Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Phenyl-1H-1,3,7,8-tetraazacyclopenta[/]phenanthrene

Dong-Ming Liu,^a Xiu-Ying Li,^b Xiang-Cheng Wang,^b Chun-Xiang Li^b and Chun-Bo Liu^b*

^aAffiliated Hospital, Jiangsu University, Zhenjiang 212001, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China Correspondence e-mail: liuchunbo431@yahoo.com.cn

Received 10 May 2009; accepted 10 May 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.003 Å; R factor = 0.059; wR factor = 0.156; data-to-parameter ratio = 15.9.

There are two molecules in the asymmetric unit of the title compound, $C_{19}H_{12}N_4$, with dihedral angles of 2.41 (10) and $10.53 (12)^{\circ}$ between the fused ring system and the pendant phenyl ring. In the crystal, molecules are linked into chains by N-H···N hydrogen bonds and aromatic π - π stacking interactions [shortest centroid-centroid distance 3.6176 (16) Å] complete the structure.

Related literature

For the synthesis, see: Steck & Day (1943); For related structures, see: Che et al. (2008); Stephenson & Hardie (2006); Xi (2008).

HN

Experimental

Crystal data

$C_{19}H_{12}N_4$	$\gamma = 77.96 \ (3)^{\circ}$
$M_r = 296.33$	V = 1453.7 (5) Å ³
Triclinic, $P\overline{1}$	Z = 4
a = 10.016 (2) Å	Mo $K\alpha$ radiation
b = 12.210 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 12.415 (3) Å	T = 292 K
$\alpha = 89.90 \ (3)^{\circ}$	$0.30 \times 0.25 \times 0.20$ mm
$\beta = 78.44 \ (3)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR: Higashi, 1995) $T_{\min} = 0.975, T_{\max} = 0.984$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	415 parameters
$wR(F^2) = 0.156$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
6587 reflections	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$N3-H3\cdots N5^{i}$	0.86	2.10	2.932 (3)	164	
$N7 - H7 \cdots N1$	0.86	2.12	2.951 (2)	163	
Symmetry code: (i) $r_{v} = 1$					

14453 measured reflections

 $R_{\rm int} = 0.048$

6587 independent reflections

3657 reflections with $I > 2\sigma(I)$

Symmetry code: (i) x, y - 1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank the Postdoctoral Foundation of Jiangsu Province (No. 0801010B) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2971).

References

Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184-191.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steck, E. A. & Day, A. R. (1943). J. Am. Chem. Soc. 65, 452-456.
- Stephenson, M. D. & Hardie, M. J. (2006). Cryst. Growth Des. 6, 423-432. Xi, H.-M. (2008). Acta Cryst. E64, o1981.

supporting information

Acta Cryst. (2009). E65, o1308 [doi:10.1107/S1600536809017498]

2-Phenyl-1H-1,3,7,8-tetraazacyclopenta[/]phenanthrene

Dong-Ming Liu, Xiu-Ying Li, Xiang-Cheng Wang, Chun-Xiang Li and Chun-Bo Liu

S1. Comment

1,10-Phenanthroline (phen) or its derivatives, as an important chelating ligands with excellent coordinating abilities and fruitful aromatic systems, have been extensively used to build supramolecular architectures (Che, Liu *et al.*, 2008; Stephenson, Hardie *et al.*, 2006). We report here the synthesis and structure of the title compound, namely, $C_{19}H_{12}N_4$ (I), using the phen derivative 2-Phenyl-1*H*-1,3,7,8-tetraazacyclopenta- [*I*]phenanthrene (*L*).

The asymmetric unit of (I) consists of two independent *L* molecules (Fig.1). The two phenyl rings are slightly twisted with respect to the fused-ring system [dihedral angles = 1.34 and 1.54 °], which is different from a related compound that has been reported (Xi, 2008). In the crystal structure, N—H···N hydrogen bonds (Table 1) link the molecules into chains along the *b* axis. The neighbouring chains interact through π - π contact between two *L* ligands [centroid separation = 3.541 Å], leading to the ultimate supramolecular structure (Fig. 2).

S2. Experimental

The *L* ligand was synthesized according to the literature method of Steck & Day (1943): a mixture of *L*, $MnCl_2$ and water in a molar ratio of 2:1:5000 was sealed in a Teflon-lined autoclave and heated to 413 K for 3 d. Upon cooling and opening the bomb, accidentally, pale yellow blocks of (I) were obtained.

S3. Refinement

The H atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$.

Figure 1

The structure of (I). Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms).

Figure 2

A view of the crystal packing, showing the N—H···N hydrogen bonds and π - π stacking interactions. H atoms have been omitted.

2-Phenyl-1H-1,3,7,8-tetraazacyclopenta[/]phenanthrene

Crystal data	
$C_{19}H_{12}N_4$	Hall symbol: -P 1
$M_r = 296.33$	a = 10.016 (2) Å
Triclinic, $P\overline{1}$	b = 12.210 (2) Å

Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 3.0 - 27.5^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Block, pale yellow $0.30 \times 0.25 \times 0.20$ mm

T = 292 K

Cell parameters from 3449 reflections

c = 12.415 (3) Å $\alpha = 89.90 (3)^{\circ}$ $\beta = 78.44 (3)^{\circ}$ $\gamma = 77.96 (3)^{\circ}$ $V = 1453.7 (5) \text{ Å}^{3}$ Z = 4 F(000) = 616 $D_{x} = 1.354 \text{ Mg m}^{-3}$

Data collection

Dulu collection		
Rigaku R-AXIS RAPID	14453 measured reflections	
diffractometer	6587 independent reflections	
Radiation source: fine-focus sealed tube	3657 reflections with $I > 2\sigma(I)$	
Graphite monochromator	$R_{\rm int} = 0.048$	
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$	
ω scans	$h = -12 \rightarrow 12$	
Absorption correction: multi-scan	$k = -15 \rightarrow 15$	
(ABSCOR; Higashi, 1995)	$l = -16 \rightarrow 16$	
$T_{\min} = 0.975, T_{\max} = 0.984$		

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from
$wR(F^2) = 0.156$	neighbouring sites
S = 1.01	H-atom parameters constrained
6587 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0719P)^2 + 0.0624P]$
415 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.41$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	-0.0622 (2)	0.23344 (19)	0.81330 (18)	0.0490 (6)	
H1	-0.1221	0.2801	0.8697	0.059*	
C2	-0.0895 (2)	0.12895 (19)	0.79496 (18)	0.0484 (6)	
H2	-0.1658	0.1068	0.8380	0.058*	
C3	-0.0027 (2)	0.05936 (18)	0.71295 (17)	0.0450 (5)	
H3A	-0.0182	-0.0115	0.7001	0.054*	
C4	0.1104 (2)	0.09578 (17)	0.64798 (15)	0.0372 (5)	
C5	0.2049 (2)	0.03323 (16)	0.55681 (16)	0.0389 (5)	

C6	0.3066 (2)	0.07524 (17)	0.48872 (16)	0.0399 (5)
C7	0.3291 (2)	0.18394 (18)	0.51052 (16)	0.0411 (5)
C8	0.4316 (2)	0.2316 (2)	0.44514 (19)	0.0511 (6)
H8	0.4916	0.1918	0.3843	0.061*
C9	0.4418 (3)	0.3372 (2)	0.4723 (2)	0.0620(7)
H9	0.5088	0.3707	0.4300	0.074*
C10	0.3510(3)	0.3944 (2)	0.5639 (2)	0.0602(7)
H10	0.3590	0.4665	0.5808	0.072*
C11	0.2416 (2)	0.24813 (17)	0.60234 (16)	0.0396 (5)
C12	0.1303 (2)	0.20394 (17)	0.67106 (15)	0.0376 (5)
C13	0.3167 (2)	-0.08769 (19)	0.42188 (16)	0.0441 (5)
C14	0.3576 (2)	-0.1902 (2)	0.35036 (18)	0.0471 (6)
C15	0.3037 (3)	-0.2845 (2)	0.3759 (2)	0.0621 (7)
H15	0.2408	-0.2852	0.4419	0.075*
C16	0.3416 (3)	-0.3775 (2)	0.3051 (2)	0.0745 (8)
H16	0.3036	-0.4401	0.3231	0.089*
C17	0.4350 (3)	-0.3777(3)	0.2086 (3)	0.0802 (10)
H17	0.4613	-0.4406	0.1609	0.096*
C18	0.4895 (3)	-0.2857(3)	0.1823 (2)	0.0781 (9)
H18	0.5529	-0.2861	0.1163	0.094*
C19	0.4521 (3)	-0.1917(2)	0.2523 (2)	0.0631 (7)
H19	0.4904	-0.1295	0.2335	0.076*
C20	-0.0061(2)	0.71983 (19)	0.57979 (18)	0.0495 (6)
H20	-0.0384	0.7605	0.5233	0.059*
C21	-0.0429(2)	0.61739 (19)	0.60084 (18)	0.0485 (6)
H21	-0.0989	0.5910	0.5600	0.058*
C22	0.0046 (2)	0.55589 (18)	0.68273 (17)	0.0455 (5)
H22	-0.0169	0.4862	0.6976	0.055*
C23	0.0864 (2)	0.59938 (17)	0.74404 (16)	0.0382 (5)
C24	0.1393 (2)	0.54495 (17)	0.83266 (16)	0.0379(5)
C25	0.2102(2)	0.59356 (18)	0.89767 (16)	0.0406 (5)
C26	0.2425 (2)	0.70078 (18)	0.87370 (16)	0.0405 (5)
C27	0.3175 (2)	0.7535 (2)	0.93361 (18)	0.0510 (6)
H27	0.3498	0.7192	0.9931	0.061*
C28	0.3424(3)	0.8564(2)	0.9033(2)	0.0599(7)
H28	0.3910	0.8936	0.9423	0.072*
C29	0.2938 (3)	0.9040(2)	0.8131(2)	0.0611(7)
H29	0 3119	0.9737	0.7931	0.073*
C30	0.1977(2)	0 75555 (17)	0 78341 (16)	0.0404(5)
C31	0.1167(2)	0.70490 (17)	0.71880 (16)	0.0384(5)
C32	0.1928(2)	0 43446 (18)	0.96433 (16)	0.0201(2)
C33	0.1920(2) 0.2076(2)	0.33528 (19)	1.03149(17)	0.0447(5)
C34	0.1535(3)	0.2436(2)	1.0129 (2)	0.0654(7)
H34	0 1045	0 2443	0.9566	0.078*
C35	0.1709 (3)	0.1517 (3)	1.0762 (2)	0.0797 (9)
H35	0 1332	0.0908	1.0627	0.096*
C36	0.2433(3)	0.1487(3)	1.1591 (2)	0.0751 (8)
H36	0.2558	0.0859	1.2015	0.090*
		0.0007		5.020

C37	0.2964 (3)	0.2383 (3)	1.1787 (2)	0.0709 (8)	
H37	0.3447	0.2371	1.2355	0.085*	
C38	0.2797 (3)	0.3312 (2)	1.11548 (19)	0.0603 (7)	
H38	0.3174	0.3918	1.1297	0.072*	
N1	0.04442 (19)	0.27076 (14)	0.75517 (14)	0.0444 (5)	
N2	0.2540 (2)	0.35239 (16)	0.62830 (15)	0.0488 (5)	
N3	0.21246 (18)	-0.07178 (14)	0.51377 (13)	0.0429 (4)	
H3	0.1617	-0.1184	0.5395	0.052*	
N4	0.37586 (19)	0.00010 (16)	0.40376 (14)	0.0461 (5)	
N5	0.0722 (2)	0.76364 (15)	0.63503 (14)	0.0460 (5)	
N6	0.2236 (2)	0.85701 (16)	0.75407 (15)	0.0505 (5)	
N7	0.12911 (18)	0.44362 (14)	0.87635 (13)	0.0403 (4)	
H7	0.0899	0.3947	0.8529	0.048*	
N8	0.24317 (19)	0.52409 (15)	0.98030 (14)	0.0441 (4)	

Atomic displacement parameters $(Å^2)$

	T T 1	172	1 733	T 712	1713	1723
	0	0	033	0.2	U	025
C1	0.0537 (14)	0.0477 (14)	0.0407 (12)	-0.0078 (11)	-0.0015 (11)	-0.0058 (11)
C2	0.0496 (13)	0.0490 (14)	0.0437 (12)	-0.0115 (11)	-0.0017 (11)	0.0028 (11)
C3	0.0518 (13)	0.0392 (12)	0.0451 (12)	-0.0118 (10)	-0.0098 (11)	0.0036 (10)
C4	0.0449 (12)	0.0340 (11)	0.0327 (10)	-0.0070 (9)	-0.0098 (9)	0.0033 (9)
C5	0.0489 (12)	0.0327 (11)	0.0346 (11)	-0.0057 (10)	-0.0103 (10)	0.0025 (9)
C6	0.0452 (12)	0.0406 (12)	0.0347 (11)	-0.0076 (10)	-0.0118 (10)	0.0055 (9)
C7	0.0446 (12)	0.0435 (13)	0.0382 (11)	-0.0108 (10)	-0.0140 (10)	0.0070 (10)
C8	0.0479 (14)	0.0620 (16)	0.0468 (13)	-0.0183 (12)	-0.0106 (11)	0.0090 (11)
C9	0.0588 (16)	0.0709 (18)	0.0647 (16)	-0.0337 (14)	-0.0118 (13)	0.0143 (14)
C10	0.0650 (17)	0.0540 (16)	0.0692 (17)	-0.0279 (13)	-0.0156 (14)	0.0053 (13)
C11	0.0452 (12)	0.0385 (12)	0.0385 (11)	-0.0092 (10)	-0.0162 (10)	0.0054 (9)
C12	0.0446 (12)	0.0364 (11)	0.0328 (10)	-0.0066 (9)	-0.0121 (9)	0.0031 (9)
C13	0.0481 (13)	0.0463 (13)	0.0351 (11)	-0.0030 (11)	-0.0094 (10)	0.0002 (10)
C14	0.0477 (13)	0.0498 (14)	0.0415 (12)	-0.0009 (11)	-0.0139 (10)	-0.0055 (11)
C15	0.0723 (17)	0.0529 (16)	0.0540 (15)	-0.0022 (13)	-0.0077 (13)	-0.0143 (13)
C16	0.086 (2)	0.0588 (18)	0.0757 (19)	-0.0058 (15)	-0.0186 (17)	-0.0197 (15)
C17	0.0701 (19)	0.081 (2)	0.082 (2)	0.0056 (17)	-0.0209 (17)	-0.0417 (18)
C18	0.0578 (17)	0.103 (3)	0.0629 (17)	-0.0055 (17)	0.0007 (14)	-0.0354 (18)
C19	0.0541 (15)	0.0762 (18)	0.0535 (15)	-0.0076 (13)	-0.0047 (12)	-0.0152 (14)
C20	0.0639 (15)	0.0469 (14)	0.0419 (12)	-0.0100 (12)	-0.0224 (11)	0.0082 (10)
C21	0.0564 (14)	0.0453 (14)	0.0483 (13)	-0.0087 (11)	-0.0235 (11)	0.0018 (11)
C22	0.0580 (14)	0.0366 (12)	0.0465 (12)	-0.0103 (11)	-0.0209 (11)	0.0018 (10)
C23	0.0429 (12)	0.0340 (12)	0.0366 (11)	-0.0050 (9)	-0.0092 (9)	-0.0008 (9)
C24	0.0468 (12)	0.0322 (11)	0.0343 (10)	-0.0053 (9)	-0.0103 (9)	0.0005 (9)
C25	0.0449 (12)	0.0423 (12)	0.0330 (11)	-0.0043 (10)	-0.0094 (9)	0.0003 (9)
C26	0.0414 (12)	0.0431 (13)	0.0361 (11)	-0.0079 (10)	-0.0069 (9)	-0.0017 (9)
C27	0.0543 (14)	0.0593 (16)	0.0434 (13)	-0.0175 (12)	-0.0142 (11)	-0.0027 (11)
C28	0.0663 (16)	0.0649 (17)	0.0567 (15)	-0.0290 (14)	-0.0160 (13)	-0.0051 (13)
C29	0.0739 (18)	0.0540 (16)	0.0648 (16)	-0.0317 (14)	-0.0175 (14)	0.0048 (13)
C30	0.0456 (12)	0.0366 (12)	0.0393 (11)	-0.0104 (10)	-0.0073 (10)	-0.0009 (9)
		· /	· /		· · ·	× /

C31	0.0434 (12)	0.0368 (12)	0.0337 (11)	-0.0052 (9)	-0.0087 (9)	-0.0003 (9)
C32	0.0459 (13)	0.0442 (13)	0.0321 (10)	-0.0027 (10)	-0.0095 (9)	0.0022 (9)
C33	0.0474 (13)	0.0467 (13)	0.0350 (11)	-0.0013 (10)	-0.0059 (10)	0.0067 (10)
C34	0.085 (2)	0.0583 (17)	0.0612 (16)	-0.0206 (15)	-0.0298 (14)	0.0237 (13)
C35	0.103 (2)	0.0656 (19)	0.079 (2)	-0.0267 (17)	-0.0296 (18)	0.0329 (16)
C36	0.080(2)	0.070(2)	0.0656 (18)	-0.0016 (16)	-0.0087 (16)	0.0328 (15)
C37	0.0715 (19)	0.088 (2)	0.0504 (15)	-0.0020 (17)	-0.0226 (14)	0.0220 (15)
C38	0.0646 (17)	0.0678 (18)	0.0473 (14)	-0.0062 (14)	-0.0167 (12)	0.0108 (13)
N1	0.0540 (11)	0.0385 (10)	0.0400 (10)	-0.0086 (9)	-0.0094 (9)	-0.0009 (8)
N2	0.0573 (12)	0.0411 (11)	0.0536 (11)	-0.0171 (9)	-0.0179 (9)	0.0032 (9)
N3	0.0521 (11)	0.0370 (10)	0.0377 (10)	-0.0091 (8)	-0.0049 (9)	-0.0007 (8)
N4	0.0486 (11)	0.0494 (12)	0.0369 (9)	-0.0057 (9)	-0.0052 (8)	-0.0018 (9)
N5	0.0581 (12)	0.0423 (11)	0.0408 (10)	-0.0114 (9)	-0.0165 (9)	0.0046 (8)
N6	0.0622 (13)	0.0431 (11)	0.0516 (11)	-0.0204 (10)	-0.0146 (10)	0.0027 (9)
N7	0.0514 (11)	0.0349 (10)	0.0373 (9)	-0.0093 (8)	-0.0149 (8)	0.0042 (8)
N8	0.0496 (11)	0.0466 (11)	0.0369 (9)	-0.0079 (9)	-0.0134 (8)	0.0042 (8)

Geometric parameters (Å, °)

C1—N1	1.327 (3)	C20—C21	1.386 (3)
C1—C2	1.388 (3)	C20—H20	0.9300
C1—H1	0.9300	C21—C22	1.366 (3)
С2—С3	1.362 (3)	C21—H21	0.9300
С2—Н2	0.9300	C22—C23	1.402 (3)
С3—С4	1.405 (3)	C22—H22	0.9300
С3—НЗА	0.9300	C23—C31	1.405 (3)
C4—C12	1.414 (3)	C23—C24	1.420 (3)
C4—C5	1.426 (3)	C24—N7	1.365 (3)
C5—N3	1.371 (2)	C24—C25	1.384 (3)
С5—С6	1.374 (3)	C25—N8	1.377 (3)
C6—N4	1.371 (3)	C25—C26	1.430 (3)
С6—С7	1.427 (3)	C26—C27	1.399 (3)
С7—С8	1.402 (3)	C26—C30	1.407 (3)
C7—C11	1.414 (3)	C27—C28	1.369 (3)
С8—С9	1.363 (3)	C27—H27	0.9300
С8—Н8	0.9300	C28—C29	1.388 (4)
C9—C10	1.390 (3)	C28—H28	0.9300
С9—Н9	0.9300	C29—N6	1.319 (3)
C10—N2	1.320 (3)	C29—H29	0.9300
С10—Н10	0.9300	C30—N6	1.352 (3)
C11—N2	1.350 (3)	C30—C31	1.468 (3)
C11—C12	1.459 (3)	C31—N5	1.358 (3)
C12—N1	1.359 (3)	C32—N8	1.327 (3)
C13—N4	1.327 (3)	C32—N7	1.365 (3)
C13—N3	1.367 (3)	C32—C33	1.468 (3)
C13—C14	1.472 (3)	C33—C38	1.377 (3)
C14—C19	1.381 (3)	C33—C34	1.380 (3)
C14—C15	1.381 (3)	C34—C35	1.371 (4)

C15—C16	1,377 (3)	С34—Н34	0.9300
С15—Н15	0.9300	$C_{35} = C_{36}$	1 370 (4)
C16-C17	1 364 (4)	C35—H35	0.9300
C16—H16	0.9300	$C_{36} - C_{37}$	1 354 (4)
C17—C18	1 360 (4)	C36—H36	0.9300
C17—H17	0.9300	C_{37} C_{38}	1380(4)
C18 - C19	1 381 (3)	C37—H37	0.9300
C18—H18	0.9300	C38—H38	0.9300
C19—H19	0.9300	N3—H3	0.8600
C_{20} N5	1 328 (3)	N7—H7	0.8600
020 110	1.520 (5)	1(, 1),	0.0000
N1—C1—C2	123.9 (2)	C21—C22—C23	119.0 (2)
N1—C1—H1	118.1	C21—C22—H22	120.5
C2—C1—H1	118.1	C23—C22—H22	120.5
C3—C2—C1	118.9 (2)	C22—C23—C31	118.7 (2)
С3—С2—Н2	120.5	C22—C23—C24	124.4 (2)
C1—C2—H2	120.5	C31—C23—C24	116.91 (18)
C2—C3—C4	119.3 (2)	N7—C24—C25	105.51 (18)
С2—С3—НЗА	120.3	N7—C24—C23	131.11 (18)
С4—С3—НЗА	120.3	C25—C24—C23	123.3 (2)
C3—C4—C12	118.36 (18)	N8—C25—C24	110.69 (19)
C3—C4—C5	124.80 (19)	N8—C25—C26	128.53 (19)
C12—C4—C5	116.80 (18)	C24—C25—C26	120.8 (2)
N3—C5—C6	105.81 (17)	C27—C26—C30	118.2 (2)
N3—C5—C4	130.73 (19)	C27—C26—C25	124.0 (2)
C6—C5—C4	123.36 (19)	C30—C26—C25	117.79 (19)
N4—C6—C5	110.98 (18)	C28—C27—C26	119.0 (2)
N4—C6—C7	128.25 (19)	C28—C27—H27	120.5
C5—C6—C7	120.76 (18)	С26—С27—Н27	120.5
C8—C7—C11	118.0 (2)	C27—C28—C29	118.6 (2)
C8—C7—C6	123.79 (19)	C27—C28—H28	120.7
С11—С7—С6	118.21 (19)	C29—C28—H28	120.7
C9—C8—C7	118.9 (2)	N6—C29—C28	124.3 (2)
С9—С8—Н8	120.6	N6—C29—H29	117.8
С7—С8—Н8	120.6	С28—С29—Н29	117.8
C8—C9—C10	119.2 (2)	N6-C30-C26	122.15 (19)
С8—С9—Н9	120.4	N6—C30—C31	117.3 (2)
С10—С9—Н9	120.4	C26—C30—C31	120.52 (19)
N2—C10—C9	124.0 (2)	N5—C31—C23	121.66 (18)
N2-C10-H10	118.0	N5—C31—C30	117.79 (19)
C9—C10—H10	118.0	C23—C31—C30	120.55 (19)
N2—C11—C7	122.30 (19)	N8—C32—N7	112.31 (19)
N2—C11—C12	117.46 (19)	N8—C32—C33	123.9 (2)
C7—C11—C12	120.21 (18)	N7—C32—C33	123.74 (19)
N1—C12—C4	121.24 (19)	C38—C33—C34	117.9 (2)
N1—C12—C11	118.20 (18)	C38—C33—C32	119.7 (2)
C4—C12—C11	120.53 (18)	C34—C33—C32	122.4 (2)
N4—C13—N3	112.41 (17)	C35—C34—C33	120.9 (3)

N4—C13—C14	123.79 (19)	С35—С34—Н34	119.5
N3—C13—C14	123.8 (2)	С33—С34—Н34	119.5
C19—C14—C15	118.4 (2)	C36—C35—C34	120.5 (3)
C19—C14—C13	118.8 (2)	С36—С35—Н35	119.7
C15—C14—C13	122.9 (2)	С34—С35—Н35	119.7
C16—C15—C14	121.1 (3)	C37—C36—C35	119.2 (3)
C16—C15—H15	119.5	С37—С36—Н36	120.4
C14—C15—H15	119.5	С35—С36—Н36	120.4
C17—C16—C15	119.8 (3)	C36—C37—C38	120.8 (3)
C17—C16—H16	120.1	С36—С37—Н37	119.6
C15—C16—H16	120.1	С38—С37—Н37	119.6
C18—C17—C16	119.9 (2)	C33—C38—C37	120.7 (3)
C18—C17—H17	120.1	С33—С38—Н38	119.7
С16—С17—Н17	120.1	С37—С38—Н38	119.7
C17—C18—C19	120.9 (3)	C1—N1—C12	118.24 (18)
C17—C18—H18	119.6	C10—N2—C11	117.7 (2)
C19—C18—H18	119.6	C13—N3—C5	106.42 (18)
C14—C19—C18	120.0 (3)	C13—N3—H3	126.8
C14—C19—H19	120.0	C5—N3—H3	126.8
C18—C19—H19	120.0	C13—N4—C6	104.37 (17)
N5-C20-C21	124.2 (2)	C20—N5—C31	117.64 (19)
N5—C20—H20	117.9	C29—N6—C30	117.6 (2)
С21—С20—Н20	117.9	C24—N7—C32	107.11 (17)
C22—C21—C20	118.7 (2)	C24—N7—H7	126.4
C22—C21—H21	120.6	С32—N7—H7	126.4
C20—C21—H21	120.6	C32—N8—C25	104.37 (17)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3…N5 ⁱ	0.86	2.10	2.932 (3)	164
N7—H7…N1	0.86	2.12	2.951 (2)	163

Symmetry code: (i) x, y-1, z.