

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2-Bis(1H-indol-3-yl)indolin-3-one

Zhao-Hao Li,^{a,b} Jing Xu,^{a,b} Wen-Liang Wu^{a,b} and Wei-Ping Su^b*

^aGraduate School, The Chinese Academy of Sciences, Beijing 100039, People's Republic of China, and ^bThe State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China Correspondence e-mail: xujing@fjirsm.ac.cn

Received 22 April 2009; accepted 11 May 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.118; data-to-parameter ratio = 16.8.

In the title molecule, $C_{24}H_{17}N_3O$, the mean plane of the indolone ring forms dihedral angles of 112.0 (1) and 103.1 (1) $^{\circ}$ with the planes of the two indole rings. The dihedral angle between the mean planes of the two indole rings is $63.5 (1)^{\circ}$. In the crystal structure, molecules are linked via intermolecular $N-H\cdots O$ hydrogen bonds, forming a two-dimensional network parallel to the *ab* plane.

Related literature

For the applications of indole derivatives, see: Ramesh et al. (2009). For the isolation of the title compound as a natural product, see: Ganachaud et al. (2008); Stull et al. (1995).

Experimental

Crystal data C24H17N3O

 $M_r = 363.41$

Monoclinic, $P2_1/n$ Z = 4a = 10.559 (4) Å Mo $K\alpha$ radiation b = 8.931 (3) Å $\mu = 0.08 \text{ mm}^$ c = 19.899(7) ÅT = 293 K $\beta = 98.480 \ (6)^{\circ}$ $0.40 \times 0.35 \times 0.15 \text{ mm}$ V = 1856.1 (11) Å³ Data collection . . .

Rigaku Mercury CCD	14004 measured reflections
diffractometer	4245 independent reflections
Absorption correction: multi-scan	3606 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku/MSC,	$R_{\rm int} = 0.024$
2005)	
$T_{\min} = 0.968, \ T_{\max} = 0.988$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	253 parameters
$wR(F^2) = 0.118$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
4245 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N2 - H2B \cdots O1^{i}$ $N3 - H3B \cdots O1^{ii}$	0.86 0.86	2.12 2.18	2.9412 (17) 2.9830 (16)	159 156
Symmetry codes: (i) -	$-x + \frac{3}{2}, y - \frac{1}{2}, -$	$z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$	$-\frac{5}{2}, y - \frac{1}{2}, -z + \frac{1}{2}.$	

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

This work was supported by the Natural Science Foundation of Fujian province (grant No. 2006 J0273) and the 'One Hundred Talent' Projects from the Chinese Academy of Sciences.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2811).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Ganachaud, C., Garfagnoli, V., Tron, T. & Iacazio, G. (2008). Tetrahedron Lett. 49, 2476-2478.

Ramesh, P., Sundaresan, S. S., Lakshmi, N. V., Perumal, P. T. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, 0994.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stull, T. L., Hyun, L., Sharetzsky, C., Wooten, J., McCauley, J. P. & Smith, A. B. III (1995). J. Biol. Chem. 270, 5-8.

supporting information

Acta Cryst. (2009). E65, o1353 [doi:10.1107/S1600536809017553]

2,2-Bis(1H-indol-3-yl)indolin-3-one

Zhao-Hao Li, Jing Xu, Wen-Liang Wu and Wei-Ping Su

S1. Comment

Indole derivatives are used as bioactive drugs and they exibit anti-allergic, central nervous system depressant and muscle relaxant properties (Ramesh *et al.*, 2009). The title compound is a natural product that has been isolated from bacterial sources (Stull *et al.*, 1995; Ganachaud *et al.*, 2008). Recently, we found different indole derivatives could be formed by oxidation solely on the basis of the reaction solvent and temperature. As part of our studies, we report herein the synthesis and crystal structure of the title compound (I) (Fig. 1).

The title compound is a trimeric condensation product of indole through the formation of a quaternary carbon (C8) centre. The indolone ring forms dihedral angle of 112.0 (1)° and 103.1 (1)°, respectively, with the two indole rings (C9/C10/C11/C12/C13/C14/C15/C16/N2) and (C17/C18/C19/C20/C21/C22/C23/C24/N3). The mean planes of the two indole form a dihedral angle of 63.5 (1)°. In the crystal structure, the carbonyl atom O1 acts as a bifurcated acceptor for the N-H groups of atoms N2 and N3 to form a two-dimensional network parallel to the *ab* plane (Table 1, Fig. 2).

S2. Experimental

The title compound was obtained from a mixture of 1*H*-indole (78 mg) with 'BuCOOH (0.18 ml) and $H_3PMo_{12}O_{14}$ (9 mg) in toluene (1 ml) and CH₃COOH (1 ml) under a nitrogen atmosphere at room temperature for 24 h. The crude product was isolated and purified by silica gel columnchromatography. Yellow prism-shaped crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a dichloromethane solution at room temperature.

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å; N—H = 0.86 Å and $U_{iso}(H) = 1.2Ueq(C,N)$.

Figure 1

The molecular structure of (I), showing 30% probability displacement ellopsoids. H atoms are shown as small spheres.

Figure 2

Part of the crystal structure of (I) showing the hydrogen bonded layers parallel to the *ab* plane. Intermolecular hydrogen bonds are shown as dashed lines and H atoms not involved in H-bonding have been omitted.

2,2-Bis(1H-indol-3-yl)indolin-3-one

Crystal data

 $C_{24}H_{17}N_{3}O$ $M_{r} = 363.41$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 10.559 (4) Å b = 8.931 (3) Å c = 19.899 (7) Å $\beta = 98.480$ (6)° V = 1856.1 (11) Å³ Z = 4

Data collection

Rigaku Mercury CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 14.6306 pixels mm⁻¹ CCD_Profile_fitting scans Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) $T_{min} = 0.968, T_{max} = 0.988$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.118$	neighbouring sites
S = 1.06	H-atom parameters constrained
4245 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0513P)^2 + 0.4603P]$
253 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.21 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 760

 $\theta = 3.0 - 27.5^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Prism, yellow

 $0.40 \times 0.35 \times 0.15 \text{ mm}$

14004 measured reflections

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$

4245 independent reflections

3606 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.024$

 $h = -11 \rightarrow 13$

 $k = -11 \rightarrow 11$ $l = -22 \rightarrow 25$

 $D_{\rm x} = 1.300 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 4234 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic or	equivalent isotropic	displacement	parameters ($(Å^2)$
----------------------------------	----------------	----------------------	--------------	--------------	---------

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.96565 (9)	0.43252 (10)	0.15911 (5)	0.0369 (2)	
N1	0.95403 (12)	0.04726 (13)	0.11858 (6)	0.0406 (3)	
H1A	0.9668	-0.0474	0.1239	0.049*	
N2	0.75509 (12)	0.05077 (15)	0.28328 (7)	0.0490 (3)	

H2B	0.6914	-0.0017	0.2923	0.059*
N3	1.31856 (12)	0.10180 (15)	0.26178 (6)	0.0471 (3)
H3B	1.3724	0.0659	0.2945	0.056*
C1	0.89773 (13)	0.11138 (16)	0.05986 (7)	0.0374 (3)
C2	0.85094 (14)	0.0420 (2)	-0.00189 (8)	0.0483 (4)
H2A	0.8532	-0.0615	-0.0065	0.058*
C3	0.80181 (17)	0.1314 (2)	-0.05518 (8)	0.0635 (5)
H3A	0.7706	0.0868	-0.0966	0.076*
C4	0.7967 (2)	0.2867 (3)	-0.04991 (9)	0.0746 (6)
H4A	0.7630	0.3437	-0.0874	0.090*
C5	0.84151 (19)	0.3558 (2)	0.01064 (8)	0.0604 (5)
H5A	0.8383	0.4595	0.0147	0.072*
C6	0.89185 (13)	0.26719 (17)	0.06585 (7)	0.0392 (3)
C7	0.94976 (12)	0.30732 (14)	0.13383 (6)	0.0315 (3)
C8	0.99057 (13)	0.15946 (14)	0.17220 (6)	0.0321 (3)
С9	0.81798 (14)	0.15783 (17)	0.32497 (7)	0.0417 (3)
C10	0.79721 (18)	0.2065 (2)	0.38885 (8)	0.0557 (4)
H10A	0.7324	0.1655	0.4100	0.067*
C11	0.8753 (2)	0.3166 (2)	0.41938 (8)	0.0616 (5)
H11A	0.8635	0.3509	0.4621	0.074*
C12	0.97253 (17)	0.3786 (2)	0.38756 (8)	0.0550 (4)
H12A	1.0236	0.4541	0.4093	0.066*
C13	0.99417 (15)	0.32982 (17)	0.32449 (7)	0.0424 (3)
H13A	1.0597	0.3712	0.3040	0.051*
C14	0.91605 (13)	0.21709 (15)	0.29179 (7)	0.0351 (3)
C15	0.90865 (13)	0.13904 (15)	0.22798 (7)	0.0342 (3)
C16	0.80919 (14)	0.04053 (17)	0.22537 (8)	0.0432 (3)
H16A	0.7823	-0.0240	0.1894	0.052*
C17	1.34968 (13)	0.18478 (15)	0.20847 (7)	0.0380 (3)
C18	1.46884 (15)	0.23042 (18)	0.19416 (9)	0.0491 (4)
H18A	1.5436	0.2065	0.2230	0.059*
C19	1.47219 (15)	0.31203 (18)	0.13592 (9)	0.0511 (4)
H19A	1.5507	0.3436	0.1251	0.061*
C20	1.36003 (15)	0.34840 (18)	0.09265 (8)	0.0461 (4)
H20A	1.3651	0.4030	0.0533	0.055*
C21	1.24194 (14)	0.30469 (15)	0.10722 (7)	0.0380 (3)
H21A	1.1679	0.3304	0.0782	0.046*
C22	1.23417 (12)	0.22113 (14)	0.16619 (6)	0.0322 (3)
C23	1.13200 (12)	0.15690 (14)	0.19763 (6)	0.0326 (3)
C24	1.18882 (14)	0.08515 (16)	0.25473 (7)	0.0412 (3)
H24A	1.1454	0.0325	0.2846	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0351 (5)	0.0344 (5)	0.0407 (5)	0.0007 (4)	0.0040 (4)	-0.0052 (4)
N1	0.0497 (7)	0.0320 (6)	0.0391 (6)	-0.0014 (5)	0.0029 (5)	-0.0058 (5)
N2	0.0361 (7)	0.0527 (8)	0.0603 (8)	-0.0086 (6)	0.0138 (6)	0.0105 (6)

supporting information

N3	0.0361 (7)	0.0560 (8)	0.0472 (7)	0.0108 (6)	-0.0002 (5)	0.0156 (6)
C1	0.0288 (7)	0.0464 (8)	0.0367 (7)	-0.0010 (6)	0.0041 (5)	-0.0075 (6)
C2	0.0377 (8)	0.0583 (9)	0.0474 (8)	-0.0003 (7)	0.0016 (6)	-0.0203 (7)
C3	0.0549 (11)	0.0890 (14)	0.0415 (9)	0.0140 (10)	-0.0100 (8)	-0.0235 (9)
C4	0.0916 (16)	0.0844 (14)	0.0395 (9)	0.0287 (12)	-0.0181 (9)	-0.0053 (9)
C5	0.0750 (12)	0.0580 (10)	0.0423 (8)	0.0195 (9)	-0.0110 (8)	-0.0010 (7)
C6	0.0353 (7)	0.0455 (8)	0.0347 (7)	0.0055 (6)	-0.0015 (6)	-0.0053 (6)
C7	0.0252 (6)	0.0364 (7)	0.0330 (6)	0.0018 (5)	0.0048 (5)	-0.0025 (5)
C8	0.0327 (7)	0.0322 (6)	0.0311 (6)	-0.0015 (5)	0.0034 (5)	-0.0032 (5)
C9	0.0367 (8)	0.0463 (8)	0.0437 (8)	0.0066 (6)	0.0114 (6)	0.0125 (6)
C10	0.0577 (10)	0.0660 (11)	0.0486 (9)	0.0120 (9)	0.0249 (8)	0.0170 (8)
C11	0.0735 (13)	0.0775 (13)	0.0365 (8)	0.0178 (10)	0.0174 (8)	0.0021 (8)
C12	0.0601 (11)	0.0623 (10)	0.0419 (8)	0.0047 (8)	0.0051 (7)	-0.0090 (7)
C13	0.0425 (8)	0.0485 (8)	0.0366 (7)	-0.0009 (6)	0.0067 (6)	-0.0014 (6)
C14	0.0327 (7)	0.0391 (7)	0.0338 (6)	0.0038 (5)	0.0058 (5)	0.0054 (5)
C15	0.0309 (7)	0.0353 (7)	0.0359 (7)	-0.0004 (5)	0.0039 (5)	0.0026 (5)
C16	0.0367 (8)	0.0436 (8)	0.0486 (8)	-0.0051 (6)	0.0044 (6)	0.0023 (6)
C17	0.0338 (7)	0.0366 (7)	0.0430 (7)	0.0063 (5)	0.0037 (6)	0.0013 (6)
C18	0.0297 (7)	0.0524 (9)	0.0640 (10)	0.0058 (6)	0.0030 (7)	0.0001 (8)
C19	0.0359 (8)	0.0515 (9)	0.0686 (11)	-0.0027 (7)	0.0172 (7)	-0.0014 (8)
C20	0.0472 (9)	0.0473 (8)	0.0463 (8)	-0.0034 (7)	0.0154 (7)	0.0031 (7)
C21	0.0371 (7)	0.0407 (7)	0.0359 (7)	0.0006 (6)	0.0049 (6)	0.0006 (6)
C22	0.0313 (7)	0.0308 (6)	0.0346 (6)	0.0036 (5)	0.0051 (5)	-0.0022 (5)
C23	0.0319 (7)	0.0327 (6)	0.0334 (6)	0.0029 (5)	0.0056 (5)	0.0001 (5)
C24	0.0376 (8)	0.0436 (8)	0.0428 (8)	0.0054 (6)	0.0070 (6)	0.0096 (6)

Geometric parameters (Å, °)

01—C7	1.2274 (16)	C9—C14	1.411 (2)
N1—C1	1.3571 (18)	C10—C11	1.367 (3)
N1—C8	1.4731 (16)	C10—H10A	0.9300
N1—H1A	0.8600	C11—C12	1.398 (3)
N2—C16	1.363 (2)	C11—H11A	0.9300
N2—C9	1.371 (2)	C12—C13	1.379 (2)
N2—H2B	0.8600	C12—H12A	0.9300
N3—C24	1.3645 (19)	C13—C14	1.400 (2)
N3—C17	1.3731 (19)	C13—H13A	0.9300
N3—H3B	0.8600	C14—C15	1.4405 (19)
C1—C6	1.399 (2)	C15—C16	1.3652 (19)
C1—C2	1.3997 (19)	C16—H16A	0.9300
C2—C3	1.367 (3)	C17—C18	1.391 (2)
C2—H2A	0.9300	C17—C22	1.4136 (19)
C3—C4	1.392 (3)	C18—C19	1.374 (2)
С3—НЗА	0.9300	C18—H18A	0.9300
C4—C5	1.374 (2)	C19—C20	1.396 (2)
C4—H4A	0.9300	C19—H19A	0.9300
C5—C6	1.394 (2)	C20—C21	1.378 (2)
С5—Н5А	0.9300	C20—H20A	0.9300

C6—C7	1.4451 (18)	C21—C22	1.4031 (19)
С7—С8	1.5542 (18)	C21—H21A	0.9300
C8—C23	1.5046 (19)	C22—C23	1.4434 (18)
C8—C15	1.5155 (19)	C23—C24	1.3640 (19)
C9—C10	1.391 (2)	C24—H24A	0.9300
C1—N1—C8	111.79 (11)	C10-C11-C12	121.26 (16)
C1—N1—H1A	124.1	C10-C11-H11A	119.4
C8—N1—H1A	124.1	C12—C11—H11A	119.4
C16—N2—C9	109.42 (12)	C13—C12—C11	121.24 (17)
C16—N2—H2B	125.3	C13—C12—H12A	119.4
C9—N2—H2B	125.3	C11—C12—H12A	119.4
C24—N3—C17	109.29 (12)	C12—C13—C14	119.00 (15)
C24—N3—H3B	125.4	C12—C13—H13A	120.5
C17—N3—H3B	125.4	C14—C13—H13A	120.5
N1—C1—C6	111.45 (12)	C13—C14—C9	118.37 (13)
N1—C1—C2	128.48 (14)	C13—C14—C15	135.19 (13)
C6—C1—C2	120.06 (14)	C9—C14—C15	106.43 (13)
C3—C2—C1	117.83 (16)	C16—C15—C14	106.67 (12)
C3—C2—H2A	121.1	C16—C15—C8	124.66 (13)
C1—C2—H2A	121.1	C14—C15—C8	128.66 (12)
C2—C3—C4	122.53 (15)	N2—C16—C15	109.91 (14)
С2—С3—НЗА	118.7	N2—C16—H16A	125.0
С4—С3—НЗА	118.7	C15—C16—H16A	125.0
C5—C4—C3	120.11 (17)	N3—C17—C18	130.01 (13)
C5—C4—H4A	119.9	N3—C17—C22	107.46 (12)
C3—C4—H4A	119.9	C18—C17—C22	122.53 (14)
C4—C5—C6	118.52 (17)	C19—C18—C17	117.69 (14)
C4—C5—H5A	120.7	C19—C18—H18A	121.2
С6—С5—Н5А	120.7	C17—C18—H18A	121.2
C5—C6—C1	120.95 (14)	C18—C19—C20	121.24 (14)
C5—C6—C7	131.01 (14)	C18—C19—H19A	119.4
C1—C6—C7	107.97 (12)	С20—С19—Н19А	119.4
O1—C7—C6	128.53 (13)	C21—C20—C19	121.07 (14)
O1—C7—C8	124.16 (12)	С21—С20—Н20А	119.5
C6—C7—C8	107.31 (11)	С19—С20—Н20А	119.5
N1—C8—C23	111.98 (11)	C20—C21—C22	119.54 (13)
N1—C8—C15	109.37 (11)	C20—C21—H21A	120.2
C23—C8—C15	113.41 (11)	C22—C21—H21A	120.2
N1—C8—C7	101.43 (10)	C21—C22—C17	117.92 (12)
C23—C8—C7	111.57 (10)	C21—C22—C23	135.52 (12)
C15—C8—C7	108.37 (11)	C17—C22—C23	106.56 (12)
N2—C9—C10	130.02 (15)	C24—C23—C22	106.43 (12)
N2—C9—C14	107.57 (13)	C24—C23—C8	125.45 (12)
C10—C9—C14	122.41 (15)	C22—C23—C8	128.05 (11)
C11—C10—C9	117.71 (15)	C23—C24—N3	110.25 (13)
C11—C10—H10A	121.1	C23—C24—H24A	124.9
C9—C10—H10A	121.1	N3—C24—H24A	124.9

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N2—H2 <i>B</i> ···O1 ⁱ	0.86	2.12	2.9412 (17)	159
N3—H3 <i>B</i> …O1 ⁱⁱ	0.86	2.18	2.9830 (16)	156

Symmetry codes: (i) -x+3/2, y-1/2, -z+1/2; (ii) -x+5/2, y-1/2, -z+1/2.