Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(\pm) -trans-6,7-Dimethoxy-1-oxo-3-(2thienyl)isochroman-4-carboxylic acid

Mehmet Akkurt,^a* Zeliha Baktır,^a Milen G. Bogdanov,^b Ivan V. Svinyarov^b and Orhan Büyükgüngör^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bFaculty of Chemistry, University of Sofia, 1 lames Bourchier Boulevard, 1164 Sofia, Bulgaria, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 11 May 2009; accepted 18 May 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.044; wR factor = 0.113; data-to-parameter ratio = 14.7

The title compound, C₁₆H₁₄O₆S, was synthesized by the reaction of 6,7-dimethoxyhomophthalic anhydride with thiophene-2-carbaldehyde in the presence of 4-(dimethylamino)pyridine (DMAP) as a basic catalyst. The thiophene ring of the title molecule is disordered over two sites with occupancies of 0.877 (3) and 0.123 (3). The disorder corresponds to an approximate 180° rotation of the thiophene ring with respect to the C-C bond linking it to the rest of the molecule. The six-membered ring of the 3,4-dihydroisochromanone ring system is not planar [puckering parameters $Q_{\rm T} = 0.571$ (2) Å, $\theta = 115.2$ (2)° and $\varphi = 99.1$ (2)°]. The benzene ring of the 3,4-dihydroisochromanone ring system makes dihedral angles of 75.0 (2) and 77.2 (5) $^{\circ}$ with the disordered thiophene rings. Intermolecular $O-H \cdots O$ and C-H···O hydrogen bonds, as well as C-H··· π interactions, lead to the observed supramolecular structure.

Related literature

For details of the synthesis of the title compound, see: Bogdanov & Palamareva (2004). For the synthesis of new dihydroisocoumarins, see: Bogdanov et al. (2007a,b). For ringpuckering parameters, see: Cremer & Pople (1975).

mm

8329 measured reflections

 $R_{\rm int} = 0.030$

refinement $\Delta \rho_{\text{max}} = 0.27 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

3229 independent reflections

2663 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of independent and constrained

Experimental

Crystal data

$C_{16}H_{14}O_6S$	$\gamma = 72.958 \ (6)^{\circ}$
$M_r = 334.34$	$V = 777.6 (1) \text{ Å}^3$
Triclinic, P1	Z = 2
a = 8.3369 (6) Å	Mo $K\alpha$ radiation
b = 8.4587 (6) Å	$\mu = 0.24 \text{ mm}^{-1}$
c = 11.9143 (9) Å	T = 296 K
$\alpha = 76.441 \ (6)^{\circ}$	$0.53 \times 0.41 \times 0.21$
$\beta = 81.127 \ (6)^{\circ}$	

Data collection

Stoe IPDS II diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.885, T_{\max} = 0.952$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	
$wR(F^2) = 0.113$	
S = 1.07	
3229 reflections	
219 parameters	
13 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$06-H6\cdots O3^{i}$ $C2-H2\cdots O5^{ii}$ $C10-H10\cdots O6^{iii}$ $C11-H11\cdots Cg4^{iv}$	0.86 (3) 0.93 0.98 0.98	1.84 (2) 2.54 2.54 2.61	2.658 (2) 3.465 (2) 3.475 (2) 3.525 (2)	159 (3) 172 159 156

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 2, -z + 1; (iii) -x, -y + 2, -z + 1; (iv) -x + 1, -y + 1, -z + 1. Cg4 is the centroid of the C1–C6 ring.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2117).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bogdanov, M. G., Gocheva, B. T., Dimitrova, D. B. & Palamreva, M. D. (2007a). J. Heterocycl. Chem. 44, 673-677.
- Bogdanov, M. G., Kandinska, M. I., Dimitrova, D. B., Gocheva, B. T. & Palamareva, M. D. (2007b). Z. Naturforsch. Teil C, 62, 477-482.
- Bogdanov, M. G. & Palamareva, M. D. (2004). Tetrahedron, 60, 2525–2530.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2009). E65, o1377 [doi:10.1107/S1600536809018844]

(±)-trans-6,7-Dimethoxy-1-oxo-3-(2-thienyl)isochroman-4-carboxylic acid

Mehmet Akkurt, Zeliha Baktır, Milen G. Bogdanov, Ivan V. Svinyarov and Orhan Büyükgüngör

S1. Comment

The title compound (I) was obtained as a part of a research project aimed at the synthesis of new dihydroisocoumarins with potential pharmacological activities (Bogdanov *et al.*, 2007*a*,*b*). (I) was synthesized by a one-pot reaction of 6,7-dimethoxyhomophthalic anhydride with thiophene-2-carboxaldehyde in the presence of DMAP as a basic catalyst (Bogdanov & Palamareva, 2004). The structure of (I) was determined by spectral methods (¹H NMR & IR) and microanalysis. In this paper, we report the X-ray crystallographic study of (I).

In the title molecule, (I), the thiophene ring is disordered over two sites and the major component of the disorder labelled with suffix A is shown in Fig. 1. The disorder corresponds to an approximate 180° rotation with respect to the C10—C13 bond. The six-membered ring (O4/C1/C6/C9–C11) of the 3,4-dihydroisochromanone ring system is not planar, showing the puckering parameters: $Q_T = 0.571$ (2) Å, $\theta = 115.2$ (2)° and $\varphi = 99.1$ (2)° (Cremer & Pople, 1975). The benzene ring (C1–C6) of the 3,4-dihydroisochromanone ring system encloses dihedral angles of 75.0 (2)° and 77.2 (5)° with the thiophene rings A(C13/C14A/C15/C16/S1A) and B (C13/C14B/C15/C16/S1B), respectively.

The crystal structure is realized by intermolecular O—H···O and C—H···O hydrogen bonds and C—H··· π interactions (Table 1, Fig. 2).

S2. Experimental

Compound (I) was synthesized by the reaction of 6,7-dimethoxyhomophthalic anhydride (1) with thiophene-2carbaldehyde (2) in the presence of DMAP as a basic catalyst (Bogdanov & Palamareva, 2004). To a mixture of 1 (0.33 g, 1.5 mmol) and 2 (0.15 ml, 1.65 mmol) in dry chloroform (5 ml) DMAP (0.18 g, 1.5 mmol) was added. The mixture was stirred at room temperature for 1 h. At the end of the reaction (monitored by TLC), the reaction mixture was extracted with 10% sodium hydrogen carbonate. The aqueous layer was further acidified (pH = 3) with 10% hydrochloric acid and extracted with ethyl acetate. The organic layer was dried (sodium sulfate), filtered and the solvent was then evaporated under reduced pressure giving (0.49 g, 98%) of a diastereomeric mixture of cis- and trans-(±)-6,7-dimethoxy-1oxo-3-(thiophen-2-yl)isochroman-4-carboxylic acids, in a 30:70 ratio, favoring the trans diastereomer. Pure transdiastereomer (I) was obtained by fractional crystallization of the residue from ethyl acetate. The product was characterized by ¹H NMR, IR spectra and elemental analysis. Single crystals were obtained by slow evaporation of a chloroform–ethyl acetate (3:1) solution of (I) at room temperature (m.p. 465–467 K). Analysis, calculated for $C_{16}H_{14}O_6S$ (334.34): C 57.48, H 4.22, O 28.71, S 9.59 (%); found: C 57.74, H 3.97, O 28.71, S 9.91 (%). IR (KBr) 1693 cm⁻¹ (C=O), 1741 cm⁻¹ (C=O). The ¹H NMR spectrum of (I) was obtained on a Bruker DRX-250 spectrometer at 250.13 MHz. Chemical shifts (δ) are expressed in parts per million (p.p.m.). ¹H NMR (250 MHz, DMSO-d₆) δ = 3.82 (3H, s, -O-CH₃), 3.85 (3H, s, -O--CH₃), 4.43 (1H, d, J = 3 Hz, H-4), 6.29 (1H, d, J = 3 Hz, H-3), 6.96 (1H, dd, J = 3.6 and 5 Hz, Th

S3. Refinement

The H atom of the hydroxyl group was found from a difference Fourier map and refined freely [O6-H6 = 0.864 (3) Å]. H atoms bonded to C atoms were placed at calculated positions with the C—H distances in a range of 0.93–0.98 Å, and were included in the refinement in the riding-model approximation, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. The ratio of the refined site occupancies for the major and minor components of the disordered thiophene ring is 0.877 (3):0.123 (3). Similarity restraints were applied to the displacement parameters of the disordered atoms, and there were also geometrical restraints.

Figure 1

The title molecule of (I) with the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level. The minor component of the disorder has been omitted.

Figure 2

Perspective view of the intermolecular hdrogen bonding interactions in the structure of (I). H atoms not involved in hydrogen bonding and the minor component of the disordered thiophene ring have been omitted for clarity.

(±)-trans-6,7-Dimethoxy-1-oxo-3-(2-thienyl)isochroman-4-carboxylic acid

Crystal data	
$C_{16}H_{14}O_6S$	$\gamma = 72.958 \ (6)^{\circ}$
$M_r = 334.34$	$V = 777.6 (1) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
Hall symbol: -P 1	F(000) = 348
a = 8.3369 (6) Å	$D_{\rm x} = 1.428 {\rm ~Mg} {\rm ~m}^{-3}$
b = 8.4587 (6) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 11.9143 (9) Å	Cell parameters from 16761 reflections
$\alpha = 76.441 \ (6)^{\circ}$	$\theta = 2.6 - 28.0^{\circ}$
$\beta = 81.127 \ (6)^{\circ}$	$\mu = 0.24 \mathrm{~mm^{-1}}$

T = 296 KPrism, colourless

Data collection

Duna concernon	
Stoe IPDS II diffractometer	$T_{\min} = 0.885, T_{\max} = 0.952$ 8329 measured reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus	3229 independent reflections 2663 reflections with $I > 2\sigma(I)$
Plane graphite monochromator	$R_{\rm int} = 0.030$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: integration	$k = -10 \rightarrow 10$
(X-RED32; Stoe & Cie, 2002)	$l = -14 \rightarrow 14$
Refinement	
Refinement on F ² Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.113$	neighbouring sites
S = 1.07	H atoms treated by a mixture of independent
3229 reflections	and constrained refinement
219 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0514P)^2 + 0.2422P]$
13 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$

 $0.53 \times 0.41 \times 0.21 \text{ mm}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating -*R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

 $\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1A	0.17140 (13)	0.63559 (11)	0.85712 (7)	0.0759 (3)	0.877 (3)
01	0.5188 (2)	0.77377 (19)	0.14713 (12)	0.0557 (5)	
O2	0.38518 (19)	0.54308 (18)	0.12791 (12)	0.0503 (5)	
03	0.15691 (17)	0.32562 (15)	0.54690 (12)	0.0445 (4)	
O4	0.13106 (15)	0.53400 (15)	0.63275 (10)	0.0370 (4)	
05	0.42866 (19)	0.91589 (18)	0.62175 (13)	0.0515 (5)	
O6	0.22136 (17)	1.01715 (16)	0.50460 (13)	0.0451 (4)	
C1	0.33543 (19)	0.67769 (19)	0.44799 (14)	0.0304 (4)	
C2	0.4244 (2)	0.7526 (2)	0.35183 (16)	0.0356 (5)	
C3	0.4377 (2)	0.7065 (2)	0.24602 (16)	0.0384 (5)	
C4	0.3637 (2)	0.5802 (2)	0.23513 (15)	0.0372 (5)	
C5	0.2797 (2)	0.5039 (2)	0.33076 (16)	0.0359 (5)	
C6	0.26476 (19)	0.55214 (19)	0.43731 (15)	0.0311 (5)	

C7	0.6107 (4)	0.8880 (4)	0.1547 (2)	0.0869 (13)	
C8	0.3476 (3)	0.3914 (3)	0.12059 (19)	0.0611 (8)	
C9	0.1816 (2)	0.4620 (2)	0.53946 (15)	0.0330 (5)	
C10	0.1347 (2)	0.7092 (2)	0.61942 (15)	0.0319 (5)	
C11	0.31183 (19)	0.72133 (19)	0.56665 (14)	0.0305 (4)	
C12	0.3300 (2)	0.8940 (2)	0.56779 (15)	0.0339 (5)	
C13	0.0822 (2)	0.7555 (2)	0.73510 (16)	0.0385 (5)	
C14A	-0.0344 (8)	0.8941 (8)	0.7626 (6)	0.0585 (17)	0.877 (3)
C15	-0.0506 (4)	0.9063 (4)	0.8781 (2)	0.0802 (8)	
C16	0.0534 (4)	0.7747 (4)	0.9384 (2)	0.0802 (8)	
S1B	-0.0621 (16)	0.9313 (15)	0.7433 (10)	0.058 (3)	0.123 (3)
C14B	0.144 (3)	0.692 (3)	0.8422 (15)	0.0802 (8)	0.123 (3)
Н5	0.23240	0.41970	0.32480	0.0430*	
H6	0.227 (3)	1.112 (3)	0.516 (2)	0.064 (7)*	
H7A	0.69670	0.83190	0.20660	0.1050*	
H7B	0.53550	0.98290	0.18340	0.1050*	
H7C	0.66180	0.92640	0.07920	0.1050*	
H8A	0.23190	0.39800	0.14800	0.0730*	
H2	0.47510	0.83390	0.35870	0.0430*	
H8C	0.36690	0.37790	0.04140	0.0730*	
H10	0.05270	0.78130	0.56540	0.0380*	
H11	0.39450	0.63610	0.61480	0.0370*	
H14A	-0.09870	0.97510	0.70800	0.0700*	0.877 (3)
H15	-0.12440	0.99480	0.90910	0.0960*	
H16	0.06060	0.76040	1.01750	0.0960*	
H8B	0.41900	0.29650	0.16740	0.0730*	
H14B	0.23880	0.60080	0.85330	0.0960*	0.123 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S1A	0.0947 (6)	0.0739 (6)	0.0417 (4)	0.0110 (4)	-0.0144 (3)	-0.0153 (3)
01	0.0752 (10)	0.0589 (9)	0.0414 (8)	-0.0358 (8)	0.0138 (7)	-0.0161 (6)
O2	0.0680 (9)	0.0552 (8)	0.0366 (7)	-0.0240 (7)	-0.0013 (6)	-0.0192 (6)
03	0.0519 (7)	0.0311 (6)	0.0557 (8)	-0.0171 (6)	0.0018 (6)	-0.0156 (6)
04	0.0425 (6)	0.0332 (6)	0.0399 (7)	-0.0162 (5)	0.0033 (5)	-0.0132 (5)
05	0.0596 (8)	0.0501 (8)	0.0586 (9)	-0.0260 (7)	-0.0186 (7)	-0.0145 (7)
O6	0.0488 (7)	0.0274 (6)	0.0646 (9)	-0.0079 (5)	-0.0164 (6)	-0.0154 (6)
C1	0.0262 (7)	0.0273 (7)	0.0391 (9)	-0.0044 (6)	-0.0033 (6)	-0.0128 (6)
C2	0.0346 (8)	0.0336 (8)	0.0430 (9)	-0.0126 (7)	0.0006 (7)	-0.0144 (7)
C3	0.0391 (9)	0.0362 (9)	0.0392 (9)	-0.0089 (7)	0.0020 (7)	-0.0112 (7)
C4	0.0379 (9)	0.0384 (9)	0.0370 (9)	-0.0062 (7)	-0.0049 (7)	-0.0152 (7)
C5	0.0342 (8)	0.0349 (8)	0.0437 (10)	-0.0099 (7)	-0.0054 (7)	-0.0157 (7)
C6	0.0264 (7)	0.0287 (8)	0.0395 (9)	-0.0046 (6)	-0.0035 (6)	-0.0128 (7)
C7	0.129 (3)	0.100 (2)	0.0588 (15)	-0.084 (2)	0.0344 (16)	-0.0281 (15)
C8	0.0914 (17)	0.0613 (13)	0.0447 (12)	-0.0308 (13)	-0.0033 (11)	-0.0266 (10)
C9	0.0298 (8)	0.0292 (8)	0.0422 (9)	-0.0064 (6)	-0.0041 (7)	-0.0131 (7)
C10	0.0324 (8)	0.0282 (8)	0.0373 (9)	-0.0086 (6)	-0.0015 (7)	-0.0113 (6)

supporting information

C11	0.0296 (7)	0.0270 (7)	0.0365 (9)	-0.0060 (6)	-0.0041 (6)	-0.0108 (6)
C12	0.0349 (8)	0.0357 (8)	0.0364 (9)	-0.0137 (7)	0.0009 (7)	-0.0150 (7)
C13	0.0384 (9)	0.0389 (9)	0.0404 (10)	-0.0109 (7)	0.0015 (7)	-0.0148 (7)
C14A	0.066 (3)	0.053 (3)	0.047 (3)	0.001 (2)	-0.0090 (19)	-0.011 (2)
C15	0.1059 (16)	0.0819 (14)	0.0539 (11)	-0.0163 (11)	0.0061 (10)	-0.0355 (10)
C16	0.1059 (16)	0.0819 (14)	0.0539 (11)	-0.0163 (11)	0.0061 (10)	-0.0355 (10)
S1B	0.065 (4)	0.054 (5)	0.041 (4)	0.015 (3)	-0.008 (3)	-0.020 (4)
C14B	0.1059 (16)	0.0819 (14)	0.0539 (11)	-0.0163 (11)	0.0061 (10)	-0.0355 (10)

Geometric parameters (Å, °)

S1A—C13	1.702 (2)	C10—C13	1.487 (2)
S1A-C16	1.689 (3)	C10—C11	1.536 (2)
S1B-C15	1.584 (12)	C11—C12	1.515 (2)
S1B-C13	1.628 (13)	C13—C14B	1.379 (19)
O1—C7	1.423 (4)	C13—C14A	1.357 (7)
O1—C3	1.354 (2)	C14A—C15	1.387 (7)
O2—C8	1.431 (3)	C14B—C16	1.47 (2)
O2—C4	1.359 (2)	C15—C16	1.326 (4)
О3—С9	1.211 (2)	С2—Н2	0.9300
O4—C9	1.344 (2)	С5—Н5	0.9300
O4—C10	1.462 (2)	С7—Н7А	0.9600
O5—C12	1.197 (2)	С7—Н7В	0.9600
O6—C12	1.327 (2)	С7—Н7С	0.9600
O6—H6	0.86 (3)	C8—H8A	0.9600
C1C11	1.513 (2)	C8—H8B	0.9600
C1—C2	1.392 (2)	C8—H8C	0.9600
C1—C6	1.394 (2)	C10—H10	0.9800
C2—C3	1.384 (3)	C11—H11	0.9800
C3—C4	1.419 (2)	C14A—H14A	0.9300
C4—C5	1.371 (3)	C14B—H14B	0.9300
C5—C6	1.399 (2)	C15—H15	0.9300
С6—С9	1.469 (2)	C16—H16	0.9300
S14 O4	2.0057(15)		2.0200
SIA····O4	3.0857 (15)		3.0300
SIA····C8 ⁱ	3.589 (2)		2.8300
SIB····O6 ⁿ	3.308 (12)	C5H8B	2.8100
SIBO6	3.488 (13)		2.7400
S1B···C12	3.571 (13)	C5···H8A	2.6600
S1B····C2 ⁿ	3.530 (13)	C6…H10	2.7900
S1B····C3 ⁿ	3.694 (13)	C6···H11 ^{vm}	2.8700
S1A····H8C ¹	3.0000	С7…Н2	2.5200
S1A…H11	3.1800	C8…H5	2.5100
01…02	2.581 (2)	C9…H11	2.9600
02…01	2.581 (2)	С9…Н6 ^т	2.95 (2)
O3…O6 ⁱⁱⁱ	2.6575 (18)	С12…Н2	2.6900
O3…C6 ^{iv}	3.350 (2)	H2…O6	2.8500
O3····O4 ^{iv}	3.2369 (19)	H2…C7	2.5200

O3…C9 ^{iv}	3.051 (2)	H2…C12	2.6900
O4…O3 ^{iv}	3.2369 (19)	Н2…Н7А	2.3800
O4…S1A	3.0857 (15)	H2…H7B	2.2400
O5…O6 ^v	3.212 (2)	H2···O5 ^v	2.5400
O5…O5 ^v	3.138 (2)	Н5…ОЗ	2.6100
O5…C12 ^v	3.244 (2)	H5…C8	2.5100
O5…C7 ^v	3.382 (3)	H5····H8A	2.1600
O6…S1B ⁱⁱ	3.308 (12)	H5…H8B	2.4700
O6…C2	3.150 (2)	H5…O4 ^{iv}	2.9200
06…03 ^{vi}	2.6575 (18)	H6····O3 ^{vi}	1.84 (2)
O6…S1B	3.488 (13)	H6…C9 ^{vi}	2.95 (2)
Q6…C13	3.385 (2)	H6…H10 ⁱⁱ	2.5000
06···05 ^v	3212(2)	H7A····C2	2,7800
O1····H8C ^{vii}	2.7500	H7A···H2	2.3800
O2···H8C ^{vii}	2,7700	H7B···C2	2,7100
03···H6 ⁱⁱⁱ	1.84(2)	H7B…H2	2 2400
$O3 \cdots H10^{iv}$	2 8100	$H7B \cdots H8B^{vi}$	2.2400
O3H5	2.6100	H7B····O5 ^v	2.3200 2 7400
04····H5 ^{iv}	2.0100	H7C····H15 ^x	2.7400
05H2v	2.5200		2.5000
05 H2	2.5400	H8AH5	2.0000
	2.7400		2.1000
06H10	2.8500	H8D	2.8100
06H2	2.0700		2.4700
	2.8300		2.5200
	2.5400		3.0000
	3.545 (2)		2.7500
	3.530 (13)		2.7700
	3.532 (2)		2.6700
	3.150 (2)	HIO····C6	2.7900
C3····SIB ⁿ	3.694 (13)	H10···H14A	2.5700
C6…O3™	3.350 (2)		2.8100
	3.382 (3)	H10····O6 ⁿ	2.5400
C8···S1A ^{ix}	3.589 (2)	H10····H6 ⁿ	2.5000
C9…C9 ^{IV}	3.150 (2)	H11···S1A	3.1800
C9···C2 ^{viii}	3.532 (2)	Н11…С9	2.9600
C9···O3 ^{iv}	3.051 (2)	H11····C1 ^{viii}	3.1000
C12…O5 ^v	3.244 (2)	H11····C3 ^{viii}	3.0300
C12…S1B	3.571 (13)	H11····C4 ^{viii}	2.8300
C12…C14A	3.527 (7)	H11····C5 ^{viii}	2.7400
C13…O6	3.385 (2)	H11····C6 ^{viii}	2.8700
C14A…C12	3.527 (7)	H14A…H10	2.5700
C1…H11 ^{viii}	3.1000	H14A…O6 ⁱⁱ	2.8500
C2…H7B	2.7100	H14A····C2 ⁱⁱ	3.0600
C2…H14A ⁱⁱ	3.0600	H15…H7C ^{xi}	2.5600
С2…Н7А	2.7800		
C13—S1A—C16	91.85 (12)	C13—C14A—C15	115.2 (5)
C13—S1B—C15	92.3 (7)	C13—C14B—C16	117.2 (17)

C3—O1—C7	117.71 (16)	C14A—C15—C16	110.8 (4)
C4—O2—C8	116.56 (15)	S1B-C15-C16	123.5 (5)
C9—O4—C10	117.75 (13)	S1A-C16-C15	113.17 (19)
С12—О6—Н6	108.4 (17)	C14B—C16—C15	98.8 (9)
C6-C1-C11	116.64 (14)	C1—C2—H2	120.00
C2—C1—C6	119.26 (15)	С3—С2—Н2	120.00
C2—C1—C11	124.09 (15)	С4—С5—Н5	120.00
C1—C2—C3	120.20 (16)	С6—С5—Н5	120.00
O1—C3—C2	124.71 (16)	O1—C7—H7A	110.00
C2—C3—C4	120.36 (16)	O1—C7—H7B	109.00
01-C3-C4	114.93 (16)	01—C7—H7C	109.00
C3—C4—C5	119.21 (16)	H7A—C7—H7B	109.00
02	125.01 (16)	H7A—C7—H7C	109.00
02-C4-C3	115.78 (16)	H7B—C7—H7C	109.00
C4—C5—C6	120.31 (16)	Ω_{2} C8 H8A	109.00
C5-C6-C9	118 97 (15)	02—C8—H8B	109.00
C1 - C6 - C5	120.64 (16)	$\Omega^2 = C^8 = H^8 C$	109.00
C1 - C6 - C9	120.30(15)	H8A - C8 - H8B	109.00
04-C9-C6	118 04 (14)	H8A - C8 - H8C	109.00
03-09-04	117.07 (16)	H8B-C8-H8C	109.00
03-09-06	124 89 (16)	04-C10-H10	109.00
04 - C10 - C13	107 21 (13)	$C_{11} - C_{10} - H_{10}$	109.00
04-C10-C11	107.57 (13)	C_{13} C_{10} H_{10}	109.00
C_{11} C_{10} C_{13}	107.57(15) 115.54(14)	C1 - C11 - H11	109.00
C1 - C10 - C13	106 68 (13)	C10-C11-H11	108.00
C10-C11-C12	100.06 (13)	C_{12} C_{11} H_{11}	108.00
C1 $C11$ $C12$	107.40(13) 115.26(14)	$C_{12} = C_{14} = H_{14}$	122.00
C1 = C12 = C11	112.16 (15)	$C_{15} = C_{14A} = H_{14A}$	122.00
05 C12 C11	112.10(15) 123.52(16)	C16 C14R H14R	122.00
05 C12 O6	123.32(10) 124.20(16)	C_{10} C_{14} C	121.00
$C_{10} C_{12} C_{14A}$	124.30(10) 128.5(2)	C_{15} C_{14} C_{15} C	121.00
C10 - C13 - C14A	120.3(3) 122.57(13)	SIR C15 H15	123.00
S1A = C13 = C10	122.37(13) 100.0(2)	$C_{14} C_{15} H_{15}$	112.00
SIA-CI3-CI4A	109.0(3) 107.5(11)	С14А—С15—Н15	123.00
SID-C13-C14D	107.3(11) 118.1(4)	C14D - C10 - H10	138.00
SIB-CI3-CI0	118.1(4) 122.8(10)	SIA - CIO - HIO	123.00
C10-C13-C14B	155.8 (10)	C13—C10—H10	123.00
C16 S1A C12 C14A	0.8 (4)	01 62 64 65	170 60 (16)
C12 = S1A = C15 = C14A	-0.8(4)	01 - 03 - 04 - 03	179.00 (10)
C15 - S1A - C10 - C13	0.5(5)	02-04-05-06	-1/9.91(10)
$C_{10} = S_{1A} = C_{13} = C_{10}$	1/7.55(18)	$C_3 = C_4 = C_3 = C_0$	1.1(3)
$C_{-01} = C_{-01} = C_{-01}$	0.4(3)	C4 - C5 - C6 - C1	-0.3(3)
$C^{2} = 01 = C_{3} = C_{4}$	-1/3.3(2)	C4 - C5 - C6 - C9	-1/0.89(10)
$C_8 = 0_2 = C_4 = C_3$	165.72 (18)	$C_{5} = C_{6} = C_{9} = 04$	-163.86 (15)
10 - 02 - 14 - 05	-13.3(3)	$C_{1} = C_{1} = C_{2} = C_{1}$	1/.5 (3)
C10-04-C9-C6	10.7 (2)	$C_1 = C_0 = C_2 = C_1 = C_1 = C_2 = C_2$	19.5 (2)
$C_{9} = 04 = C_{10} = C_{13}$	-1/.08(14)	$C_1 - C_0 - C_9 - C_3$	-159.38 (18)
C9—04—C10—C11	-52.23 (19)	04-010-011-012	-1/1.59 (13)
C10—O4—C9—O3	-170.33(15)	04—C10—C13—S1A	50.92 (19)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	144.44 (16) -1.3 (2) -158.42 (15) 175.27 (16) -179.11 (16) 179.76 (15) -3.7 (2) 22.7 (2) -36.70 (19) 2.1 (3) -1.3 (3) 178.82 (17) -0.3 (3)	$\begin{array}{c} C13 &C10 &C11 &C1 \\ O4 &C10 &C13 &C14A \\ C13 &C10 &C13 &C14A \\ C13 &C10 &C13 &C14A \\ C11 &C10 &C13 &S1A \\ C1 &C11 &C12 &O5 \\ C1 &C11 &C12 &O5 \\ C10 &C11 &C12 &O5 \\ C10 &C11 &C12 &O6 \\ S1A &C13 &C14A &C15 \\ C10 &C13 &C14A &C15 \\ C13 &C14A &C15 &C16 \\ \end{array}$	-177.25 (14) 63.07 (16) 109.1 (4) -51.91 (19) -131.1 (4) -68.96 (19) -123.00 (19) 58.6 (2) 116.78 (19) -61.66 (18) 1.0 (6) -177.2 (3) -0.7 (7)
C2-C3-C4-C5 C2-C3-C4-O2 O1-C3-C4-O2	-0.3 (3) -179.43 (16) 0.5 (2)	C13—C14A—C15—C16 C14A—C15—C16—S1A	-0.7 (7) 0.1 (5)

Symmetry codes: (i) x, y, z+1; (ii) -x, -y+2, -z+1; (iii) x, y-1, z; (iv) -x, -y+1, -z+1; (v) -x+1, -y+2, -z+1; (vi) x, y+1, z; (vii) -x+1, -y+1, -z; (viii) -x+1, -z; (vii) -x+1, -z; (vi) -x+1, -z; (vii) -x+1, -z; (vii) -x+1, -z; (vi) -x+1, -z;

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.86 (3)	1.84 (2)	2.658 (2)	159 (3)
0.93	2.54	3.465 (2)	172
0.98	2.54	3.475 (2)	159
0.98	2.61	3.525 (2)	156
	<i>D</i> —H 0.86 (3) 0.93 0.98 0.98	D—H H···A 0.86 (3) 1.84 (2) 0.93 2.54 0.98 2.54 0.98 2.61	D—H H···A D···A 0.86 (3) 1.84 (2) 2.658 (2) 0.93 2.54 3.465 (2) 0.98 2.54 3.475 (2) 0.98 2.61 3.525 (2)

Symmetry codes: (ii) -*x*, -*y*+2, -*z*+1; (v) -*x*+1, -*y*+2, -*z*+1; (vi) *x*, *y*+1, *z*; (viii) -*x*+1, -*y*+1, -*z*+1.