	$0.0005(7)$
C7	$0.0265(7)$	$0.0169(9)$	$0.0214(8)$	$-0.0044(6)$	$0.0013(5)$	$-0.0002(6)$
O4	$0.0257(5)$	$0.0255(8)$	$0.0412(7)$	$0.0017(5)$	$-0.0044(4)$	$0.0023(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 7$	$1.277(2)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.503(2)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.2453(17)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.3948(19)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.3518(18)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.384(2)$
$\mathrm{O} 3-\mathrm{H} 3$	$0.904(18)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.375(2)$
$\mathrm{O} 4-\mathrm{H} 41$	$0.90(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.3972(19)$
$\mathrm{O} 4-\mathrm{H} 42$	$0.884(19)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.381(2)$
N1-C3	$1.453(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.388(2)$
N1—H1C	$0.933(17)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
N1—H1A	$0.952(18)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300

$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	$0.944(19)$
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{H} 3$	$114.3(13)$
$\mathrm{H} 41-\mathrm{O} 4-\mathrm{H} 42$	$107.7(17)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$110.5(11)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	$109.8(11)$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	$104.4(14)$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	$112.1(14)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	$111.3(11)$
$\mathrm{H} 1 \mathrm{~B}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	$108.4(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$118.72(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$118.97(12)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$122.24(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.53(13)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$120.64(12)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.97(14)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$118.38(12)$
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$2.1(2)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-175.02(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-2.7(2)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$174.30(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$-156.35(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	$23.8(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$26.7(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	$-153.17(15)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	$179.24(13)$

$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5$	$125.06(12)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.69(13)$
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$	$116.26(13)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.36(13)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.64(15)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$	$123.20(14)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 1$	$118.57(14)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	$118.24(12)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.00
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.00
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.00
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.00
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	120.00
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.5(2)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$	$-1.1(2)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$178.75(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$	$177.60(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-2.5(2)$
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-178.25(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$1.9(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.7(2)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.952 (18)	1.945 (18)	2.8884 (16)	170.4 (14)
$\mathrm{N} 1-\mathrm{H} 1 A^{\cdots} \mathrm{O}^{2}{ }^{\mathrm{i}}$	0.952 (18)	2.335 (18)	2.9008 (18)	117.6 (13)
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 4{ }^{\text {ii }}$	0.944 (19)	2.001 (19)	2.8957 (19)	157.4 (16)
$\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{O}{ }^{\text {iii }}$	0.933 (17)	1.860 (17)	2.7846 (18)	170.5 (16)
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 4^{\text {iv }}$	0.904 (18)	1.760 (18)	2.6456 (15)	166.0 (19)
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 2^{\text {iv }}$	0.90 (2)	1.80 (2)	2.6945 (18)	171.1 (17)
$\mathrm{O} 4-\mathrm{H} 42 \cdots \mathrm{O} 1^{\text {iii }}$	0.884 (19)	2.03 (2)	2.9027 (18)	168.8 (17)
C6-H6 ${ }^{\circ} \mathrm{O}^{\text {v}}$	0.93	2.55	3.446 (2)	161
$\mathrm{C} 7-\mathrm{O} 2 \cdots \mathrm{CgA}^{\text {vi }}$	1.25 (1)	3.49 (1)	3.9313 (16)	101 (1)

Symmetry codes: (i) $-x+3 / 2, y-1 / 2, z$; (ii) $x,-y+1 / 2, z-1 / 2$; (iii) $-x+1, y-1 / 2,-z+1 / 2$; (iv) $x-1 / 2, y,-z+1 / 2$; (v) $-x+1 / 2, y+1 / 2, z$; (vi) $x+1 / 2, y,-z+1 / 2$.

