Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Z)-3-(9-Anthryl)-1-(4-bromophenyl)-2-(4-nitro-1*H*-imidazol-1-yl)prop-2-en-1one

Yi-Hui Lu, Guang-Zhou Wang, Cheng-He Zhou* and Yi-Yi Zhang

School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China Correspondence e-mail: zhouch@swu.edu.cn

Received 10 May 2009; accepted 14 May 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.005 Å; R factor = 0.044; wR factor = 0.116; data-to-parameter ratio = 14.5.

In the title molecule, $C_{26}H_{16}BrN_3O_3$, the anthracene and benzene mean planes make dihedral angles of 63.79 (2) and 14.67 (2)°, respectively, with the plane of the imidazole ring. In the crystal structure, weak intermolecular C-H···O hydrogen bonds link molecules to form centrosymmetric dimers. Weak π - π stacking interactions, with centroidcentroid distances of 3.779 (2) and 3.826 (2) Å, supply additional stabilization. The crystal packing also exhibits short intermolecular contacts between the nitro groups and Br atoms [Br···O = 3.114 (2) Å].

Related literature

For the crystal structure of the chloro analog of the title compound, see: Wang *et al.* (2009). For general background on the pharmacological activities of chalcones, see: Corréa *et al.* (2001); Jasinski *et al.* (2009); Nielsen *et al.* (1998); Vogel *et al.* (2008). For the synthetic details, see: Erhardt *et al.* (1985); Kranz *et al.* (1980).

Experimental

Crystal data

C. H. BrN.O.	
M 409.22	
$M_r = 498.55$	
Iriclinic, Pl	
a = 8.1438 (11) A	

b = 11.0916 (14) Åc = 12.7979 (17) Å $\alpha = 78.146 (2)^{\circ}$ $\beta = 86.193 (2)^{\circ}$ $\gamma = 70.768 \ (2)^{\circ}$ $V = 1068.2 \ (2) \ Å^{3}$ Z = 2Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.775, \ T_{\rm max} = 0.828$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.116$ S = 1.024315 reflections

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C23-H23···O3 ⁱ	0.93	2.56	3.303 (4)	137

 $\mu = 1.96 \text{ mm}^{-1}$

 $0.13 \times 0.12 \times 0.10 \text{ mm}$

6422 measured reflections

4315 independent reflections 3095 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 292 K

 $R_{\rm int} = 0.019$

298 parameters

 $\Delta \rho_{\text{max}} = 0.56 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.67 \text{ e } \text{\AA}^{-3}$

Symmetry code: (i) -x + 2, -y + 1, -z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

We thank the Southwest University (grant Nos. SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (grant No. 2007BB5369) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2825).

References

- Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Corréa, R., Pereira, M. A. S., Buffon, D., Santos, L., Filho, V. C., Santos, A. R. S. & Nunes, R. J. (2001). Arch. Pharm. Med. Chem. 334, 332–334.
- Erhardt, H., Mildenberger, H., Handte, R., Sachse, B., Hartz, P. & Bürstell, H. (1985). German Patent No. DE3406908.
- Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2009). J. Chem. Crystallogr. 39, 157–162.
- Kranz, E., Krämer, W., Büchel, K. H., Brandes, W. & Forhberger, P. E. (1980). German Patent No. DE2832233.
- Nielsen, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819–4832.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vogel, S., Ohmayer, S., Brunner, G. & Heilmann, J. (2008). *Bioorg. Med. Chem.* 16, 4286–4293.
- Wang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.

supporting information

Acta Cryst. (2009). E65, o1396 [doi:10.1107/S1600536809018352]

(Z)-3-(9-Anthryl)-1-(4-bromophenyl)-2-(4-nitro-1*H*-imidazol-1-yl)prop-2-en-1one

Yi-Hui Lu, Guang-Zhou Wang, Cheng-He Zhou and Yi-Yi Zhang

S1. Comment

Chalcones and their derivatives have been reported responsible for a variety of pharmacological activities, including antibacterial, antifungal, anti-leishmanial, antimalarial, analgesic, anti-inflammatory and chemopreventive ones (Corréa *et al.*, 2001; Jasinski *et al.*, 2009; Simon *et al.*, 1998; Vogel *et al.*, 2008). Due to these varied applications, we have synthesized the title compound and report its crystal structure.

In the molecular structure of the title compound (I) (Fig. 1), the dihedral angle between the anthracene unit and imidazole ring is 63.79 (2) ° and that between the imidazole ring and benzene ring is 14.67 (2) °. In the crystal structure, weak intermolecular C—H…O hydrogen bonds link molecules to form centrosymmetric dimers (Fig. 2). Weak π – π staking interactions, with centroid to centroid distances of 3.779 (2) and 3.826 (2)Å supply additional stabilization.

S2. Experimental

Compound (I) was synthesized according to the procedure of Erhardt *et al.* (1985); Kranz *et al.* (1980). A crystal suitable for X-ray analysis was grown from a chloroform and acetone solution of (I) by slow evaporation at room temperature.

S3. Refinement

H ydrogen atoms were placed in idealized positions with C—H = 0.93Å and U_{iso} (H) = 1.2 U_{eq} (C).

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Part of the crystal structure of (I). Hydrogen bonds are shown as dashed lines.

(Z)-3-(9-Anthryl)-1-(4-bromophenyl)-2-(4-nitro-1*H*-imidazol- 1-yl)prop-2-en-1-one

Crystal data	
$C_{26}H_{16}BrN_3O_3$	$\gamma = 70.768 \ (2)^{\circ}$
$M_r = 498.33$	V = 1068.2 (2) Å ³
Triclinic, $P\overline{1}$	Z = 2
Hall symbol: -P 1	F(000) = 504
a = 8.1438 (11) Å	$D_{\rm x} = 1.549 {\rm ~Mg} {\rm ~m}^{-3}$
b = 11.0916 (14) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 12.7979 (17) Å	Cell parameters from 2344 reflections
$\alpha = 78.146 \ (2)^{\circ}$	$\theta = 2.3 - 26.9^{\circ}$
$\beta = 86.193 \ (2)^{\circ}$	$\mu = 1.96 \text{ mm}^{-1}$

T = 292 KBlock, orange

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine focus sealed Siemens Mo
tube
Graphite monochromator
0.3° wide ω exposures scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.775, \ T_{\max} = 0.828$

Refinement

nejmemeni	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.116$	$w = 1/[\sigma^2(F_o^2) + (0.0524P)^2 + 0.6665P]$
S = 1.02	where $P = (F_o^2 + 2F_c^2)/3$
4315 reflections	$(\Delta/\sigma)_{\rm max} = 0.008$
298 parameters	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL97 (Sheldrick,
direct methods	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0078 (11)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $0.13 \times 0.12 \times 0.10 \text{ mm}$

6422 measured reflections 4315 independent reflections 3095 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 26.5^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$

 $R_{\rm int} = 0.019$

 $h = -8 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -16 \rightarrow 15$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.93749 (6)	0.89457 (4)	0.12755 (3)	0.06983 (18)	
C1	0.4551 (4)	0.4031 (3)	0.3854 (2)	0.0356 (6)	
C2	0.3193 (4)	0.4914 (3)	0.4320 (2)	0.0406 (7)	
C3	0.2357 (4)	0.6217 (3)	0.3799 (3)	0.0496 (8)	
H3	0.2699	0.6506	0.3111	0.060*	
C4	0.1080 (5)	0.7050 (4)	0.4276 (4)	0.0691 (11)	
H4	0.0565	0.7902	0.3917	0.083*	
C5	0.0521 (5)	0.6637 (5)	0.5312 (4)	0.0740 (13)	
Н5	-0.0342	0.7224	0.5639	0.089*	
C6	0.1223 (5)	0.5405 (5)	0.5832 (3)	0.0647 (11)	
H6	0.0819	0.5144	0.6509	0.078*	
C7	0.2583 (4)	0.4483 (4)	0.5363 (2)	0.0510 (9)	

C8	0.3318 (5)	0.3209 (4)	0.5877 (3)	0.0570 (10)
H8	0.2893	0.2930	0.6543	0.068*
C9	0.4663 (5)	0.2335 (4)	0.5435 (3)	0.0545 (9)
C10	0.5444 (7)	0.1041 (4)	0.5990 (3)	0.0804 (14)
H10	0.5007	0.0765	0.6653	0.096*
C11	0.6795 (8)	0.0206 (5)	0.5582 (4)	0.0943 (17)
H11	0.7273	-0.0642	0.5957	0.113*
C12	0.7504 (7)	0.0613 (4)	0.4575 (4)	0.0792 (13)
H12	0.8461	0.0034	0.4305	0.095*
C13	0.6790 (5)	0.1839 (3)	0.4007 (3)	0.0538 (9)
H13	0.7270	0.2092	0.3353	0.065*
C14	0.5326 (4)	0.2738 (3)	0.4394 (2)	0.0415 (7)
C15	0.5261 (4)	0.4522 (3)	0.2830 (2)	0.0327 (6)
H15	0.5626	0.5235	0.2820	0.039*
C16	0.5458 (4)	0.4098 (2)	0.1916 (2)	0.0308 (6)
C17	0.3147 (4)	0.3086 (3)	0.1964 (2)	0.0391 (7)
H17	0.2215	0.3730	0.2185	0.047*
C18	0.5712 (5)	0.1936 (3)	0.1475 (3)	0.0456 (7)
H18	0.6886	0.1698	0.1296	0.055*
C19	0.3157 (5)	0.1937 (3)	0.1754 (2)	0.0448 (8)
C20	0.6441 (4)	0.4580 (3)	0.0995 (2)	0.0322 (6)
C21	0.7038 (4)	0.5703 (3)	0.1060 (2)	0.0332 (6)
C22	0.8822 (4)	0.5456 (3)	0.1056 (2)	0.0422 (7)
H22	0.9569	0.4628	0.1014	0.051*
C23	0.9499 (4)	0.6436 (3)	0.1113 (3)	0.0490 (8)
H23	1.0696	0.6267	0.1122	0.059*
C24	0.8383 (4)	0.7651 (3)	0.1157 (2)	0.0438 (7)
C25	0.6602 (4)	0.7937 (3)	0.1138 (2)	0.0426 (7)
H25	0.5861	0.8775	0.1155	0.051*
C26	0.5943 (4)	0.6947 (3)	0.1094 (2)	0.0389 (7)
H26	0.4746	0.7121	0.1087	0.047*
N1	0.4811 (3)	0.3085 (2)	0.17774 (18)	0.0342 (5)
N2	0.4740 (4)	0.1210 (2)	0.1464 (2)	0.0515 (7)
N3	0.1680 (5)	0.1482 (3)	0.1818 (3)	0.0663 (9)
O1	0.1909 (5)	0.0414 (3)	0.1602 (3)	0.1002 (11)
O2	0.0289 (5)	0.2194 (4)	0.2088 (3)	0.0920 (10)
O3	0.6822 (3)	0.4034 (2)	0.02424 (17)	0.0464 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Br1	0.0870 (3)	0.0579 (2)	0.0872 (3)	-0.0537 (2)	0.0032 (2)	-0.01466 (19)
C1	0.0423 (17)	0.0457 (16)	0.0284 (14)	-0.0269 (14)	0.0004 (12)	-0.0071 (12)
C2	0.0426 (18)	0.0551 (19)	0.0351 (16)	-0.0264 (15)	0.0010 (13)	-0.0159 (14)
C3	0.048 (2)	0.056 (2)	0.0514 (19)	-0.0203 (17)	0.0012 (15)	-0.0194 (16)
C4	0.058 (2)	0.073 (3)	0.079 (3)	-0.012 (2)	-0.004 (2)	-0.036 (2)
C5	0.049 (2)	0.108 (4)	0.079 (3)	-0.021 (2)	0.009 (2)	-0.057 (3)
C6	0.047 (2)	0.119 (4)	0.047 (2)	-0.040(2)	0.0134 (17)	-0.038 (2)

C7	0.0468 (19)	0.089 (3)	0.0349 (17)	-0.0403 (19)	0.0018 (14)	-0.0203 (17)
C8	0.065 (2)	0.090 (3)	0.0297 (17)	-0.049 (2)	0.0024 (16)	-0.0047 (18)
C9	0.074 (3)	0.065 (2)	0.0363 (17)	-0.044 (2)	-0.0098 (17)	0.0023 (16)
C10	0.124 (4)	0.070 (3)	0.050(2)	-0.049 (3)	-0.018 (2)	0.016 (2)
C11	0.156 (5)	0.054 (3)	0.061 (3)	-0.030 (3)	-0.026 (3)	0.016 (2)
C12	0.101 (3)	0.050(2)	0.076 (3)	-0.008 (2)	-0.019 (2)	-0.009 (2)
C13	0.069 (2)	0.0462 (19)	0.0451 (19)	-0.0187 (18)	-0.0118 (17)	-0.0038 (15)
C14	0.0523 (19)	0.0446 (17)	0.0352 (16)	-0.0268 (15)	-0.0055 (14)	-0.0043 (13)
C15	0.0364 (16)	0.0331 (14)	0.0342 (15)	-0.0187 (12)	0.0007 (12)	-0.0065 (11)
C16	0.0360 (15)	0.0274 (13)	0.0345 (15)	-0.0171 (12)	-0.0003 (11)	-0.0066 (11)
C17	0.0398 (17)	0.0420 (16)	0.0412 (16)	-0.0219 (14)	-0.0027 (13)	-0.0052 (13)
C18	0.054 (2)	0.0340 (16)	0.0535 (19)	-0.0187 (14)	0.0031 (15)	-0.0123 (13)
C19	0.062 (2)	0.0461 (17)	0.0374 (16)	-0.0354 (17)	-0.0100 (15)	0.0011 (13)
C20	0.0317 (15)	0.0346 (14)	0.0327 (15)	-0.0129 (12)	0.0002 (12)	-0.0087 (12)
C21	0.0422 (17)	0.0358 (15)	0.0265 (14)	-0.0207 (13)	0.0045 (11)	-0.0049 (11)
C22	0.0423 (18)	0.0411 (16)	0.0498 (18)	-0.0197 (14)	0.0098 (14)	-0.0162 (14)
C23	0.0414 (18)	0.058 (2)	0.061 (2)	-0.0303 (16)	0.0103 (15)	-0.0203 (16)
C24	0.061 (2)	0.0409 (17)	0.0423 (17)	-0.0348 (16)	0.0083 (14)	-0.0084 (13)
C25	0.054 (2)	0.0329 (15)	0.0429 (17)	-0.0188 (14)	0.0001 (14)	-0.0040 (13)
C26	0.0395 (17)	0.0380 (16)	0.0430 (17)	-0.0178 (14)	0.0032 (13)	-0.0082 (13)
N1	0.0426 (14)	0.0311 (12)	0.0362 (12)	-0.0203 (11)	-0.0023 (10)	-0.0079 (10)
N2	0.075 (2)	0.0366 (14)	0.0513 (16)	-0.0297 (15)	-0.0045 (14)	-0.0068 (12)
N3	0.088 (3)	0.070 (2)	0.063 (2)	-0.061 (2)	-0.0171 (19)	0.0032 (16)
01	0.133 (3)	0.089 (2)	0.121 (3)	-0.087 (2)	-0.009 (2)	-0.0254 (19)
O2	0.074 (2)	0.101 (2)	0.121 (3)	-0.063 (2)	-0.002 (2)	-0.007 (2)
O3	0.0553 (14)	0.0526 (13)	0.0437 (12)	-0.0285 (11)	0.0144 (10)	-0.0226 (10)

Geometric parameters (Å, °)

Br1—C24	1.899 (3)	C15—C16	1.329 (4)
C1—C2	1.405 (4)	C15—H15	0.9300
C1-C14	1.410 (4)	C16—N1	1.434 (3)
C1-C15	1.471 (4)	C16—C20	1.487 (4)
C2—C3	1.419 (5)	C17—C19	1.353 (4)
C2—C7	1.436 (4)	C17—N1	1.359 (4)
C3—C4	1.349 (5)	C17—H17	0.9300
С3—Н3	0.9300	C18—N2	1.305 (4)
C4—C5	1.408 (6)	C18—N1	1.365 (4)
C4—H4	0.9300	C18—H18	0.9300
C5—C6	1.341 (6)	C19—N2	1.351 (4)
С5—Н5	0.9300	C19—N3	1.442 (4)
C6—C7	1.432 (5)	C20—O3	1.211 (3)
С6—Н6	0.9300	C20—C21	1.497 (4)
С7—С8	1.379 (5)	C21—C26	1.382 (4)
C8—C9	1.379 (5)	C21—C22	1.387 (4)
С8—Н8	0.9300	C22—C23	1.387 (4)
C9—C10	1.417 (5)	C22—H22	0.9300
C9—C14	1.444 (5)	C23—C24	1.365 (5)

C10 C11	1 229 (7)	Сээ нээ	0.0200
	1.558 (7)	C23—R25	0.9300
	0.9300	C24—C25	1.380 (5)
	1.426 (7)	C25—C26	1.384 (4)
CII—HII	0.9300	С25—Н25	0.9300
C12—C13	1.358 (5)	C26—H26	0.9300
C12—H12	0.9300	N3—O1	1.222 (4)
C13—C14	1.415 (5)	N3—O2	1.224 (5)
C13—H13	0.9300		
	121.2 (2)		115.0
C2—C1—C14	121.2 (3)	C16—C15—H15	115.2
C2—C1—C15	118.2 (3)	C1—C15—H15	115.2
C14—C1—C15	120.3 (3)	C15—C16—N1	121.6 (2)
C1—C2—C3	123.1 (3)	C15—C16—C20	122.8 (2)
C1—C2—C7	119.1 (3)	N1—C16—C20	115.5 (2)
C3—C2—C7	117.7 (3)	C19—C17—N1	104.3 (3)
C4—C3—C2	121.8 (4)	С19—С17—Н17	127.8
С4—С3—Н3	119.1	N1—C17—H17	127.8
С2—С3—Н3	119.1	N2-C18-N1	112.3 (3)
C3—C4—C5	120.4 (4)	N2-C18-H18	123.9
C3—C4—H4	119.8	N1—C18—H18	123.9
C5—C4—H4	119.8	N2—C19—C17	112.9 (3)
C6—C5—C4	120.6 (4)	N2—C19—N3	121.2 (3)
С6—С5—Н5	119.7	C17—C19—N3	125.9 (4)
С4—С5—Н5	119.7	O3—C20—C16	120.7 (2)
C5—C6—C7	121.2 (4)	O3—C20—C21	121.2 (2)
C5—C6—H6	119.4	$C_{16} - C_{20} - C_{21}$	118.0(2)
C7—C6—H6	119.4	$C_{26} = C_{21} = C_{22}$	1191(3)
$C_{8}-C_{7}-C_{2}$	119.4 (3)	$C_{26} = C_{21} = C_{20}$	124.6(3)
$C_{8} - C_{7} - C_{6}$	122 3 (3)	$C_{22} = C_{21} = C_{20}$	121.0(3) 1163(3)
C_{2} C_{7} C_{6}	122.3(3)	$C_{22} = C_{21} = C_{20}$	120.5(3)
$C_{2} = C_{1} = C_{2}$	122 1 (3)	C_{23} C_{22} C_{21} C_{23} C_{22} H_{22}	110.8
$C_{9} = C_{8} = H_{8}$	118.9	$C_{23} = C_{22} = H_{22}$	119.8
C7 C8 H8	118.0	$C_{21} = C_{22} = 1122$	119.0
$C_{1}^{2} = C_{2}^{2} = C_{1}^{2}$	110.9	$C_{24} = C_{23} = C_{22}$	119.0 (5)
$C_8 = C_9 = C_{10}$	121.4(4) 120.0(2)	$C_{24} = C_{23} = H_{23}$	120.5
$C_{0} = C_{0} = C_{14}$	120.0(3)	$C_{22} = C_{23} = H_{23}$	120.3
C10 - C9 - C14	110.0(4)	$C_{23} = C_{24} = C_{23}$	122.0(3)
	121.5 (4)	C25—C24—Bf1	117.4 (2)
C11—C10—H10	119.2	C25—C24—Br1	120.6 (2)
C9—C10—H10	119.2	$C_{26} = C_{25} = C_{24}$	118.4 (3)
C10—C11—C12	120.2 (4)	С26—С25—Н25	120.8
C10—C11—H11	119.9	С24—С25—Н25	120.8
C12—C11—H11	119.9	C21—C26—C25	121.0 (3)
C13—C12—C11	120.4 (4)	C21—C26—H26	119.5
C13—C12—H12	119.8	C25—C26—H26	119.5
C11—C12—H12	119.8	C17—N1—C18	106.8 (2)
C12—C13—C14	121.0 (4)	C17—N1—C16	125.3 (2)
C12—C13—H13	119.5	C18—N1—C16	128.0 (2)
C14—C13—H13	119.5	C18—N2—C19	103.7 (3)

C1—C14—C13	123.7 (3)	O1—N3—O2	124.9 (4)
C1—C14—C9	118.1 (3)	O1—N3—C19	117.7 (4)
C13—C14—C9	118.1 (3)	O2—N3—C19	117.4 (3)
C16—C15—C1	129.6 (2)		
C14—C1—C2—C3	-179.0 (3)	C1-C15-C16-C20	-170.6 (3)
C15—C1—C2—C3	6.7 (4)	N1-C17-C19-N2	1.0 (3)
C14—C1—C2—C7	-0.3 (4)	N1-C17-C19-N3	-178.9 (3)
C15—C1—C2—C7	-174.6 (2)	C15—C16—C20—O3	168.5 (3)
C1—C2—C3—C4	-178.6 (3)	N1-C16-C20-O3	-8.1 (4)
C7—C2—C3—C4	2.6 (5)	C15—C16—C20—C21	-7.7 (4)
C2—C3—C4—C5	-0.7 (5)	N1-C16-C20-C21	175.6 (2)
C3—C4—C5—C6	-1.4 (6)	O3—C20—C21—C26	118.6 (3)
C4—C5—C6—C7	1.5 (6)	C16-C20-C21-C26	-65.2 (4)
C1—C2—C7—C8	-1.2 (4)	O3—C20—C21—C22	-59.7 (4)
C3—C2—C7—C8	177.6 (3)	C16—C20—C21—C22	116.5 (3)
C1—C2—C7—C6	178.7 (3)	C26—C21—C22—C23	1.7 (4)
C3—C2—C7—C6	-2.5 (4)	C20-C21-C22-C23	-180.0 (3)
C5—C6—C7—C8	-179.5 (3)	C21—C22—C23—C24	-1.0 (5)
C5—C6—C7—C2	0.5 (5)	C22—C23—C24—C25	-0.4 (5)
C2—C7—C8—C9	1.9 (5)	C22—C23—C24—Br1	178.3 (2)
C6—C7—C8—C9	-178.0 (3)	C23—C24—C25—C26	1.2 (5)
C7—C8—C9—C10	177.8 (3)	Br1-C24-C25-C26	-177.4 (2)
C7—C8—C9—C14	-1.1 (5)	C22—C21—C26—C25	-0.9 (4)
C8—C9—C10—C11	-177.3 (4)	C20-C21-C26-C25	-179.1 (3)
C14—C9—C10—C11	1.7 (6)	C24—C25—C26—C21	-0.5 (4)
C9-C10-C11-C12	0.9 (7)	C19—C17—N1—C18	-0.3 (3)
C10-C11-C12-C13	-1.6 (7)	C19—C17—N1—C16	-178.5 (2)
C11—C12—C13—C14	-0.4 (6)	N2-C18-N1-C17	-0.5 (3)
C2-C1-C14-C13	-174.5 (3)	N2-C18-N1-C16	177.6 (3)
C15-C1-C14-C13	-0.3 (4)	C15—C16—N1—C17	53.4 (4)
C2-C1-C14-C9	1.1 (4)	C20-C16-N1-C17	-129.9 (3)
C15—C1—C14—C9	175.3 (3)	C15—C16—N1—C18	-124.4 (3)
C12—C13—C14—C1	178.5 (3)	C20-C16-N1-C18	52.4 (4)
C12—C13—C14—C9	3.0 (5)	N1-C18-N2-C19	1.0 (3)
C8—C9—C14—C1	-0.4 (4)	C17—C19—N2—C18	-1.3 (4)
C10-C9-C14-C1	-179.4 (3)	N3-C19-N2-C18	178.6 (3)
C8—C9—C14—C13	175.4 (3)	N2-C19-N3-O1	0.2 (5)
C10-C9-C14-C13	-3.6 (5)	C17—C19—N3—O1	-180.0 (3)
C2-C1-C15-C16	-126.2 (3)	N2-C19-N3-O2	179.8 (3)
C14—C1—C15—C16	59.4 (4)	C17—C19—N3—O2	-0.3 (5)
C1-C15-C16-N1	5.8 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>

supporting information

C23—H23…O3 ⁱ	0.93	2.56	3.303 (4)	137

Symmetry code: (i) -x+2, -y+1, -z.